Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of Pd/MWCNT, PdNi/MWCNT, PdNiO/MWCNT, PdMn3O4/MWCNT and PdMn3O4NiO/MWCNT Electrocatalysts
2.2. Evaluation of Electrocatalytic Activity for Pd/MWCNT, PdNi/MWCNT, PdNiO/MWCNT, PdMn3O4/MWCNT and PdMn3O4NiO/MWCNT Electrocatalyst in Alkaline Solution
2.3. Comparison of Glycerol Oxidation on Pd/MWCNT, PdNi/MWCNT, PdNiO/MWCT, PdMn3O4 and PdMn3O4NiO/MWCNT Electrolytes in KOH Solution
3. Materials and Methods
3.1. Materials Used
3.2. Electrocatalyst Preparation
3.3. Electrocatalyst Evaluation
3.4. Physical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antolini, E.; Perez, J. Anode catalysts for alkaline direct alcohol fuel cells and characteristics of the catalysts layer. In Electrocatalysis in Fuel Cells; Shao, M., Ed.; Springer: London, UK, 2013; pp. 89–127. [Google Scholar]
- Pulido, D.F.Q.; Kortenaar, M.V.T.; Hurink, J.L.; Smit, G.J.M. A Practical Approach in Glycerol Oxidation for the Development of A Glycerol Fuel Cell. Trends Green Chem. 2017, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, G.F.A.; Mamlouk, M.; Scott, K. An Investigation of Palladium Oxygen Reduction Catalysts for the direct methanol Fuel Cell. Int. J. Electrochem. 2011, 2011, 684535. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Shyam, B.; Macounova, K.; Krtil, P.; Ramaker, D.; Murajee, S. Dramatically enhanced cleavage of the C–C bond using an electrocatalytically coupled reaction. J. Am. Chem. Soc. 2012, 134, 8655–8661. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Dos Anjos, D.M.; Kokoh, K.B.; Coutanceau, C.; Lager, J.-M.; Olivi, P.; de Andrade, A.R.; Tremiliosi-Filho, G. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim. Acta 2007, 52, 6997–7006. [Google Scholar] [CrossRef]
- Xue, X.; Ge, J.; Tian, T.; Liu, C.; Xing, W.; Lu, T. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process. J. Power Sources 2007, 172, 560–569. [Google Scholar] [CrossRef]
- Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt: Sn ratio. Electrochim. Acta 2007, 53, 377–389. [Google Scholar] [CrossRef]
- Geraldes, A.N.; da Silva, D.F.; da Silva, J.C.M.; de Sa, O.A.; Spinace, E.V.; Neto, A.O.; Dos Santos, M.C. Palladium and palladium-tin supported on multi-wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell. J. Power Sources 2015, 275, 189–199. [Google Scholar] [CrossRef]
- Rajalakshmi, N.; Ryu, H.; Shaijumon, M.M.; Ramaprabhu, S. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J. Power Sources 2005, 140, 250–257. [Google Scholar] [CrossRef]
- Yi, Q.; Chu, H.; Chen, Q.; Yang, Z.; Liu, X. High-performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols. Electroanalysis 2015, 27, 388–397. [Google Scholar] [CrossRef]
- Waje, M.M.; Li, W.; Chen, Z.; Yan, Y. Durability Investigation of Cup-Stacked Carbon Nanotubes Supported Pt as PEMFC Catalyst. ECS Trans. 2006, 3, 677–683. [Google Scholar]
- Yuan, X.-Z.; Song, C.; Wang, H.; Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells; Springer: London, UK, 2010; pp. 193–262. [Google Scholar]
- Yu, E.H.; Krewer, U.; Scott, K. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies 2010, 3, 1499–1528. [Google Scholar] [CrossRef]
- Hernandez, R.; Dunning, C. Direct methanol fuel cells. In Electrocatalysts for Direct Methanol Fuel Cells; Khotseng, L., Ed.; Nova Science Publishers: New York, NY, USA, 2017; pp. 1–49. [Google Scholar]
- Yi, Q.F.; Sun, L.Z. In situ synthesis of palladium nanoparticles on multi-walled carbon nanotubes and their electroactivity for ethanol oxidation. Rare Met. 2013, 32, 586–591. [Google Scholar] [CrossRef]
- Santasalo-Aarnio, A.; Kwon, Y.; Ahlberg, E.; Kontturi, K.; Kallio, T.; Koper, M.T. Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochem. Commun. 2011, 13, 466–469. [Google Scholar] [CrossRef]
- Yougui, C.; Zhuang, L.; Juntao, L.U. Non-Pt Anode Catalysts for Alkaline Direct Alcohol Fuel Cells. Chin. J. Catal. 2007, 28, 870–874. [Google Scholar]
- Wang, R.; Wang, H.; Feng, H.; Ji, S. Palladium Decorated Nickel Nanoparticles Supported on Carbon for Formic Acid Oxidation. Int. J. Electrochem. Sci. 2013, 8, 6068–6076. [Google Scholar]
- Lv, H.; Cheng, N.; Mu, S.; Pan, M. Heat-treated multi-walled carbon nanotubes as durable supports for PEM fuel cell catalysts. Electrochim. Acta 2011, 58, 736–742. [Google Scholar] [CrossRef]
- Garsany, Y.; Baturina, O.A.; Swider-Lyons, K.E.; Kocha, S.S. Experimental methods for quantifying the activity of Platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328. [Google Scholar] [CrossRef]
- Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes—An Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, F.; Chen, Z.; Liu, Q.; Ji, Y.; Zhang, Y.; Niu, Z.; Mao, J.; Bao, X.; Hu, P.; et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.K.; Xu, C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem. Commun. 2006, 8, 184–188. [Google Scholar] [CrossRef]
- Pohl, M.D.; Watzele, S.; Calle-Vallejo, F.; Bandarenka, A.S. Nature of Highly Active Electrocatalytic Sites for the Hydrogen Evolution Reaction at Pt Electrodes in Acidic Media. ACS Omega 2017, 2, 8141–8147. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.S.; Datta, J. Characterization of Pt-Pd/C Electrocatalyst for Methanol Oxidation in Alkaline Medium. Int. J. Electrochem. 2011, 2011, 563495. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Bao, Y.; Gan, S.; Sun, Z.; Song, Z.; Han, D.; Li, F.; Niu, L. Hierarchical Ni-Co Based Transition Metal Oxide Catalysts for Electrochemical Conversion of Biomass into Valuable Chemicals. ChemSusChem 2018, 11, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Ajeel, M.A.; Aroua, M.K.T.; Daud, W.M.A.W. Reactivity of carbon black diamond electrode during the electro-oxidation of Remazol Brilliant Blue R. RSC Adv. 2016, 6, 3690–3699. [Google Scholar] [CrossRef]
- Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Chang, D.W.; Dai, L.; Baek, J.-B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534–555. [Google Scholar] [CrossRef]
- Nguyen, T.G.H.; Pham, T.V.A.; Phuong, T.X.; Lam, T.X.B.; Nguyen, T.P.T. Nano-Pt/C electrocatalysts: Synthesis and activity for alcohol oxidation. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035008. [Google Scholar] [CrossRef]
- Fashedemia, O.O.; Ozoemena, K.I. Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core–shell nanocatalysts in alkaline medium. Phys. Chem. Chem. Phys. 2013, 15, 20982–20991. [Google Scholar] [CrossRef]
- Meng, H.; Zeng, D.; Xie, F. Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Catalysts 2015, 5, 1221–1274. [Google Scholar] [CrossRef]
- Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R.I. Unusually active palladium-based catalysts for the electrooxidation of formic acid. J. Power Sources 2006, 157, 78–84. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, M.; Li, Q.; Xu, Q. Preparation and Electrocatalytic Characteristics of PdW/C Catalyst for Ethanol Oxidation. Catalysts 2015, 5, 1068–1078. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, G.; Li, D.; Liu, C.; Xing, S. One-pot achievement of MnO2/Fe2O3 nanocomposites for oxygen reduction reaction with enhanced catalytic activity. New J. Chem. 2019, 43, 16870–16875. [Google Scholar] [CrossRef]
Pd Atomic Ratio (Nominal) | Pd Atomic Ratio-EDS | Particle Size (nm) TEM | Crystallite Size (nm) XRD | ||
---|---|---|---|---|---|
Pd | Ni | Mn | |||
Pd/MWCNT | 19.38 | - | - | 5.2 | 5.2 |
PdNi/MWCNT | 16.25 | 5.25 | - | 5.1 | 4.0 |
PdNiO/MWCNT | 16.03 | 6.23 | - | 3.4 | 3.4 |
PdMn3O4/MWCNT | 15.47 | - | 7.25 | 5.3 | 6.5 |
PdMn3O4NiO/MWCNT | 13.89 | 4.26 | 5.65 | 7.2 | 10.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaas, L.; Modibedi, M.; Mathe, M.; Su, H.; Khotseng, L. Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells. Catalysts 2020, 10, 968. https://doi.org/10.3390/catal10090968
Klaas L, Modibedi M, Mathe M, Su H, Khotseng L. Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells. Catalysts. 2020; 10(9):968. https://doi.org/10.3390/catal10090968
Chicago/Turabian StyleKlaas, Lutho, Mmalewane Modibedi, Mkhulu Mathe, Huaneng Su, and Lindiwe Khotseng. 2020. "Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells" Catalysts 10, no. 9: 968. https://doi.org/10.3390/catal10090968
APA StyleKlaas, L., Modibedi, M., Mathe, M., Su, H., & Khotseng, L. (2020). Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells. Catalysts, 10(9), 968. https://doi.org/10.3390/catal10090968