Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis
Abstract
:1. Introduction
- Long residence times,
- Low water vapor levels.
2. Results and Discussion
2.1. Propene/Propane Response to H2/CO Feed Ratio
2.2. Olefin/Paraffin Response to Vapor Pressure of Water
- Synthesis gas with flow rate 250 mL/min.
- Synthesis gas with reduced space velocity to give an initial CO conversion of 45–50% at 30 h time-on-stream (TOS).
- Keeping the synthesis gas flow-rate from period B and adding water vapor to give 21% water vapor pressure at the reactor inlet.
- Increasing the water vapor pressure to 35%.
- Returning to the conditions of period B.
2.3. Propene/Propane Response to Catalyst Formulation
2.4. Correlations between o/p and C5+ Selectivity
3. Materials and Methods
3.1. Catalyst preparation
3.2. Catalyst Characterization
3.3. Fixed-Bed Catalyst Testing
4. Conclusions
- Reduction in residence time by increasing space velocity; note that this effect is slightly counteracted by simultaneous reduction in CO conversion as well as indigenous production of water.
- Added water to the syngas feed.
- Reduction in H2/CO ratio.
- Reduction in total pressure or temperature. These effects are moderate (not documented in the present work).
- C5+ selectivity for the same support by increasing cobalt crystallite size. Details need to be verified around the peak of the volcano plot.
- Reduction in cobalt stacking faults and lattice defects.
- Absence of promoter (Re).
- Deactivation.
- Reduction in catalyst particle (pellet) size.
- Decreasing carbon number until C3.
- Olefins as the primary product of cobalt Fischer–Tropsch synthesis.
- Paraffins being mostly produced by secondary hydrogenation of olefins.
- Hydrogen surface coverage being suppressed by water.
- Conditions favoring high formation rate of CHx monomers suppress hydrogen coverage.
- Transport limitations favor olefin hydrogenation.
Author Contributions
Funding
Conflicts of Interest
References
- Rytter, E.; Holmen, A. Perspectives on the effect of water in cobalt fischer–Tropsch synthesis. ACS Catal. 2017, 7, 5321–5328. [Google Scholar] [CrossRef]
- Rytter, E.; Borg, Ø.; Tsakoumis, N.; Holmen, A. Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-Alumina based structure-performance relationships. J. Catal. 2018, 365, 334–343. [Google Scholar] [CrossRef]
- Rytter, E.; Borg, Ø.; Enger, B.C.; Holmen, A. α-Alumina as catalyst support in Co Fischer-Tropsch synthesis and the effect of added water; encompassing transient effects. J. Catal. 2019, 373, 13–24. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. Consorted vinylene mechanism for cobalt Fischer-Tropsch synthesis encompassing water or hydroxyl assisted CO-activation. Top. Catal. 2018, 61, 1024–1034. [Google Scholar] [CrossRef]
- Oosterbeek, H.; van Bavel, A.P. Effect of CO coverage on the product slate in FTS. In Proceedings of the 11th Natural Gas Conversion Symposium, Tromsø, Norway, 5–9 June 2016. Abstract 992. [Google Scholar]
- Lögdberg, S.; Yang, J.; Lualdi, M.; Walmsley, J.C.; Järås, S.; Boutonnet, M.; Blekkan, E.A.; Rytter, E.; Holmen, A. Further insights into methane and higher hydrocarbons formation over cobalt-based catalysts with γ-Al2O3, α-Al2O3 and TiO2 as support materials. J. Catal. 2017, 352, 515–531. [Google Scholar] [CrossRef]
- Rytter, E.; Eri, S.; Skagseth, T.H.; Schanke, D.; Bergene, E.; Myrstad, R.; Lindvåg, A. catalyst particle size of cobalt/rhenium on porous alumina and the effect on Fischer−Tropsch catalytic performance. Ind. Eng. Chem. Res. 2007, 46, 9032–9036. [Google Scholar] [CrossRef]
- Shi, B.; Davis, B.H. Fischer–Tropsch synthesis: The paraffin to olefin ratio as a function of carbon number. Catal. Today 2005, 106, 129–131. [Google Scholar] [CrossRef]
- Patzlaff, J.; Liu, Y.; Graffmann, C.; Gaube, J. Interpretation and kinetic modeling of product distributions of cobalt catalyzed Fischer–Tropsch synthesis. Catal. Today 2002, 71, 381–394. [Google Scholar] [CrossRef]
- Borg, Ø.; Eri, S.; Storsæter, S.; Blekkan, E.A.; Wigum, H.; Rytter, E.; Holmen, A. Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal. 2007, 248, 89–100. [Google Scholar] [CrossRef]
- Storsæter, S.; Borg, Ø.; Blekkan, E.A.; Tøtdal, B.; Holmen, A. Fischer-Tropsch synthesis over re-promoted co supported on Al2O3, SiO2 and TiO2: Effect of water. Catal. Today 2005, 100, 343–347. [Google Scholar] [CrossRef]
- Borg, Ø.; Hammer, N.; Eri, S.; Lindvåg, O.A.; Myrstad, R.; Blekkan, E.A.; Rønning, M.; Rytter, E.; Holmen, A. Fischer-Tropsch synthesis over un-promoted and re-promoted γ–Al2O3 supported cobalt catalysts with different pore sizes. Catal. Today 2009, 142, 70–77. [Google Scholar] [CrossRef]
- Hilmen, A.-M.; Bergene, E.; Lindvåg, O.A.; Schanke, D.; Eri, S.; Holmen, A. Fischer-Tropsch synthesis using monolithic catalysts. Stud. Surf. Sci. Catal. 2000, 130, 1163–1168. [Google Scholar]
- Rane, S.; Borg, Ø.; Yang, J.; Rytter, E.; Holmen, A. Effect of alumina phases on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2010, 388, 160–167. [Google Scholar] [CrossRef]
- Rane, S.; Borg, Ø.; Rytter, E.; Holmen, A. Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer-Tropsch catalysts. Appl. Catal. A Gen. 2012, 437–438, 10–17. [Google Scholar] [CrossRef]
- Tsakoumis, N.E.; Patanou, E.; Lögdberg, S.; Johnsen, R.E.; Myrstad, R.; van Beek, W.; Rytter, E.; Blekkan, E.A. Structure-performance relationships on co-based Fischer-Tropsch synthesis catalysts: The more defect-free, the better. ACS Catal. 2019, 9, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Enger, B.C.; Fossan, Å.-L.; Borg, Ø.; Rytter, E.; Holmen, A. Modified alumina as catalyst support in the Fischer-Tropsch synthesis. J. Catal. 2011, 284, 9–22. [Google Scholar] [CrossRef]
- Borg, Ø.; Dietzel, P.D.C.; Spjelkavik, A.I.; Tveten, E.Z.; Walmsley, J.C.; Eri, S.; Holmen, A.; Rytter, E. Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. J. Catal. 2008, 259, 161–164. [Google Scholar] [CrossRef]
- Iglesia, E.; Reyes, S.C.; Madon, R.J.; Soled, S.L. Selectivity control and catalyst design in the Fischer-Tropsch synthesis: Sites, pellets, and reactors. In Advances in Catalysis; Eley, H.P.D.D., Paul, B.W., Eds.; Academic Press: San Diego, CA, USA, 1993; Volume 39, pp. 221–301. [Google Scholar]
- Komaya, T.; Bell, A.T. Estimates of rate coefficients for elementary processes occurring during Fischer-Tropsch synthesis over RuTiO2. J. Catal. 1994, 146, 237–248. [Google Scholar] [CrossRef]
- Herington, E.F.G. The Fischer-Tropsch synthesis considered as a polymerization reaction. Chem. Ind. 1946, 65, 346–347. [Google Scholar]
- Iglesia, E.; Reyes, S.C.; Madon, R.J. Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. J. Catal. 1991, 129, 238–256. [Google Scholar] [CrossRef]
- Dinse, A.; Aigner, M.; Ulbrich, M.; Johnson, G.R.; Bell, A.T. Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis. J. Catal. 2012, 288, 104–114. [Google Scholar] [CrossRef]
- Das, T.K.; Conner, W.; Jacobs, G.; Li, J.; Chaudhari, K.; Davis, B.H. Fischer-Tropsch synthesis: Effect of water on activity and selectivity for a cobalt catalyst. Stud. Surf. Sci. Catal. 2004, 147, 331–336. [Google Scholar]
- Aaserud, C.; Hilmen, A.-M.; Bergene, E.; Eri, S.; Schanke, D.; Holmen, A. Hydrogenation of propene on Cobalt Fischer–Tropsch catalysts. Catal. Lett. 2004, 94, 171–176. [Google Scholar] [CrossRef]
- Schanke, D.; Eri, S.; Rytter, E.; Aaserud, C.; Hilmen, A.-M.; Lindvåg, O.A.; Bergene, E.; Holmen, A. Fischer-Tropsch synthesis on cobalt catalysts supported on different aluminas. Stud. Surf. Sci. Catal. 2004, 147, 301–306. [Google Scholar]
- Todic, B.; Ma, W.; Jacobs, G.; Davis, B.H.; Bukur, D.B. Effect of process conditions on the product distribution of Fischer–Tropsch synthesis over a re-promoted cobalt-alumina catalyst using a stirred tank slurry reactor. J. Catal. 2014, 311, 325–338. [Google Scholar] [CrossRef]
- Yang, J.; Ma, W.; Chen, D.; Holmen, A.; Davis, B.H. Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Appl. Catal. A Gen. 2014, 470, 250–260. [Google Scholar] [CrossRef]
- Zimmerman, W.; Bukur, D.; Ledakowicz, S. Kinetic model of Fischer-Tropsch synthesis selectivity in the slurry phase. Chem. Eng. Sci. 1992, 47, 2707–2712. [Google Scholar] [CrossRef]
- Shi, B.; O’Brien, R.J.; Bao, S.; Davis, B.H. Mechanism of the isomerization of 1-alkene during iron-catalyzed Fischer-Tropsch synthesis. J. Catal. 2001, 199, 202–208. [Google Scholar] [CrossRef]
- Shi, B.; Jacobs, G.; Sparks, D.; Davis, B.H. Fischer-Tropsch synthesis: Accounting for chain length phenomena. Fuel 2005, 84, 1093–1098. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Tu, M.; Ojeda, M.P.; Pinna, D.; Iglesia, E. An investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts. J. Catal. 2002, 211, 422–433. [Google Scholar] [CrossRef]
- Yang, J.; Shafer, W.D.; Pendyala, V.R.R.; Jacobs, G.; Chen, D.; Holmen, A.; Davis, B.H. Fischer-Tropsch synthesis: Using deuterium as a tool to investigate primary product distribution. Catal. Lett. 2014, 144, 524–530. [Google Scholar] [CrossRef]
- Lillebø, A.H. Conversion of Biomass Derived Synthesis Gas into Liquid Fuels via the Fischer–Tropsch Synthesis Process: Effect of Alkali and Alkaline Earth Metal Impurities and CO Conversion Levels on Cobalt Based Catalysts. Ph.D. Thesis, NTNU, Trondheim, Norway, 2014. [Google Scholar]
- Borg, Ø.; Yu, Z.; Chen, D.; Blekkan, E.A.; Rytter, E.; Holmen, A. The effect of water on the activity and selectivity for carbon nanofiber supported cobalt Fischer–Tropsch catalysts. Top. Catal. 2014, 57, 491–499. [Google Scholar] [CrossRef]
- Borg, Ø.; Storsæter, S.; Eri, S.; Wigum, H.; Rytter, E.; Holmen, A. The effect of water on the activity and selectivity for γ-alumina supported cobalt Fischer–Tropsch catalysts with different pore sizes. Catal. Lett. 2006, 107, 95–102. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. On the support in cobalt Fischer-Tropsch synthesis—Emphasis on alumina and aluminates. Catal. Today 2016, 275, 11–19. [Google Scholar] [CrossRef]
- Borg, Ø.; Hammer, N.; Enger, B.C.; Myrstad, R.; Lindvåg, O.A.; Eri, S.; Skagseth, T.H.; Rytter, E. Effect of biomass-derived synthesis gas impurity elements on cobalt Fischer-Tropsch catalyst performance including in situ sulfur and nitrogen addition. J. Catal. 2011, 279, 163–173. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Yang, H.; Xu, B.; Feng, L.; Yang, M.; Chen, Y. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chem. Phys. Lett. 2003, 372, 160–165. [Google Scholar] [CrossRef]
- Haller, G.L.; Resasco, D.E. Metal-support interaction: Group VIII metals and reducible oxides. Adv. Catal. 1989, 36, 173–235. [Google Scholar]
- Bezemer, G.L.; Bitter, J.H.; Kuipers, H.P.C.E.; Oosterbeek, H.; Holewijn, J.E.; Xu, X.; Kapteijn, F.; van Dillen, A.J.; de Jong, K.P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964. [Google Scholar] [CrossRef] [Green Version]
- Lögdberg, S.; Lualdi, M.; Järås, S.; Walmsley, J.C.; Blekkan, E.A.; Rytter, E.; Holmen, A. On the selectivity of cobalt-based Fischer-Tropsch catalysts: Evidence for a common precursor for methane and long chain hydrocarbons. J. Catal. 2010, 274, 84–98. [Google Scholar] [CrossRef]
Catalyst. | C5+ Selectivity (C%) | CH4 Selectivity (C%) | Co Size (nm) * | α1 | α2+ | C3 o/p | CO Conv. (%) | GHSV (mL/gcat·h) ** | Ref. Exp. Data |
---|---|---|---|---|---|---|---|---|---|
Support; Promoter | |||||||||
γ-Al2O3 | 80.2 | 9.7 | 15.2 | 0.522 | 0.876 | 2.3 | 44.8 | 2982 | Storsæter [11] |
γ-Al2O3; 0.5% Re | 80.8 | 8.8 | 9.4 | - | - | 2.3 | 47.6 | 5960 | Storsæter [11] |
SiO2 | 81.7 | 9.1 | 18.1 | 0.527 | 0.884 | 1.1 | 42.2 | 3060 | Storsæter [11] |
SiO2; 0.5% Re | 83.4 | 8.7 | 16.4 | 0.517 | 0.891 | 1.4 | 41.2 | 4166 | Storsæter [11] |
TiO2 | 82.3 | 9.8 | 41.7 | 0.490 | 0.893 | 1.0 | 39.8 | 1885 | Storsæter [11] |
TiO2; 0.5% Re | 84.8 | 8.9 | 40.0 | - | - | 0.8 | 43.9 | 3595 | Storsæter [11] |
α-Al2O3; 0.5% Re | 84.9 | 8.6 | 19.0 | 0.71 | 0.906 | 1.64 | 43.1 | 4546 | Catalyst Cα |
Catalyst Sample | Type of Support | Surface Area (m2/g) | Pore Diameter (nm) | Pore Volume (cm3/g) | Pore Size Distribution | Co Size (nm) a | GHSV (ml/g·h) @ ca.50% Conv. | Degree of Reduction (%) b |
---|---|---|---|---|---|---|---|---|
C3 | γ-Puralox SCCa 40/195 | 143 | 7.1 | 0.30 | Sharp | 8.3 | 9480 | 56 |
C10 | γ-Puralox SCCa 20/190 | 149 | 11.6 | 0.51 | Broad (Low pore size shoulder) | 10.2 | 8947 | 60 |
C11 | Puralox SCCa 20/190 | 148 | 11.6 | 0.50 | Medium broad (Slightly bimodal) | 9.5 | 7536 | 61 |
C13 | Puralox 190 UHP | 92 | 23.7 | 0.57 | Broad | 12.6 | 7671 | 71 |
Cα | α-alumina(84%) | 23.5 | −150 | −0.8 | − | 19.0 | 4546 | >90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rytter, E.; Yang, J.; Borg, Ø.; Holmen, A. Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis. Catalysts 2020, 10, 967. https://doi.org/10.3390/catal10090967
Rytter E, Yang J, Borg Ø, Holmen A. Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis. Catalysts. 2020; 10(9):967. https://doi.org/10.3390/catal10090967
Chicago/Turabian StyleRytter, Erling, Jia Yang, Øyvind Borg, and Anders Holmen. 2020. "Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis" Catalysts 10, no. 9: 967. https://doi.org/10.3390/catal10090967
APA StyleRytter, E., Yang, J., Borg, Ø., & Holmen, A. (2020). Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis. Catalysts, 10(9), 967. https://doi.org/10.3390/catal10090967