Electrode Materials for Supercapacitors: A Review of Recent Advances
Abstract
:1. Introduction
2. The Distinction between Terminologies Used: Pseudocapacitive and Battery-Like Electrode Materials
3. Electrode Materials
3.1. Nanostructured Carbon-Based Materials
3.1.1. Activated Carbon Materials (ACs)
3.1.2. Carbon Nanotubes (CNTs)
3.1.3. Graphene
3.2. Transition Metal Oxides/Hydroxides-Based Materials
3.2.1. Ruthenium Oxide (RuO2)
3.2.2. Manganese Dioxide (MnO2)
3.2.3. Nickel Oxide (NiO)
3.2.4. Nickel Hydroxide (Ni (OH)2)
3.2.5. Vanadium Pentoxide (V2O5)
3.3. Conducting Polymer-Based Material (CPs)
3.3.1. Polyaniline (PANI)
3.3.2. Polypyrrole (PPy)
3.4. Nanocomposite-Based Materials
3.4.1. Carbon–Carbon Composites
3.4.2. Carbon-MOs Composites
3.4.3. Carbon-CPs Composites
3.4.4. MOs-CPs Composites
4. Two-Dimensional (2D) Electrode Materials and Their Modification Methods
5. Applications and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCs | Supercapacitors |
EDLCs | Electric double-layer capacitors |
SSCs | Symmetric supercapacitors |
ASSCs | Asymmetric supercapacitors |
HSCs | Hybrid supercapacitors |
FSCs | Flexible supercapacitors |
ASFHSC | Asymmetric flexible hybrid supercapacitor |
Pd | Power density |
Ed | Energy density |
CVs | Cyclic voltammograms |
SSA | Specific surface area |
0D | Zero-dimensional |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
NSs | Nanosheets |
NSAs | Nanosheet arrays |
CB | Carbon black |
CC | Carbon cloth |
CCF | Carbonized cotton fabric |
CNTs | Carbon nanotubes |
CNFs | Carbon nanofibers |
MCNFs | Multi-channel carbon nanofiber |
ECC | Electrochemically activated carbon |
TPC | Templated porous carbon |
SPC | Sulfurated porous carbon |
HCNBs | Hollow carbon nano bowls |
rGO | Reduced graphene oxide |
GQDs | Graphene quantum dot |
PGr | Porous graphene |
GNSs | Graphene nanosheets |
GPCNs | Graphene-like porous carbon nanosheets |
MOs | Metal oxides |
TMs | Transition metal |
TMOs | Transition metal oxide |
TM(OH)s | Transition metal hydroxide |
TMDs | Transition metal dichalcogenides |
COFs | Covalent organic frameworks |
MOFs | Metal organic framework |
PANI | Polyaniline |
PTh | Polythiophene |
PPy | Polypyrrole |
PIND | Polyindole |
PEDOT | Poly 3,4-ethylenedioxythiophene |
PVA | Poly vinyl alcohol |
PS | Polystyrene |
BN | Boron nitrides |
PNTs | Polypyrrole nanotubes |
hBN | Hexagonal boron nitride |
BP | Black phosphorous |
PSK | Perovskite |
MXene | 2D transition metal carbides, Carbonitrides, and nitrides |
References
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Islam, M.; Moore, J.; Sleppy, J.; Morrison, C.; Konstantinov, K.; Dou, S.X.; Renduchintala, C.; Thomas, J. Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Lewandowski, A.; Galinski, M. Practical and theoretical limits for electrochemical double-layer capacitors. J. Power Sources 2007, 173, 822–828. [Google Scholar] [CrossRef]
- Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors. J. Power Sources 2007, 173, 626–632. [Google Scholar] [CrossRef]
- Huang, J.; Sumpter, B.G.; Meunier, V. Theoretical Model for Nanoporous Carbon Supercapacitors. Angew. Chem. Int. Ed. 2008, 47, 520–524. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon Nanotube Based Fiber Supercapacitor as Wearable Energy Storage. Front. Mater. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Chavan, U.S.; Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186. [Google Scholar] [CrossRef]
- Kakaei, K.; Esrafili, M.D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors. Interface Sci. Technol. 2019, 27, 339–386. [Google Scholar]
- Zhang, L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cheng, X.; Shashurin, A.; Keidar, M. Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene 2012, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, J.; Feng, Y.P. Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 2010, 5, 654–668. [Google Scholar] [CrossRef] [Green Version]
- Forse, A.C.; Merlet, C.; Griffin, J.M.; Grey, C.P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744. [Google Scholar] [CrossRef] [Green Version]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef]
- Woo, J.; Ahn, T.; Hun, J.; Myoun, J.; Kim, J. Electrochimica Acta Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 2011, 56, 4849–4857. [Google Scholar] [CrossRef]
- Xing, Z.; Chu, Q.; Ren, X.; Ge, C.; Qusti, A.H.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 2014, 245, 463–467. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, H.; Wang, M.; Yang, M.; Guo, Q.; Wan, L.; Xia, H.; Yu, Y. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. Adv. Energy Mater. 2017, 7, 1701336. [Google Scholar] [CrossRef]
- Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955. [Google Scholar] [CrossRef]
- Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 2008, 177, 643–651. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Andreas, H.A. Self-Discharge in Electrochemical Capacitors: A Perspective Article. J. Electrochem. Soc. 2015, 162, A5047–A5053. [Google Scholar] [CrossRef]
- Black, J.; Andreas, H.A. Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim. Acta 2009, 54, 3568–3574. [Google Scholar] [CrossRef]
- Abbas, Q.; Béguin, F. Influence of the iodide/iodine redox system on the self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte. Prog. Nat. Sci. Mater. Int. 2015, 25, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Kötz, R.; Hahn, M.; Gallay, R. Temperature behavior and impedance fundamentals of supercapacitors. J. Power Sources 2006, 154, 550–555. [Google Scholar] [CrossRef]
- Xiao, H.; Yao, S.; Liu, H.; Qu, F.; Zhang, X.; Wu, X. NiO nanosheet assembles for supercapacitor electrode materials. Prog. Nat. Sci. Mater. Int. 2016, 26, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chem. Rev. 2018, 118, 6457–6498. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, B.; Zheng, S.; Xu, Y.; Xue, H.; Pang, H. Syntheses and Energy Storage Applications of M x S y (M = Cu, Ag, Au) and Their Composites: Rechargeable Batteries and Supercapacitors. Adv. Funct. Mater. 2017, 27, 1703949. [Google Scholar] [CrossRef]
- Chemali, E.; Preindl, M.; Malysz, P.; Emadi, A. Electrochemical and Electrostatic Energy Storage and Management Systems for Electric Drive Vehicles: State-of-the-Art Review and Future Trends. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1117–1134. [Google Scholar] [CrossRef]
- Talaie, E.; Bonnick, P.; Sun, X.; Pang, Q.; Liang, X.; Nazar, L.F. Methods and Protocols for Electrochemical Energy Storage Materials Research. Chem. Mater. 2017, 29, 90–105. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.-F.; Liu, Y.; Zhang, H.; Ren, Y.; Sun, C.-J.; Lu, W.; Zhou, Y.; Stanciu, L.; Stach, E.; et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015, 6, 6127. [Google Scholar] [CrossRef]
- Ardizzone, S.; Fregonara, G.; Trasatti, S. Inner and outer active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267. [Google Scholar] [CrossRef]
- Zheng, J.P. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, 2699. [Google Scholar] [CrossRef]
- Lee, H.Y.; Goodenough, J.B. Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem. 1999, 144, 220–223. [Google Scholar] [CrossRef]
- Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosnier, O.; Bélanger, D. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc. 2006, 153, A2171. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189. [Google Scholar] [CrossRef] [Green Version]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Hall, A.S.; Kim, J.D.; Mallouk, T.E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Ho, K.-C.; Kuo, S.-L.; Wu, N.-L. Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors. J. Electrochem. Soc. 2006, 153, 75–80. [Google Scholar] [CrossRef]
- Xia, X.-H.; Tu, J.-P.; Wang, X.-L.; Gu, C.-D.; Zhao, X.-B. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun. 2011, 47, 5786. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sarkar, D.; Khan, G.G.; Mandal, K. Designing one dimensional Co-Ni/Co3O4-NiO core/shell nano-heterostructure electrodes for high-performance pseudocapacitor. Appl. Phys. Lett. 2014, 104, 133904. [Google Scholar] [CrossRef]
- Wang, H.; Yi, H.; Chen, X.; Wang, X. Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim. Acta 2013, 105, 353–361. [Google Scholar] [CrossRef]
- Kandalkar, S.G.; Gunjakar, J.L.; Lokhande, C.D. Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci. 2008, 254, 5540–5544. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Sankar, K.V.; Vasylechko, L.; Lee, Y.-S.; Selvan, R.K. Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv. 2014, 4, 53192–53200. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.-L.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Mitchell, J.B.; Lo, W.C.; Genc, A.; LeBeau, J.; Augustyn, V. Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide. Chem. Mater. 2017, 29, 3928–3937. [Google Scholar] [CrossRef]
- Lai, L.; Yang, S.; Wang, L.; Teh, B.K.; Zhong, J.; Chou, H.; Chen, L.; Chen, W.; Shen, Z.; Ruoff, R.S.; et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 2012, 6, 5941–5951. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Sun, G.-H.; Su, F.; Guo, X.; Kong, Q.; Li, X.; Huang, X.; Wan, L.; Song, W.; Li, K.; et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 2016, 4, 1637–1646. [Google Scholar] [CrossRef]
- Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Kim, B.K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion. Handb. Clean Energy Syst. 2015, 1–25. [Google Scholar] [CrossRef]
- Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef] [Green Version]
- Pongprayoon, P.; Chaimanatsakun, A. Revealing the Effects of Pore Size and Geometry on the Mechanical Properties of Graphene Nanopore Using the Atomistic Finite Element Method. Acta Mech. Solida Sin. 2019, 32, 81–92. [Google Scholar] [CrossRef]
- Dai, G.; Zhang, L.; Liao, Y.; Shi, Y.; Xie, J.; Lei, F.; Fan, L. Multi-Scale Model for Describing the Effect of Pore Structure on Carbon-Based Electric Double Layer. J. Phys. Chem. C 2020, 124, 3952–3961. [Google Scholar] [CrossRef]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef] [Green Version]
- Shang, T.; Xu, Y.; Li, P.; Han, J.; Wu, Z.; Tao, Y.; Yang, Q.-H. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 2020, 70, 104531. [Google Scholar] [CrossRef]
- Miller, J.M. Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes. J. Electrochem. Soc. 1997, 144, 309. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano 2012. [Google Scholar] [CrossRef] [PubMed]
- Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 2013, 139, 72–79. [Google Scholar] [CrossRef]
- Qi, F.; Xia, Z.; Sun, R.; Sun, X.; Xu, X.; Wei, W.; Wang, S.; Sun, G. Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors. J. Mater. Chem. A 2018, 6, 14170–14177. [Google Scholar] [CrossRef]
- He, X.; Ma, H.; Wang, J.; Xie, Y.; Xiao, N.; Qiu, J. Porous carbon nanosheets from coal tar for high-performance supercapacitors. J. Power Sources 2017, 357, 41–46. [Google Scholar] [CrossRef]
- Becker, H.I.; General Electric Company. Low Voltage Electrolytic Capacitor. U.S. Patent 2,800,616, 1957. Available online: https://patentimages.storage.googleapis.com/a2/f8/a9/b7d5c04a415c8b/US2800616.pdf (accessed on 8 June 2020).
- Iro, Z.S.; Subramani, C.; Dash, S.S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Chen, S.M.; Ramachandran, R.; Mani, V.; Saraswathi, R. Recent Advancements in Electrode Materials for the Highperformance Electrochemical Supercapacitors—A Review. Int. J. Electrochem. Sci. 2014, 9, 4072–4085. [Google Scholar]
- Arbizzani, C.; Mastragostino, M.; Soavi, F. New trends in electrochemical supercapacitors. J. Power Sources 2001, 100, 164–170. [Google Scholar] [CrossRef]
- Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon N. Y. 2006, 44, 2498–2507. [Google Scholar] [CrossRef]
- Arenillas, A.; Menéndez, J.A.; Reichenauer, G.; Celzard, A.; Fierro, V.; Hodar, F.J.M.; Bailόn-Garcia, E.; Job, N. Organic and Carbon Gels: From Laboratory Synthesis to Applications; Springer: Berlin, Germany, 2019; p. 195. [Google Scholar] [CrossRef]
- Wang, C.-M.; Wen, C.-Y.; Chen, Y.-C.; Chang, J.-Y.; Ho, C.-W.; Kao, K.-S.; Shih, W.-C.; Chiu, C.-M.; Shen, Y.-A. The influence of specific surface area on the capacitance of the carbon electrodes supercapacitor. In Proceedings of the 2nd International Conference on Industrial Application Engineering 2015, Kitakyushu, Japan, 28–31 March 2015; pp. 439–442. [Google Scholar] [CrossRef] [Green Version]
- Varghese, J.; Wang, H.; Pilon, L. Simulating Electric Double Layer Capacitance of Mesoporous Electrodes with Cylindrical Pores. J. Electrochem. Soc. 2011, 158, A1106. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-T.; Zhang, Y.; Li, X.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Zhang, Y.; Cummings, P.T.; Jiang, D.E. Enhancing graphene capacitance by nitrogen: Effects of doping configuration and concentration. Phys. Chem. Chem. Phys. 2016, 18, 4668–4674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, X.; Wang, N.; Li, M.; Li, Q.; Liu, J. Unraveling Factors Leading to High Pseudocapacitance of Redox-Active Small Aromatics on Graphene. J. Phys. Chem. C 2019, 123, 994–1002. [Google Scholar] [CrossRef]
- Yang, H.; Kannappan, S.; Pandian, A.S.; Jang, J.H.; Lee, Y.S.; Lu, W. Graphene supercapacitor with both high power and energy density. Nanotechnology 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Boddula, R.; Ahamed, M.I.; Asiri, A.M. Inorganic Nanomaterials for Supercapacitor Design; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Iro, Z.S.; Subramani, C.; Hafeez, H.Y. Study of asymmetric hybrid supercapacitor using carbon and metal oxides as electrode materials. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Sahoo, R.; Lee, T.H.; Pham, D.T.; Luu, T.H.T.; Lee, Y.H. Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano 2019, 13, 10776–10786. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhang, H.; Sun, X.; Zhang, D.; Ma, Y. High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv. 2012, 2, 7747–7753. [Google Scholar] [CrossRef]
- Moreno-Fernandez, G.; Ibañez, J.; Rojo, J.M.; Kunowsky, M. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes. Adv. Mater. Sci. Eng. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhitomirsky, I. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl. Mater. Interfaces 2013, 5, 13161–13170. [Google Scholar] [CrossRef]
- Zou, Q.; Khalafallah, D.; Wu, Z.; Chen, J.; Zhi, M.; Hong, Z. Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. J. Supercrit. Fluids 2020, 159, 104774. [Google Scholar] [CrossRef]
- Syarif, N.; Tribidasari, I.; Wibowo, W. Direct Synthesis Carbon/Metal Oxide Composites for Electrochemical Capacitors Electrode. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2012, 3, 21–34. Available online: http://tuengr.com/V03/21-34.pdf (accessed on 3 January 2020).
- Bessaguet, C.; Dantras, E.; Lacabanne, C.; Chevalier, M.; Michon, G. Piezoelectric and mechanical behavior of NaNbO3/PEKK lead-free nanocomposites. J. Non. Cryst. Solids 2017, 459, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salunkhe, R.R.; Lin, J.; Malgras, V.; Dou, S.X.; Kim, J.H.; Yamauchi, Y. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 2015, 11, 211–218. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014, 4, 1300816. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, H.B.; Xie, Y.; Lou, X.W.D. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Simon, P.; Burke, A. Nanostructured carbons: Double-layer capacitance and more. Electrochem. Soc. Interface 2008, 17, 38–43. [Google Scholar]
- Raymundo-Piñero, E.; Leroux, F.; Béguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 2006, 18, 1877–1882. [Google Scholar] [CrossRef]
- Ali, A.; Jamal, R.; shao, W.; Rahman, A.; Osman, Y.; Abdiryim, T. Structure and properties of solid-state synthesized poly(3,4-propylenedioxythiophene)/nano-ZnO composite. Prog. Nat. Sci. Mater. Int. 2013, 23, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, J.; Jia, Y.; Ma, C. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J. Power Sources 2012, 216, 508–514. [Google Scholar] [CrossRef]
- Ania, C.O.; Khomenko, V.; Raymundo-Piñero, E.; Parra, J.B.; Béguin, F. The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Adv. Funct. Mater. 2007, 17, 1828–1836. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Wang, S.; Cao, Z.; Wu, Z.; Wang, H.; Gao, Y.; Liu, J. Activated Carbon Prepared from Lignite as Supercapacitor Electrode Materials. Electroanalysis 2016, 28, 243–248. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, J.; Zhang, L.; Li, Y.; Chen, M.-S.; Chen, Y.; Shen, Z. Activated carbon by one-step calcination of deoxygenated agar for high voltage lithium ion supercapacitor. ACS Sustain. Chem. Eng. 2020, 8, 3637–3643. [Google Scholar] [CrossRef]
- Bordun, I.; Pohrebennyk, V.; Sadowa, M.; Ptashnyk, V.; Klos-Witkowska, A.; Martsenyuk, V. Impedance spectroscopy of supercapacitors on the basis on modified by the ultrasound activated carbon material. In Proceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, Bucharest, Romania, 21–23 September 2017; pp. 86–90. [Google Scholar] [CrossRef]
- Grishchenko, L.M.; Tsapyuk, G.G.; Ricco, M.; Diyuk, V.E.; Boldyrieva, O.Y.; Mariychuk, R.; Matushko, I.P.; Pontiroli, D.; Lisnyak, V.V.; Scaravonati, S. Enhancing the Performance of Supercapacitor Activated Carbon Electrodes by Oxidation. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology, ELNANO, Kyiv, Ukraine, 22–24 April 2020; Igor Sikordky Kyiv Polytechnic Instituite: Kyiv, Ukraine; pp. 173–177. [Google Scholar] [CrossRef]
- Maria, F.R.; Raj, S.; Jaya, N.V.; Boopathi, G.; Kalpana, D.; Pandurangan, A. S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors. Mater. Chem. Phys. 2019, 240, 122151. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, X.; Zhang, S.; Lu, W. Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power Sources 2019, 450, 227678. [Google Scholar] [CrossRef]
- Chen, W.C.; Wen, T.C.; Teng, H. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim. Acta 2003, 48, 641–649. [Google Scholar] [CrossRef]
- Inal, I.I.G.; Gokce, Y.; Aktas, Z. Waste tea derived activated carbon/polyaniline composites as supercapacitor electrodes. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, Birmingham, UK, 20–23 November 2016; pp. 458–462. [Google Scholar] [CrossRef]
- Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 77, 2421–2423. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 2011, 13, 17615–17624. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Yeh, J.; Pan, N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 2005, 16, 350–353. [Google Scholar] [CrossRef]
- Shi, R.; Jiang, L.; Pan, C. A Single-Step Process for Preparing Supercapacitor Electrodes from Carbon Nanotubes. Soft Nanosci. Lett. 2011, 1, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Rajender, I.; Mohammad, B.; Ahmer, F.; Asiri, A.M. Morphology Design Paradigms for Supercapacitors; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Li, X.; Rong, J.; Wei, B. Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress. ACS Nano 2010, 4, 6039–6049. [Google Scholar] [CrossRef]
- Dillon, A.C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010, 110, 6856–6872. [Google Scholar] [CrossRef]
- Niu, C.; Sichel, E.K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 1997, 70, 1480–1482. [Google Scholar] [CrossRef]
- Peng, C.; Jin, J.; Chen, G.Z. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim. Acta 2007, 53, 525–537. [Google Scholar] [CrossRef]
- Wang, G.; Hou, C.; Wang, H. (Eds.) Flexible and Wearable Electronics for Smart Clothing; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Liu, Q.; Yang, J.; Luo, X.; Miao, Y.; Zhang, Y.; Xu, W.; Yang, L.; Liang, Y.; Weng, W.; Zhu, M. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram. Int. 2020, 46, 11874–11881. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, W.; Zhang, P.; Chen, J.; Tian, W.; Zhang, Y.; Sun, Z. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 2018, 830–831, 1–6. [Google Scholar] [CrossRef]
- Shimamoto, K.; Tadanaga, K.; Tatsumisago, M. All-solid-state electrochemical capacitors using MnO2/carbonnanotube composite electrode. Electrochim. Acta 2013, 109, 651–655. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef]
- Tan, Y.B.; Lee, J.M. Graphene for supercapacitor applications. J. Mater. Chem. A 2013, 1, 14814–14843. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef] [PubMed]
- Carbon Nanotube Fibres and Yarns: Production, Properties and Applications in Google Books. Available online: https://books.google.ie/books?id=uI6vDwAAQBAJ&pg=PA268&lpg=PA268&dq=H.+M.+Cheng,+IEEE,+(2010)+49&source=bl&ots=u8jvoQ_eMN&sig=ACfU3U2SIRQFlU2dHpKz1sdHXKK0VnyyMg&hl=en&sa=X&ved=2ahUKEwjv5suTz-zmAhU-XRUIHX_jAz0Q6AEwAXoECAkQAQ#v=onepage&q=H. M. Cheng%2C IEEE (accessed on 24 June 2020).
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164–2170. [Google Scholar] [CrossRef]
- Karthika, P.; Rajalakshmi, N.; Dhathathreyan, K.S. Functionalized Exfoliated Graphene Oxide as Supercapacitor Electrodes. Soft Nanosci. Lett. 2012, 2, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Jung, G.; Yoo, S.; Suh, K.S.; Ruoff, R.S. Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores. ACS Nano 2013, 7, 6899–6905. [Google Scholar] [CrossRef]
- Sinniah, G.K.; Shah, M.Z.; Siong, H.C. The needs for changes in travel behaviour towards a Low Carbon Society. In Proceedings of the 26th International Business Information Management Association Conference—Innovation Management and Sustainable Economic Competitive Advantage: From Regional Development to Global Growth, IBIMA 2015, Madrid, Spain, 11–12 November 2015; pp. 3868–3876. [Google Scholar]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.; Stoller, M.D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R.S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012, 12, 1806–1812. [Google Scholar] [CrossRef]
- Paek, E.; Pak, A.J.; Kweon, K.E.; Hwang, G.S. On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene. J. Phys. Chem. C 2013, 117, 5610–5616. [Google Scholar] [CrossRef]
- Palaniselvam, T.; Kashyap, V.; Bhange, S.N.; Baek, J.B.; Kurungot, S. Nanoporous Graphene Enriched with Fe/Co-N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Adv. Funct. Mater. 2016, 26, 2150–2162. [Google Scholar] [CrossRef]
- Singh, S.K.; Dhavale, V.M.; Boukherroub, R.; Kurungot, S.; Szunerits, S. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl. Mater. Today 2017, 8, 141–149. [Google Scholar] [CrossRef]
- Li, N.; Tang, S.; Dai, Y.; Meng, X. The synthesis of graphene oxide nanostructures for supercapacitors: A simple route. J. Mater. Sci. 2014, 49, 2802–2809. [Google Scholar] [CrossRef]
- Ogata, C.; Kurogi, R.; Hatakeyama, K.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage. Chem. Commun. 2016, 52, 3919–3922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, K.; Zhang, X.; Lin, H.; Sun, X.; Li, C.; Ma, Y. Self-generating graphene and porous nanocarbon composites for capacitive energy storage. J. Mater. Chem. A 2015, 3, 11277–11286. [Google Scholar] [CrossRef]
- Karnan, M.; Subramani, K.; Sathish, M. Template Assisted Synthesis of Nitrogen doped 3D-Graphene for Supercapacitor Applications. Mater. Today Proc. 2017, 4, 12144–12151. [Google Scholar] [CrossRef]
- Wang, G.; Sun, X.; Lu, F.; Sun, H.; Yu, M.; Jiang, W.; Liu, C.; Lian, J. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors. Small 2012, 8, 452–459. [Google Scholar] [CrossRef]
- Shabangoli, Y.; Rahmanifar, M.S.; Noori, A.; El-Kady, M.F.; Kaner, R.B.; Mousavi, M.F. Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano 2019, 13, 12567–12576. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K.S.; Ferrari, A.C. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Cheng, C.; Yao, C.; Jin, X. Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel. Org. Electron. 2020, 78, 105407. [Google Scholar] [CrossRef]
- Nguyen, T.; Montemor, M.F. Redox active materials for metal compound based hybrid electrochemical energy storage: A perspective view. Appl. Surf. Sci. 2017, 422, 492–497. [Google Scholar] [CrossRef]
- Conway, B.E. Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138, 1539–1548. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Q.; Feng, K.; Guo, J.; Wei, X.; Shao, Y.; Zhuang, J.; Lin, T. Effects of microstructure and electrochemical properties of Ti/IrO2–SnO2–Ta2O5 as anodes on binder-free asymmetric supercapacitors with Ti/RuO2–NiO as cathodes. Ceram. Int. 2020, 46, 17640–17650. [Google Scholar] [CrossRef]
- Guo, W.; Sun, W.; Wang, Y. Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. ACS Nano 2015, 9, 11462–11471. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef]
- Mondal, I.; Pal, U. Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production. Phys. Chem. Chem. Phys. 2016, 18, 4780–4788. [Google Scholar] [CrossRef]
- Dekrafft, K.E.; Wang, C.; Lin, W. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 2012, 24, 2014–2018. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, L.; Zhang, F.; Wang, L. Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 2014, 6, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- Kaneti, Y.V.; Zakaria, Q.M.D.; Zhang, Z.; Chen, C.; Yue, J.; Liu, M.; Jiang, X.; Yu, A. Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J. Mater. Chem. A 2014, 2, 13283–13292. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Sun, H.; Sun, P.; Liang, X.; Liu, F.; Hu, X.; Lu, G. Nanosheet-Assembled ZnFe2O4 Hollow Microspheres for High-Sensitive Acetone Sensor. ACS Appl. Mater. Interfaces 2015, 7, 15414–15421. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Guan, B.; Xia, B.; Lou, X.W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xue, H.; Yang, Q.; Yuan, R.; Kang, W.; Lee, C.S. Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem. Eng. J. 2017, 308, 340–346. [Google Scholar] [CrossRef]
- Hou, L.; Lian, L.; Zhang, L.; Pang, G.; Yuan, C.; Zhang, X. Self-sacrifice template fabrication of hierarchical mesoporous bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv. Funct. Mater. 2015, 25, 238–246. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, S.; Yang, C.; Bao, R.; Tong, L.; Hou, L.; Zhang, X.; Yuan, C. Metal-organic-framework-derived two-dimensional ultrathin mesoporous hetero-ZnFe2O4/ZnO nanosheets with enhanced lithium storage properties for Li-ion batteries. Nanotechnology 2016, 27, 465402. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Lu, G.; Wang, Y.; Li, S.; Cui, C.; Wu, J.; Xu, Z.; Tian, D.; Huang, W.; et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, F.; Zhang, L.; Du, X.; Wang, J.; Wang, L. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 8048–8053. [Google Scholar] [CrossRef]
- Li, G.C.; Zhu, S.-R.; Wu, M.-K.; Liu, P.-F.; Tao, K.; Yi, F.-Y.; Han, L. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans. 2016, 45, 13311–13316. [Google Scholar] [CrossRef]
- Xu, X.; Cao, K.; Wang, Y.; Jiao, L. 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 6042–6047. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Yamauchi, Y. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef]
- Li, T.T.; Qian, J.; Zheng, Y.Q. Facile synthesis of porous CuO polyhedron from Cu-based metal organic framework (MOF-199) for electrocatalytic water oxidation. RSC Adv. 2016, 6, 77358–77365. [Google Scholar] [CrossRef]
- Hu, L.; Yan, N.; Chen, Q.W.; Zhang, P.; Zhong, H.; Zheng, X.; Li, Y.; Hu, X. Fabrication Based on the Kirkendall Effect of Co3O4 Porous Nanocages with Extraordinarily High Capacity for Lithium Storage. Chem. A Eur. J. 2012, 18, 8971–8977. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J.H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano 2015, 9, 6288–6296. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Qian, X.; Ruia, X.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q.; Feng, X.-Q.; Long, Y.; et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.-F.; Xiao, F.; Huang, Z.-G.; Wang, Y.; Richardson, C.; Chen, Z.; Jiao, L.; Yuan, H. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208. [Google Scholar] [CrossRef]
- Liu, H.; Xia, G.; Zhang, R.; Jiang, P.; Chen, J.; Chen, Q. MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhao, M.; Dong, L.; Feng, J.; Wang, Y.; Li, D.-J.; Li, X.-F. MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J. Mater. Chem. A 2015, 3, 22542–22546. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, X.L.; Zhang, Y.H.; Zhou, Z.; Bu, X.H. MOF-Derived Porous Co3O4 Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries. Inorg. Chem. 2015, 54, 8159–8161. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, T.; Xu, W.; Lou, X.; Pan, L.; Chen, Q.; Hu, B. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591. [Google Scholar] [CrossRef]
- Soundharrajan, V.; Sambandam, B.; Song, J.; Kim, S.; Jo, J.; Kim, S.; Lee, S.; Mathew, V.; Kim, J. Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material. ACS Appl. Mater. Interfaces 2016, 8, 8546–8553. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Chen, Y.; Chen, L.; Xiong, P.; Wei, M. Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. Electrochim. Acta 2016, 222, 773–780. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.B.; Madhavi, S.; Hng, H.H.; Lou, X.W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, Y.; Wu, X.; Jiang, H.; Wang, W.; Li, H. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3 + 3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966. [Google Scholar] [CrossRef]
- Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988–4991. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, K.J.; Cheon, J.Y.; Lee, J.H.; Joo, S.H.; Moon, H.R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946. [Google Scholar] [CrossRef]
- Zheng, F.; Xu, S.; Yin, Z.; Zhang, Y.; Lu, L. Facile synthesis of MOF-derived Mn2O3 hollow microspheres as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 93532–93538. [Google Scholar] [CrossRef]
- Maiti, S.; Pramanik, A.; Mahanty, S. Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal-organic framework. CrystEngComm 2016, 18, 450–461. [Google Scholar] [CrossRef]
- Zhang, B.; Hao, S.; Xiao, D.; Wu, J.; Huang, Y. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater. Des. 2016, 98, 319–323. [Google Scholar] [CrossRef]
- Kong, S.; Dai, R.; Li, H.; Sun, W.; Wang, Y. Microwave Hydrothermal Synthesis of Ni-based Metal-Organic Frameworks and Their Derived Yolk-Shell NiO for Li-Ion Storage and Supported Ammonia Borane for Hydrogen Desorption. ACS Sustain. Chem. Eng. 2015, 3, 1830–1838. [Google Scholar] [CrossRef]
- Gou, L.; Ma, L.; Zhao, M.-J.; Liu, P.-G.; Wang, X.-D.; Fan, X.-Y.; Li, D.-L. Co-based metal–organic framework and its derivatives as high-performance anode materials for lithium-ion batteries. J. Mater. Sci. 2019, 54, 1529–1538. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, S.; Shen, N.; Li, D.; Li, X. MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors. Mater. Lett. 2017, 188, 1–4. [Google Scholar] [CrossRef]
- Xiu, Z.; Alfaruqi, M.H.; Gim, J.; Song, J.; Kim, S.; Thi, T.V.; Duong, P.T.; Baboo, J.P.; Mathew, V.; Kim, J. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries. Chem. Commun. 2015, 51, 12274–12277. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Zhu, G.; Li, D.; Yan, D.; Lu, T.; Pan, L. Porous cake-like TiO2 derived from metal-organic frameworks as superior anode material for sodium ion batteries. Ceram. Int. 2017, 43, 2398–2402. [Google Scholar] [CrossRef]
- Kimitsuka, Y.; Hosono, E.; Ueno, S.; Zhou, H.; Fujihara, S. Fabrication of porous cubic architecture of ZnO using Zn-terephthalate MOFs with characteristic microstructures. Inorg. Chem. 2013, 52, 14028–14033. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.; Tang, J.; Malgras, V.; Asahina, S.; Liu, G.; Zhang, H.; Meng, X.; Chang, K.; He, J.; et al. A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction. Nanoscale 2016, 8, 6712–6720. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, H.; Gu, X.; Qiu, J.; Jia, M.; Huang, C.; Yao, J. ZIF-8 derived porous N-doped ZnO with enhanced visible light-driven photocatalytic activity. J. Phys. Chem. Solids 2017, 102, 110–114. [Google Scholar] [CrossRef]
- Guo, H.; Li, T.; Chen, W.; Liu, L.; Yang, X.-J.; Wang, Y.; Guo, Y. General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale 2014, 6, 15168–15174. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, Y.; Guo, M.; Chen, Y.; Tu, J.; Ding, L. 3D Copper Foam-Supported CuCo2O4 Nanosheet Arrays as Electrode for Enhanced Non-Enzymatic Glucose Sensing. Sensors 2018, 18, 1131. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Zhu, D.; Shi, X.; Chen, Q. Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2815–2824. [Google Scholar] [CrossRef]
- Du, M.; He, D.; Lou, Y.; Chen, J. Porous nanostructured ZnCo2O4 derived from MOF-74: High-performance anode materials for lithium ion batteries. J. Energy Chem. 2017, 26, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Cheang, T.; Wen, T.; Xie, X.; Zhou, X.; Zhao, Z.; Shen, C.; Jiang, N.; Wangc, Y. Facile Preparation of Porous Mn2SnO4/Sn/C Composite Cubes as High Performance Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2016, 120, 3669–3676. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, F.; Su, P.; Li, M.; Chen, J.; Yang, Q.; Li, C. Spinel ZnMn2O4 nanoplate assemblies fabricated via ‘escape-by-crafty-scheme’ strategy. J. Mater. Chem. 2012, 22, 13328–13333. [Google Scholar] [CrossRef]
- Chen, Y.; Pang, W.K.; Bai, H.; Zhou, T.; Liu, Y.; Li, S.; Guo, Z. Enhanced Structural Stability of Nickel-Cobalt Hydroxide via Intrinsic Pillar Effect of Metaborate for High-Power and Long-Life Supercapacitor Electrodes. Nano Lett. 2017, 17, 429–436. [Google Scholar] [CrossRef]
- Liang, J.; Renzhi, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2010, 22, 371–378. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Wang, S.; Liu, H.K.; Li, L. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Mater. 2020, 28, 122–145. [Google Scholar] [CrossRef]
- Feng, D.Y.; Sun, Z.; Huang, Z.H.; Cai, X.; Song, Y.; Liu, X.X. Highly loaded manganese oxide with high rate capability for capacitive applications. J. Power Sources 2018, 396, 238–245. [Google Scholar] [CrossRef]
- Lokhande, V.C.; Lokhande, A.C.; Lokhande, C.D.; Kim, J.H.; Ji, T. Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J. Alloys Compd. 2016, 682, 381–403. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, W. A Review for Aqueous Electrochemical Supercapacitors. Front. Energy Res. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, D.; Raidongia, K.; Shao, J.; Huang, J. Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates. ACS Nano 2014, 8, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; El-Kady, M.F.; Wang, Y.; Wang, L.; Shao, Y.; Marsh, K.; Ko, J.M.; Kaner, R.B. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 2015, 18, 57–70. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, X.; Gao, Y.; Gao, F. An Electrochemical Capacitor Electrode Based on Porous Carbon Spheres Hybrided with Polyaniline and Nanoscale Ruthenium Oxide. ACS Appl. Mater. Interfaces 2012, 4, 5583–5589. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, D.; Yan, T.; Wen, X.; Shi, L.; Zhang, J. Graphene prepared via a novel pyridine-thermal strategy for capacitive deionization. J. Mater. Chem. 2012, 22, 23745–23748. [Google Scholar] [CrossRef]
- Long, J.W.; Swider, K.E.; Merzbacher, C.I.; Rolison, D.R. Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials. Langmuir 1999, 15, 780–784. [Google Scholar] [CrossRef]
- Ma, H.; Kong, D.; Xu, Y.; Xie, X.; Tao, Y.; Xiao, Z.; Lv, W.; Jang, H.D.; Huang, J.; Yang, Q.-H. Disassembly—Reassembly Approach to RuO2/Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small 2017, 13, 1701026. [Google Scholar] [CrossRef]
- Gujar, T.P.; Kim, W.Y.; Puspitasari, I.; Jung, K.D.; Joo, O.S. Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int. J. Electrochem. Sci. 2007, 2, 666–673. [Google Scholar]
- Kim, H.; Popov, B.N. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sources 2002, 104, 52–61. [Google Scholar] [CrossRef]
- Kate, R.S.; Khalate, S.A.; Deokate, R.J. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. J. Alloys Compd. 2018, 734, 89–111. [Google Scholar] [CrossRef]
- Kong, S.; Cheng, K.; Ouyang, T.; Gao, Y.; Ye, K.; Wang, G.; Cao, D. Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochim. Acta 2017, 246, 433–442. [Google Scholar] [CrossRef]
- Wang, J.-C.; Yao, H.-C.; Fan, Z.-Y.; Zhang, L.; Wang, J.-S.; Zang, S.-Q.; Li, Z. Indirect Z-Scheme BiOI/g-C3N4 Photocatalysts with Enhanced Photoreduction CO2 Activity under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2016, 8, 3765–3775. [Google Scholar] [CrossRef] [PubMed]
- Acznik, I.; Lota, K.; Sierczynska, A.; Lota, G. Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors. Int. J. Electrochem. Sci. 2014, 9, 2518–2534. [Google Scholar]
- Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene oxide-Mno2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Liu, D. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1229–1262. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Wang, J.G.; Kang, F.; Wei, B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015, 74, 51–124. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, W.; Xiao, N.; Ruia, X.; Tan, H.; Lu, X.; Hng, H.H.; Ma, J.; Yan, Q. Oxidation-Etching Preparation of MnO2 Tubular Nanostructures for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4, 2769–2774. [Google Scholar] [CrossRef]
- Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N. Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors. Electrochem. Commun. 2007, 9, 2315–2319. [Google Scholar] [CrossRef]
- Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P.M.; Wei, B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar] [CrossRef]
- Devaraj, S.; Munichandraiah, N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. J. Phys. Chem. C 2008, 112, 4406–4417. [Google Scholar] [CrossRef]
- Ghodbane, O.; Pascal, J.-L.; Favier, F. Microstructural Effects on Charge-Storage Properties in MnO2 -Based Electrochemical Supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, Y.; Song, S.; Xue, D. Tunnel-dependent supercapacitance of MnO2: Effects of crystal structure. J. Appl. Crystallogr. 2013, 46, 1128–1135. [Google Scholar] [CrossRef]
- Chang, J.K.; Huang, C.H.; Lee, M.T.; Tsai, W.T.; Deng, M.J.; Sun, I.W. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim. Acta 2009, 54, 3278–3284. [Google Scholar] [CrossRef]
- Ghodbane, O.; Pascal, J.-L.; Fraisse, B.; Favier, F. Structural in Situ Study of the Thermal Behavior of Manganese Dioxide Materials: Toward Selected Electrode Materials for Supercapacitors. ACS Appl. Mater. Interfaces 2010, 2, 3493–3505. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Nagarajan, N.; Zhitomirsky, I. Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 2007, 186, 356–361. [Google Scholar] [CrossRef]
- Dong, J.; Lu, G.; Wu, F.; Xu, C.; Kang, X.; Cheng, Z. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl. Surf. Sci. 2018, 427, 986–993. [Google Scholar] [CrossRef]
- Zhao, D.D.; Xu, M.W.; Zhou, W.J.; Zhang, J.; Li, H.L. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim. Acta 2008, 53, 2699–2705. [Google Scholar] [CrossRef]
- Wang, Y.G.; Xia, Y.Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta 2006, 51, 3223–3227. [Google Scholar] [CrossRef]
- Sun, C. (Ed.) Advanced Battery Materials; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Xiong, S.; Yuan, C.; Zhang, X.; Xi, B.; Qian, Y. Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chem. A Eur. J. 2009, 15, 5320–5326. [Google Scholar] [CrossRef]
- Bae, J.; Song, M.K.; Park, Y.J.; Kim, J.M.; Liu, M.; Wang, Z.L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Ma, Y.; Li, G.; Chen, J.; Zhang, J.; Zheng, H.; Du, W. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans. 2012, 41, 13284–13291. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Giri, S.; Mandal, M.; Das, C.K. High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Adv. 2014, 4, 26094–26101. [Google Scholar] [CrossRef]
- Ci, S.; Wen, Z.; Qian, Y.; Mao, S.; Cui, S.; Chen, J. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Sci. Rep. 2015, 5, 11919. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zheng, M.; Xue, H.; Pang, H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 2016, 3, 175–202. [Google Scholar] [CrossRef]
- Goel, S.; Tomar, A.K.; Sharma, R.K.; Singh, G. Highly Pseudocapacitive NiO Nanoflakes through Surfactant-Free Facile Microwave-Assisted Route. ACS Appl. Energy Mater. 2018, 1, 1540–1548. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Rashidi, A.; Ganjali, M.R.; Maragheh, M.G. Nickel oxide nano-rods/plates as a high performance electrode materials for supercapacitors; electrosynthesis and evolution of charge storage ability. Int. J. Electrochem. Sci. 2016, 11, 11002–11015. [Google Scholar] [CrossRef]
- Pang, H.; Lu, Q.; Li, Y.; Gao, F. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem. Commun. 2009, 7542–7544. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, J.S.; Ahn, H.J.; Song, H.K.; Jang, J.H. Facile route to an efficient nio supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 2013, 5, 1596–1603. [Google Scholar] [CrossRef]
- Cheng, S.; Yang, L.; Liu, Y.; Lin, W.; Huang, L.; Chen, D.; Wong, C.P.; Liu, M. Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors. J. Mater. Chem. A 2013, 1, 7709–7716. [Google Scholar] [CrossRef]
- Soin, N.; Roy, S.S.; Mitra, S.K.; Thundat, T.; McLaughlin, J.A. Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 14944–14950. [Google Scholar] [CrossRef]
- Lu, Z.; Chang, Z.; Liu, J.; Sun, X. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658–665. [Google Scholar] [CrossRef]
- Kundu, M.; Liu, L. Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors. Mater. Lett. 2015, 144, 114–118. [Google Scholar] [CrossRef]
- Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019.
- Liu, P.; Yang, M.; Zhou, S.; Huang, Y.; Zhu, Y. Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes. Electrochim. Acta 2019, 294, 383–390. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, F.; Li, Y.; Qin, C.; Zhu, J.; Hu, Q.; Wang, Z.; Inoue, A. Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors. Electrochim. Acta 2019, 297, 767–777. [Google Scholar] [CrossRef]
- Ede, S.R.; Anantharaj, S.; Kumaran, K.T.; Mishra, S.; Kundu, S. One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv. 2017, 7, 5898–5911. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [Green Version]
- Gomez, I.J.; Arnaiz, B.; Cacioppo, M.; Arcudi, F.; Prato, M. Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. J. Mater. Chem. B 2018, 6, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Ding, Y.-S.; Chen, C.-H.; Zhao, L.; Rimkus, C.; Joesten, R.; Suib, S.L. 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chem. Mater. 2008, 20, 308–316. [Google Scholar] [CrossRef]
- Oesten, R.; Wohlfahrt-Mehrens, M.; Ströbele, S.; Kasper, M.; Huggins, R.A. Structural aspects of undoped and doped nickel hydroxides. Ionics 1996, 2, 293–301. [Google Scholar] [CrossRef]
- Zhao, D.D.; Bao, S.J.; Zhou, W.J.; Li, H.L. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 2007, 9, 869–874. [Google Scholar] [CrossRef]
- Ramani, M.; Haran, B.S.; White, R.E.; Popov, B.N. Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors. J. Electrochem. Soc. 2001, 148, A374. [Google Scholar] [CrossRef]
- Kuratani, K.; Kiyobayashi, T.; Kuriyama, N. Influence of the mesoporous structure on capacitance of the RuO2 electrode. J. Power Sources 2009, 189, 1284–1291. [Google Scholar] [CrossRef]
- Mohajernia, S.; Hejazi, S.; Mazare, A.; Nguyen, N.T.; Hwang, I.; Kment, Š.; Zoppellaro, G.; Tomanec, O.; Zbořil, R.; Schmuki, P. Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. Mater. Today Energy 2017, 6, 46–52. [Google Scholar] [CrossRef]
- Kovalenko, V.; Kotok, V.; Bolotin, A. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. East. Eur. J. Enterp. Technol. 2016, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.W.; Kong, L.B.; Wu, W.J.; Liu, M.; Luo, Y.C.; Kang, L. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 2009, 13, 333–340. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Chavan, U.S. Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 2018, 218, 225–228. [Google Scholar] [CrossRef]
- Li, H.B.; Yu, M.; Wang, F.X.; Liu, P.; Liang, Y.; Xiao, J.; Tong, Y.X.; Yang, G.W.; Wang, C.X. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Oshitani, M.; Yufu, H.; Takashima, K.; Tsuji, S.; Matsumaru, Y. Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc. 1989, 136, 1590–1593. [Google Scholar] [CrossRef]
- Park, J.H.; Park, O.O.; Shin, K.H.; Jin, C.S.; Kim, J.H. An Electrochemical Capacitor Based on a Ni(OH)2/Activated Carbon Composite Electrode. Electrochem. Solid State Lett. 2002, 5, H7. [Google Scholar] [CrossRef]
- Zang, X.; Sun, C.; Dai, Z.; Yang, J.; Dong, X. Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 2017, 691, 144–150. [Google Scholar] [CrossRef]
- Chai, H.; Peng, X.; Liu, T.; Su, X.; Jia, D.; Zhou, W. High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes. RSC Adv. 2017, 7, 36617–36622. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, S.; Zhu, Y.; Yang, P.; Wang, L.; Chu, P.K. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. J. Alloys Compd. 2014, 589, 364–371. [Google Scholar] [CrossRef]
- Su, L.; Gong, L.; Gao, J. The supercapacitive performances of Co(OH)2/Ni(OH)2 composites in lithium hydroxide solution: Selection of electrolyte and effect of weight ratio. J. Power Sources 2012, 209, 141–146. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, P.; Zhang, J.; Qi, H.; Liu, J.; Li, B.; Sun, X.; Zhang, Q.; Wei, C.; Wang, L. Pillar-Coordinated Strategy to Modulate Phase Transfer of α-Ni(OH)2 for Enhanced Supercapacitor Application. ACS Appl. Energy Mater. 2020, 3, 5628–5636. [Google Scholar] [CrossRef]
- Li, J.M.; Chang, K.H.; Hu, C.C. A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors. Electrochem. Commun. 2010, 12, 1800–1803. [Google Scholar] [CrossRef]
- Qu, Q.T.; Liu, L.L.; Wu, Y.P.; Holze, R. Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim. Acta 2013, 96, 8–12. [Google Scholar] [CrossRef]
- Lee, H.Y.; Goodenough, J.B. Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution. J. Solid State Chem. 1999, 148, 81–84. [Google Scholar] [CrossRef]
- Yu, D.; Chen, C.; Xie, S.; Liu, Y.; Park, K.; Zhou, X.-Y.; Zhang, Q.; Li, J.-Y.; Cao, G. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 2011, 4, 858–861. [Google Scholar] [CrossRef]
- Xiong, C.; Aliev, A.E.; Gnade, B.; Balkus, K.J. Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics. ACS Nano 2008, 2, 293–301. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, C.; Mai, L.; Liu, Y.; Qi, Y.; Dai, Y. Field Emission from V2O5 n H2O Nanorod Arrays. J. Phys. Chem. C 2008, 112, 2262–2265. [Google Scholar] [CrossRef]
- Li, M.; Kong, F.; Wang, H.; Li, G. Synthesis of vanadium pentoxide (V2O5) ultralong nanobelts via an oriented attachment growth mechanism. CrystEngComm 2011, 13, 5317–5320. [Google Scholar] [CrossRef]
- Wee, G.; Soh, H.Z.; Cheah, Y.L.; Mhaisalkar, S.G.; Srinivasan, M. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 6720–6725. [Google Scholar] [CrossRef]
- Zeng, M.; Yin, H.; Yu, K. Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem. Eng. J. 2012, 188, 64–70. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Purushothaman, K.K.; Muralidharan, G. Interconnected V2O5 Nanoporous Network for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4, 4484–4490. [Google Scholar] [CrossRef]
- Shaikh, J.S.; Pawar, R.C.; Mali, S.S.; Moholkar, A.V.; Kim, J.H.; Patil, P.S. Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films. J. Solid State Electrochem. 2012, 16, 25–33. [Google Scholar] [CrossRef]
- Balamuralitharan, B.; Cho, I.H.; Bak, J.S.; Kim, H.J. V2O5 nanorod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. New J. Chem. 2018, 42, 11862–11868. [Google Scholar] [CrossRef]
- Zhai, T.; Liu, H.; Li, H.; Fang, X.; Liao, M.; Li, L.; Zhou, H.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552. [Google Scholar] [CrossRef]
- Devan, R.S.; Ma, Y.R.; Patil, R.A.; Lukas, S.M. Highly stable supercapacitive performance of one-dimensional (1D) brookite TiO2 nanoneedles. RSC Adv. 2016, 6, 6218–6225. [Google Scholar] [CrossRef] [Green Version]
- Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Bélanger, D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A Mater. Sci. Process. 2006, 82, 599–606. [Google Scholar] [CrossRef]
- Liang, B.; Chen, Y.; He, J.; Chen, C.; Liu, W.; He, Y.; Liu, X.; Zhang, N.; Roy, V.A.L. Controllable Fabrication and Tuned Electrochemical Performance of Potassium Co–Ni Phosphate Microplates as Electrodes in Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 3506–3514. [Google Scholar] [CrossRef]
- Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y.; Shen, M.; Dunn, B.; Lu, Y. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Foo, C.Y.; Sumboja, A.; Tan, D.J.H.; Wang, J.; Lee, P.S. Flexible and Highly Scalable V2O5-rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. Adv. Energy Mater. 2014, 4, 1400236. [Google Scholar] [CrossRef]
- Qian, T.; Xu, N.; Zhou, J.; Yang, T.; Liu, X.; Shen, X.; Liang, J.; Yan, C. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 488–493. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Rao, M.M.; Venugopal, N.; Kim, K.-B. Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sources 2007, 166, 578–583. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2007, 5, 12653–12672. [Google Scholar] [CrossRef]
- Lee, M.; Balasingam, S.K.; Jeong, H.Y.; Hong, W.G.; Lee, H.-B.-R.; Kim, B.H.; Jun, Y. One-step hydrothermal synthesis of Graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Adv. Funct. Mater. 2009, 19, 3420–3426. [Google Scholar] [CrossRef]
- Lu, S.; Xue, Z.; Chen, Y.; Wan, F.; Zhu, Q.; Zakharova, G.S. Researches on the structure and electrochemical properties of MoxV2-xO5+y nanosheets. Ionics 2017, 23, 2855–2862. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, X.; Wang, Q.; Zheng, J.; Jiang, H.; Meng, C. Three-dimensional porous V2O5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance. Dalton Trans. 2017, 46, 15048–15058. [Google Scholar] [CrossRef]
- Chen, Y.; Muthukumar, K.; Leban, L.; Li, J. Microwave-assisted high-yield exfoliation of vanadium pentoxide nanoribbons for supercapacitor applications. Electrochim. Acta 2020, 330, 135200. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Wu, Q. Review of V2O5-based nanomaterials as electrode for supercapacitor. J. Nanoparticle Res. 2019, 21, 9. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. MnO2 Nanostructures Deposited on Graphene-Like Porous Carbon Nanosheets for High-Rate Performance and High-Energy Density Asymmetric Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 3101–3110. [Google Scholar] [CrossRef]
- Feng, X.; Huang, Y.; Li, C.; Xiao, Y.; Chen, X.; Gao, X.; Chen, C. Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 2019, 308, 142–149. [Google Scholar] [CrossRef]
- Sadak, O.; Wang, W.; Guan, J.; Sundramoorthy, A.K.; Gunasekaran, S. MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Appl. Nano Mater. 2019, 2, 4386–4394. [Google Scholar] [CrossRef]
- Qi, W.; Li, X.; Wu, Y.; Zeng, H.; Kuang, C.; Zhou, S.; Huang, S.; Yang, Z. Flexible electrodes of MnO2/CNTs composite for enhanced performance on supercapacitors. Surf. Coat. Technol. 2017, 320, 624–629. [Google Scholar] [CrossRef]
- Jia, H.; Cai, Y.; Zheng, X.; Lin, J.; Liang, H.; Qi, J.; Cao, J.; Feng, J.; Fei, W. Mesostructured Carbon Nanotube-on-MnO2 Nanosheet Composite for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 38963–38969. [Google Scholar] [CrossRef]
- Jeong, J.H.; Park, J.W.; Lee, D.W.; Baughman, R.H.; Kim, S.J. Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.A.; An, N.; Yang, Y.Y.; Li, Z.M.; Wu, H.Y. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 2014, 118, 22865–22872. [Google Scholar] [CrossRef]
- Ko, W.Y.; Liu, Y.C.; Lai, J.Y.; Chung, C.C.; Lin, K.J. Vertically Standing MnO2 Nanowalls Grown on AgCNT-Modified Carbon Fibers for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 669–678. [Google Scholar] [CrossRef]
- Sun, X.; Xu, T.; Bai, J.; Li, C. MnO2 Nanosheets Grown on Multichannel Carbon Nanofibers Containing Amorphous Cobalt Oxide as a Flexible Electrode for Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 8675–8684. [Google Scholar] [CrossRef]
- Kumar, K.S.; Cherusseri, J.; Thomas, J. Two-Dimensional Mn3O4 Nanowalls Grown on Carbon Fibers as Electrodes for Flexible Supercapacitors. ACS Omega 2019, 4, 4472–4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.Q.; Wang, H.-Y.; Lun, N.; Qi, Y.-X.; Liu, J.; Feng, J.; Qiu, J.; Bai, Y.-J. Fabricating a Mn3O4/Ni(OH)2 Nanocomposite by Water-Boiling Treatment for Use in Asymmetric Supercapacitors as an Electrode Material. ACS Sustain. Chem. Eng. 2018, 6, 15688–15696. [Google Scholar] [CrossRef]
- Wang, T.; Le, Q.; Guo, X.; Huang, M.; Liu, X.; Dong, F.; Zhang, J.; Zhang, Y. Preparation of Porous Graphene@Mn3O4 and Its Application in the Oxygen Reduction Reaction and Supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 831–837. [Google Scholar] [CrossRef]
- Samuel, E.; Kim, T.G.; Park, C.W.; Joshi, B.; Swihart, M.T.; Yoon, S.S. Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2019, 7, 14031–14040. [Google Scholar] [CrossRef]
- Chakraborty, I.; Chakrabarty, N.; Senapati, A.; Chakraborty, A.K. CuO@NiO/Polyaniline/MWCNT Nanocomposite as High-Performance Electrode for Supercapacitor. J. Phys. Chem. C 2018, 122, 27180–27190. [Google Scholar] [CrossRef]
- Das, D.; Borthakur, L.J.; Nath, B.C.; Saikia, B.J.; Mohan, K.J.; Dolui, S.K. Designing hierarchical NiO/PAni-MWCNT core-shell nanocomposites for high performance super capacitor electrodes. RSC Adv. 2016, 6, 44878–44887. [Google Scholar] [CrossRef]
- Samuel, E.; Joshi, B.; Kim, Y.I.; Aldalbahi, A.; Rahaman, M.; Yoon, S.S. ZnO/MnOx Nanoflowers for High-Performance Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 3697–3708. [Google Scholar] [CrossRef]
- Jeon, S.; Jeong, J.H.; Yoo, H.; Yu, H.K.; Kim, B.H.; Kim, M.H. RuO2 Nanorods on Electrospun Carbon Nanofibers for Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 3847–3858. [Google Scholar] [CrossRef]
- Ryu, I.; Yang, M.; Kwon, H.; Park, H.K.; Do, Y.R.; Lee, S.-B.; Yim, S. Coaxial RuO2-ITO nanopillars for transparent supercapacitor application. Langmuir 2014, 30, 1704–1709. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Q.; Wang, X.; Xiang, Q.; Liang, B.; Chen, D.; Shen, G. Flexible Asymmetric Supercapacitors Based upon Co9S8 Nanorod//Co3O4 @RuO2 Nanosheet Arrays on Carbon Cloth. ACS Nano 2013, 7, 5453–5462. [Google Scholar] [CrossRef]
- Kaipannan, S.; Govindarajan, K.; Sundaramoorthy, S.; Marappan, S. Waste Toner-Derived Carbon/Fe3O4 Nanocomposite for High-Performance Supercapacitor. ACS Omega 2019, 4, 15798–15805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Hu, X.; Wang, Y.; Li, C.; Wu, X. Fe2O3 Nanoparticles Decorated on Graphene-Carbon Nanotubes Conductive Networks for Boosting the Energy Density of All-Solid-State Asymmetric Supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 9211–9219. [Google Scholar] [CrossRef]
- Gupta, A.; Sardana, S.; Dalal, J.; Lather, S.; Maan, A.S.; Tripathi, R.; Punia, R.; Singh, K.; Ohlan, A. Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material. ACS Appl. Energy Mater. 2020, 3, 6434–6446. [Google Scholar] [CrossRef]
- Kumar, A.; Sarkar, D.; Mukherjee, S.; Patil, S.; Sarma, D.D.; Shukla, A. Realizing an Asymmetric Supercapacitor Employing Carbon Nanotubes Anchored to Mn3O4 Cathode and Fe3O4 Anode. ACS Appl. Mater. Interfaces 2018, 10, 42484–42493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Gao, J.; Cecen, V.; Fan, J.; Shi, P.; Xu, Q.; Min, Y. Hierarchical WS2@NiCo2O4 Core-shell Heterostructure Arrays Supported on Carbon Cloth as High-Performance Electrodes for Symmetric Flexible Supercapacitors. ACS Omega 2020, 5, 4657–4667. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Yue, L.; Jia, D.; Cui, L.; Wei, D.; Huang, W.; Liu, R.; Liu, Y.; Yang, W.; Liu, J. Cobalt/Nickel Ions-Assisted Synthesis of Laminated CuO Nanospheres Based on Cu(OH)2 Nanorod Arrays for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 2591–2600. [Google Scholar] [CrossRef]
- Kwak, C.S.; Ko, T.H.; Lee, J.H.; Kim, H.Y.; Kim, B.S. Flexible Transparent Symmetric Solid-State Supercapacitors Based on NiO-Decorated Nanofiber-Based Composite Electrodes with Excellent Mechanical Flexibility and Cyclability. ACS Appl. Energy Mater. 2020, 3, 2394–2403. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, X.; Zhao, J.; Li, Q.; Ao, C.; Hu, R.; Zheng, Z.; Zhang, W.; Lu, C.; Deng, Y. Flexible and Conductive Carbonized Cotton Fabrics Coupled with a Nanostructured Ni(OH)2 Coating for High Performance Aqueous Symmetric Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 5231–5239. [Google Scholar] [CrossRef]
- Ray, A.; Roy, A.; Saha, S.; Ghosh, M.; Chowdhury, S.R.; Maiyalagan, T.; Bhattacharya, S.K.; Das, S. Electrochemical Energy Storage Properties of Ni-Mn-Oxide Electrodes for Advance Asymmetric Supercapacitor Application. Langmuir 2019, 35, 8257–8267. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.J.; Yeh, L.H.; Lin, Y.H.; Chen, J.M.; Chou, T.H. 3D Network V2O5 Electrodes in a Gel Electrolyte for High-Voltage Wearable Symmetric Pseudocapacitors. ACS Appl. Mater. Interfaces 2019, 11, 29838–29848. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Lin, Y.C.; Chen, Y.L.; Chen, C.J. Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/Graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density. ACS Appl. Energy Mater. 2019, 2, 459–467. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Liu, C.; Wang, J.; Du, Y.; Gao, Z.; Wu, G.; Cao, G. Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677. [Google Scholar] [CrossRef]
- Wang, D.W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G.; Cheng, H.-M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, M.; Murphy, P.J.; Williams, G.O. Study of conducting polymers for use as redox supercapacitors. Synth. Met. 1999, 102, 1360–1361. [Google Scholar] [CrossRef]
- Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469. [Google Scholar] [CrossRef]
- Ryu, K.S.; Wu, X.; Lee, Y.-G.; Chang, S.H. Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane. J. Appl. Polym. Sci. 2003, 89, 1300–1304. [Google Scholar] [CrossRef]
- Ammonia, L. The Acid Properties of Ammonium Saltsin. Aust. J. Chem. 1924, 822, 5–10. [Google Scholar]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, M.V. Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochim. Acta 2013, 101, 109–129. [Google Scholar] [CrossRef]
- Ellenbogen, J.C. Supercapacitors: A Brief Overview. 2006. Available online: https://www.mitre.org/sites/default/files/pdf/06_0667.pdf (accessed on 4 June 2020).
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.C. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon N. Y. 2011, 49, 2917–2925. [Google Scholar] [CrossRef]
- Sharma, R.K.; Rastogi, A.C.; Desu, S.B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 2008, 53, 7690–7695. [Google Scholar] [CrossRef]
- Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J.P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 1994, 47, 89–107. [Google Scholar] [CrossRef]
- Giannelis, E.P. Polymer Layered Silicate Nanocomposites. Adv. Mater. 1996, 8, 29–35. [Google Scholar] [CrossRef]
- Sivaraman, P.; Thakur, A.; Kushwaha, R.K.; Ratna, D.; Samui, A.B. Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem. Solid State Lett. 2006, 9, 9. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Wei, Z. Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. J. Phys. Chem. C 2010, 114, 8062–8067. [Google Scholar] [CrossRef]
- Cameron, C.G. Electrochemical capacitors. Springer Handb. 2017, 50, 563–589. [Google Scholar]
- Hashmi, S.A.; Upadhyaya, H.M. Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ion. 2002, 152–153, 883–889. [Google Scholar] [CrossRef]
- Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 6086–6091. [Google Scholar] [CrossRef]
- Ryu, K.S.; Kim, K.M.; Park, Y.J.; Park, N.G.; Kang, M.G.; Chang, S.H. Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ion. 2002, 152–153, 861–866. [Google Scholar] [CrossRef]
- Naoi, K.; Suematsu, S.; Manago, A. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 2000, 147, 420–426. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Hao, G.P.; Hippauf, F.; Oschatz, M.; Wisser, F.M.; Leifert, A.; Nickel, W.; Mohamed-Noriega, N.; Zheng, Z.; Kaskel, S. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 2014, 8, 7138–7146. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, F.; Wang, X.; Zhang, N.; Ma, M. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors. Angew. Chem. Int. Ed. 2016, 55, 9196–9201. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Pan, L.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels. Nano Lett. 2015, 15, 7736–7741. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shi, D.; Dong, W.; Chen, M. Self-Standing Hydrogels Composed of Conducting Polymers for All-Hydrogel-State Supercapacitors. Chem. A Eur. J. 2020, 26, 1846–1855. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Cai, Q.; Yang, Y.; Luo, W.; Zeng, B.; Xu, Y.; Yuan, C.; Dai, L. Design of Slidable Polymer Networks: A Rational Strategy to Stretchable, Rapid Self-Healing Hydrogel Electrolytes for Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 20479–20489. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Shinya, N.; Qin, L.C. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sources 2013, 241, 423–428. [Google Scholar] [CrossRef]
- Han, G.; Liu, Y.; Zhang, L.; Kan, E.; Zhang, S.; Tang, J.; Tang, W. MnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors. Sci. Rep. 2015, 4, 4824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xie, H.; Li, Y.; Liu, J.; Li, Z. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J. Power Sources 2011, 196, 10775–10781. [Google Scholar] [CrossRef]
- Hu, C.C.; Chang, K.H.; Lin, M.C.; Wu, Y.T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 2013, 13, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Bober, P.; Gavrilov, N.; Kovalcik, A.; Micusik, M.; Unterweger, C.; Pašti, I.A.; Šeděnková, I.; Acharya, U.; Pfleger, J.; Filippov, S.K.; et al. Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. Mater. Chem. Phys. 2018, 213, 352–361. [Google Scholar] [CrossRef]
- Mastragostino, M.; Arbizzani, C.; Soavi, F. Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 2002, 148, 493–498. [Google Scholar] [CrossRef]
- Shao, Q.; Tang, J.; Lin, Y.; Li, J.; Qin, F.; Yuan, J.; Qin, L.-C. Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J. Power Sources 2015, 278, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Liu, F.; Song, S.; Xue, D.; Zhang, H. Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res. Lett. 2012, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923. [Google Scholar] [CrossRef]
- Shan, Y.; Gao, L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys. 2007, 103, 206–210. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Li, J.; He, G.; Shi, J.; Sun, X.-Q.; Chen, S.; Wang, X. Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance. Mater. Lett. 2012, 82, 61–63. [Google Scholar] [CrossRef]
- Abouali, S.; Garakani, M.A.; Zhang, B.; Xu, Z.-L.; Heidari, E.K.; Huang, J.-Q.; Huang, J.; Kim, J.-K. Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 13503–13511. [Google Scholar] [CrossRef]
- Wang, H.; Yi, H.; Chen, X.; Wang, X. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J. Mater. Chem. A 2014, 2, 3223–3230. [Google Scholar] [CrossRef]
- Du, W.; Wang, Z.; Zhu, Z.; Hu, S.; Zhu, X.; Shi, Y.-F.; Panga, H.; Qian, X. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 9613–9619. [Google Scholar] [CrossRef]
- Perera, S.D.; Patel, B.B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J.P.; Chabal, Y.J.; Balkus, K.J., Jr. Vanadium Oxide Nanowire-Carbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors. Adv. Energy Mater. 2011, 1, 936–945. [Google Scholar] [CrossRef]
- Yan, S.; Wang, H.; Qu, P.; Zhang, Y.; Xiao, Z. RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor. Synth. Met. 2009, 159, 158–161. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Zhao, M.; Pentecost, A.E.; Ling, Z.; Wang, J.; Long, D.; Ling, L.; Qiao, W. Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping. ACS Appl. Mater. Interfaces 2014, 6, 9751–9759. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Jung, H.J.; Shim, J.H.; Lee, Y.; Lee, C.; Baik, J.M.; Kim, W.; Kim, M.H. Hierarchically grown single crystalline RuO2 nanorods on vertically aligned few-walled carbon nanotubes. Mater. Lett. 2012, 89, 115–117. [Google Scholar] [CrossRef]
- Lee, J.K.; Pathan, H.M.; Jung, K.D.; Joo, O.S. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 2006, 159, 1527–1531. [Google Scholar] [CrossRef]
- Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Lee, Y.H. Carbon-Based Electrochemical Capacitors. ChemSusChem 2012, 5, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, Y.; Liu, H.; Chen, Y.; Yang, J.; Tan, Q. Carbon/carbon nanotube-supported RuO2 nanoparticles with a hollow interior as excellent electrode materials for supercapacitors. Nano Energy 2015, 15, 116–124. [Google Scholar] [CrossRef]
- Guan, Q.; Cheng, J.; Wang, B.; Ni, W.; Gu, G.; Li, X.; Huang, L.; Yang, G.; Nie, F. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7626–7632. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, J.; Hou, L.; Yang, L.; Shen, L.; Zhang, X. Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J. Mater. Chem. 2012, 22, 16084–16090. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wu, H.B.; Hoster, H.E.; Chan-Park, M.B.; Lou, X.W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456. [Google Scholar] [CrossRef]
- Zhang, G.; Lou, X.W.D. General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors. Adv. Mater. 2013, 25, 976–979. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G.R. Synthesis of mesoporous NiCo2O4-rGO by a solvothermal method for charge storage applications. RSC Adv. 2015, 5, 66657–66666. [Google Scholar] [CrossRef]
- Wu, H.B.; Pang, H.; Lou, X.W. Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 3619–3626. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Lim, M.; Singh, N.; Gan, C.L.; Jan, M.; Lee, P.S. Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application. J. Phys. Chem. C 2012, 116, 12448–12454. [Google Scholar] [CrossRef]
- Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, H.C.; Ruan, Y. NiCo2S4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors. CrystEngComm 2013, 15, 7649–7651. [Google Scholar] [CrossRef]
- Xiong, G.; He, P.; Liu, L.; Chen, T.; Fisher, T.S. Plasma-grown graphene petals templating Ni-Co-Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J. Mater. Chem. A 2015, 3, 22940–22948. [Google Scholar] [CrossRef]
- Hareesh, K.; Shateesh, B.; Joshi, R.P.; Williams, J.F.; Phase, D.M.; Haram, S.K.; Dhole, S.D. Ultra high stable supercapacitance performance of conducting polymer coated MnO2 nanorods/rGO nanocomposites. RSC Adv. 2017, 7, 20027–20036. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Chen, H.; Wang, W.; Huang, Y.; Han, G. Synthesis of NiCo2S4 nanospheres/reduced graphene oxide composite as electrode material for supercapacitor. Curr. Appl. Phys. 2020, 20, 304–309. [Google Scholar] [CrossRef]
- Soni, R.; Kurungot, S. Fe2P4O12-carbon composite as a highly stable electrode material for electrochemical capacitors. New J. Chem. 2019, 43, 399–406. [Google Scholar] [CrossRef]
- Shi, K.; Zhitomirsky, I. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J. Colloid Interface Sci. 2013, 407, 474–481. [Google Scholar] [CrossRef]
- Shi, K.; Yang, X.; Cranston, E.D.; Zhitomirsky, I. Efficient Lightweight Supercapacitor with Compression Stability. Adv. Funct. Mater. 2016, 26, 6437–6445. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, K.; Zhitomirsky, I. New colloidal route for electrostatic assembly of oxide nanoparticle—Carbon nanotube composites. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 446, 15–22. [Google Scholar] [CrossRef]
- Liu, Y.; Ata, M.S.; Shi, K.; Zhu, G.Z.; Botton, G.A.; Zhitomirsky, I. Surface modification and cathodic electrophoretic deposition of ceramic materials and composites using celestine blue dye. RSC Adv. 2014, 4, 29652–29659. [Google Scholar] [CrossRef]
- Shi, K.; Giapis, K.P. Scalable Fabrication of Supercapacitors by Nozzle-Free Electrospinning. ACS Appl. Energy Mater. 2018, 1, 296–300. [Google Scholar] [CrossRef]
- Antiohos, D.; Folkes, G.; Sherrell, P.C.; Ashraf, S.; Wallace, G.G.; Aitchison, P.; Harris, A.T.; Chen, J.; Minett, A.I. Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J. Mater. Chem. 2011, 21, 15987–15994. [Google Scholar] [CrossRef]
- Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Béguin, F. Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 2006, 153, 413–418. [Google Scholar] [CrossRef]
- Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130. [Google Scholar] [CrossRef]
- Yang, Y.; Xi, Y.; Li, J.; Wei, G.; Klyui, N.I.; Han, W. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes. Nanoscale Res. Lett. 2017, 12, 1931–7573. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Yu, X.; Zhao, X.; Wu, L.; Zhang, Q. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir 2013, 29, 12051–12058. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, K.; Chan, H.S.O.; Wu, J. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 2012, 22, 80–85. [Google Scholar] [CrossRef]
- Wang, R.; Han, M.; Zhao, Q.; Ren, Z.; Guo, X.; Xu, C.; Hu, N.; Lu, L. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci. Rep. 2017, 7, 44562. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Chen, H.; Cai, F.; Kang, Y.; Chen, M.; Li, Q. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 2015, 3, 23864–23870. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Yu, P.; Zhang, Q. Oriented Arrays of Polyaniline Nanorods Grown on Graphite Nanosheets for an Electrochemical Supercapacitor. Langmuir 2013, 29, 493–500. [Google Scholar] [CrossRef]
- Han, Y.; Ding, B.; Tong, H.; Zhang, X. Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites. J. Appl. Polym. Sci. 2011, 121, 892–898. [Google Scholar] [CrossRef]
- Keskinen, J.; Tuurala, S.; Sjödin, M.; Kiri, K.; Nyholm, L.; Flyktman, T.; Strømme, M.; Smolander, M. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes. Synth. Met. 2015, 203, 192–199. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]
- Jaidev; Ramaprabhu, S. Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 2012, 22, 18775–18783. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Hao, Y.; Li, Y.; Fang, Y.; Chen, D. Alternate Multilayer Films of Poly(vinyl alcohol) and Exfoliated Graphene Oxide Fabricated via a Facial Layer-by-Layer Assembly. Macromolecules 2010, 43, 9411–9416. [Google Scholar] [CrossRef]
- Nam, M.S.; Patil, U.; Park, B.; Sim, H.B.; Jun, S.C. A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Adv. 2016, 6, 101592–101601. [Google Scholar] [CrossRef]
- Xie, K.; Wei, B. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Yang, Y.; Chang, Z.; Wen, Z.; Wu, Y. Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J. Mater. Chem. A 2013, 1, 13582–13587. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; Zhang, S.; Yang, W. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J. Power Sources 2007, 173, 1017–1023. [Google Scholar] [CrossRef]
- Raj, R.P.; Ragupathy, P.; Mohan, S. Remarkable capacitive behavior of a Co3O4-polyindole composite as electrode material for supercapacitor applications. J. Mater. Chem. A 2015, 3, 24338–24348. [Google Scholar] [CrossRef]
- Balbuena, J.O.; de Ureta, P.T.; Ruiz, E.R.; Pita, S.M. Electric Field Effect in Atomically Thin Carbon Films. Med. Clin. 2004, 146, 93–94. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, H.; Jin, H.; Wu, M.; Fang, Y.; Sun, J.; Hu, Z.; Li, T.; Wu, J.; Huang, L.; et al. Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano 2017, 11, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhao, J.; Zou, J.; He, Z.; Xu, C.; Liu, F.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Appl. Mater. Interfaces 2018, 10, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Chang, C.L.; Ho, W.Y. Microstructure analysis of MoS2 deposited on diamond-like carbon films for wear improvement. Surf. Coat. Technol. 1999, 111, 123–127. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Alahakoon, S.B.; Thompson, C.M.; Occhialini, G.; Smaldone, R.A. Design Principles for Covalent Organic Frameworks in Energy Storage Applications. ChemSusChem 2017, 10, 2116–2129. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M.; Liu, L. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443–5454. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzandeh, P.; Pillai, S.C. Two-dimensional (2D) electrode materials for supercapacitors. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Xie, L.M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 2015, 7, 18392–18401. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Han, M.Y. Functionalized Hybridization of 2D Nanomaterials. Adv. Sci. 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Lacey, S.D.; Dai, J.; Bao, W.; Fuhrer, M.S.; Hu, L. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Liu, Z.; Tan, C.; Huang, Y.; Li, B.; Zhao, M.; Xie, L.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 2015, 54, 5425–5428. [Google Scholar] [CrossRef]
- Pant, A.; Mutlu, Z.; Wickramaratne, D.; Cai, H.; Lake, R.K.; Ozkan, C.S.; Tongay, S. Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale 2016, 8, 3870–3887. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Electronic Transport in Two-Dimensional Materials. Annu. Rev. Phys. Chem. 2018, 69, 299–325. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Liu, L.; Zhang, Z. Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Adv. Mater. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Bao, W.; Jing, L.; Velasco, J.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S.B.; Smirnov, D.; et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys 2011, 7, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Hu, X.; Wu, X.; Zeng, Y.; Wang, B.; He, G.; Zhu, Z. A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@polypyrrole core-shell nanowires on hemp-derived carbon. J. Mater. Chem. A 2015, 3, 17209–17216. [Google Scholar] [CrossRef]
- Hong, D.; Yim, S. RuO2 Thin Films Electrodeposited on Polystyrene Nanosphere Arrays: Growth Mechanism and Application to Supercapacitor Electrodes. Langmuir 2018, 34, 4249–4254. [Google Scholar] [CrossRef]
- L-Mahdy, A.F.M.E.; Hung, Y.-H.; Mansoure, T.H.; Yu, H.-H.; Hsu, Y.-S.; Wu, K.C.-W.; Kuo, S.-W. Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. J. Taiwan Inst. Chem. Eng. 2019, 103, 199–208. [Google Scholar] [CrossRef]
- Das, S.K.; Bhunia, K.; Mallick, A.; Pradhan, A.; Pradhan, D.; Bhaumik, A. A new electrochemically responsive 2D Π-conjugated covalent organic framework as a high performance supercapacitor. Microporous Mater. 2018, 266, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Dalapati, S.; Jiang, D. Charge up in wired covalent organic frameworks. ACS Cent. Sci. 2016, 2, 586–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, J.; Rodríguez-San-Miguel, D.; Ribera, A.; Mas-Ballesté, R.; Otero, T.F.; Manet, I.; Licio, F.; Abellán, G.; Zamora, F.; Coronado, E. Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. J. Mater. Chem. A 2017, 5, 4343–4351. [Google Scholar] [CrossRef] [Green Version]
- Mulzer, C.R.; Shen, L.; Bisbey, R.P.; McKone, J.R.; Zhang, N.; Abruña, H.D.; Dichtel, W.R. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2016, 2, 667–673. [Google Scholar] [CrossRef]
- Chandra, S.; Chowdhury, D.R.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chem. Mater. 2017, 29, 2074–2080. [Google Scholar] [CrossRef]
- Xu, Z.; Chowdhury, D.R.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode. Chem. Eng. J. 2020, 387, 124071. [Google Scholar] [CrossRef]
- Choi, K.M.; Jeong, H.M.; Park, J.H.; Zhang, Y.B.; Kang, J.K.; Yaghi, O.M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 2014, 8, 7451–7457. [Google Scholar] [CrossRef]
- Jiang, J.W.; Park, H.S. Mechanical properties of MoS2/graphene heterostructures. Appl. Phys. Lett. 2014, 105, 033108. [Google Scholar] [CrossRef] [Green Version]
- Toth, P.S.; Velický, M.; Bissett, M.A.; Slater, T.J.A.; Savjani, N.; Rabiu, A.; Rakowski, A.M.; Brent, J.R.; Haigh, S.J.; O’Brien, P.; et al. Asymmetric MoS2/Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Adv. Mater. 2016, 28, 8256–8264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Selkirk, A.; Zhang, S.; Huang, J.; Li, Y.; Xie, Y.; Dong, N.; Cui, Y.; Zhang, L.; Blau, W.J.; et al. MoS2/Carbon Nanotube Core–Shell Nanocomposites for Enhanced Nonlinear Optical Performance. Chem. A Eur. J. 2017, 23, 3321–3327. [Google Scholar] [CrossRef] [PubMed]
- Nejati, K.; Akbari, A.R.; Davari, S.; Asadpour-Zeynali, K.; Rezvani, Z. Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation. New J. Chem. 2018, 42, 2889–2895. [Google Scholar] [CrossRef]
- Li, M.Y.; Chen, C.H.; Shi, Y.; Li, L.J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zeng, Z.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Niu, H.; Jiang, H.; Wang, Q.; Qu, F. A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. J. Mater. Chem. A 2016, 4, 11264–11275. [Google Scholar] [CrossRef]
- Leng, K.; Chen, Z.; Zhao, X.; Tang, W.; Tian, B.; Nai, C.T.; Zhou, W.; Loh, K.P. Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano 2016, 10, 9208–9215. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, M.; Mahmood, A.; Wang, Y.; Chen, Y.; Ma, Z.; Han, R.P.S. Advancement in Layered Transition Metal Dichalcogenide Composites for Lithium and Sodium Ion Batteries. J. Electr. Eng. 2016, 4, 58–74. [Google Scholar] [CrossRef]
- Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C.; Kuila, T. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 2015, 7, 14211–14222. [Google Scholar] [CrossRef]
- Maity, C.K.; Sahoo, S.; Verma, K.; Behera, A.K.; Nayak, G.C. Facile functionalization of boron nitride (BN) for the development of high-performance asymmetric supercapacitors. New J. Chem. 2020, 44, 8106–8119. [Google Scholar] [CrossRef]
- Gomez, I.J.; Arnaiz, B.; Cacioppo, M.; Arcudi, F.; Prato, M. Synthesis of 3D Marigold Flower-Like rGO/BN/Ni(OH)2 Ternary Nanocomposites for Supercapacitor Applications. J. Mater. Chem. B 2018, 35. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, T.; Shao, Y.; Wu, Y.; Huang, B.; Hao, X. A Novel Mild Phase-Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications. Small 2017, 13, 1602243. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ushiyama, H.; Yamashita, K. Comparative Study of Sodium and Lithium Intercalation and Diffusion Mechanism in Black Phosphorus from First-principles Simulation. Chem. Lett. 2014, 43, 1940–1942. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Facile sonochemical assisted synthesis of a hybrid red–black phosphorus/sulfonated porous carbon composite for high-performance supercapacitors. Chem. Commun. 2020, 56, 7096–7099. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Wang, S.; Jacobson, A.J.; Reimus, L.; Brodersen, P.; Mims, C.A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered a cations. J. Mater. Chem. 2007, 17, 2500–2505. [Google Scholar] [CrossRef]
- Mishra, M. (Ed.) Encyclopedia of Polymer Applications, 3 Volume Set; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yan, X.; Tong, X.; Wang, J.; Gong, C.; Zhang, M.; Liang, L. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J. Alloys Compd. 2014, 593, 184–189. [Google Scholar] [CrossRef]
- Lu, K.; Shen, F. Long term behaviors of La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 as cathodes for solid oxide fuel cells. Int. J. Hydrogen Energy 2014, 39, 7963–7971. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Q.; He, Q.; He, T. Double-perovskites A2FeMoO6-δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J. Power Sources 2010, 195, 6356–6366. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhu, Q.Q.; Wang, X.E.; Zhang, H.C.; Zhang, J.J.; Wang, L.F. Structural and electrochemical properties of La0.85Sr0.15MnO3 powder as an electrode material for supercapacitor. J. Alloys Compd. 2016, 675, 195–200. [Google Scholar] [CrossRef]
- Ma, P.P.; Lu, Q.L.; Lei, N.; Liu, Y.K.; Yu, B.; Dai, J.M.; Li, S.H.; Jiang, G. Effect of A-site substitution by Ca or Sr on the structure and electrochemical performance of LaMnO3 perovskite. Electrochim. Acta 2020, 332, 135489. [Google Scholar] [CrossRef]
- Tomar, A.K.; Singh, G.; Sharma, R.K. Charge storage characteristics of mesoporous strontium titanate perovskite aqueous as well as flexible solid-state supercapacitor cell. J. Power Sources 2019, 426, 223–232. [Google Scholar] [CrossRef]
- Du, P.; Hu, X.; Yi, C.; Liu, H.C.; Liu, P.; Zhang, H.-L.; Gong, X. Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Adv. Funct. Mater. 2015, 25, 16–2420. [Google Scholar] [CrossRef]
- Ayman, I.; Rasheed, A.; Ajmal, S.; Rehman, A.; Ali, A.; Shakir, I.; Warsi, M.F. CoFe2O4 Nanoparticle-Decorated 2D MXene: A Novel Hybrid Material for Supercapacitor Applications. Energy Fuels 2020, 34, 7622–7630. [Google Scholar] [CrossRef]
- Yang, J.; Pan, Z.; Yu, Q.; Zhang, Q.; Ding, X.; Shi, X.; Qiu, Y.-C.; Zhang, K.; Wang, J.; Zhang, Y. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. ACS Appl. Mater. Interfaces 2019, 11, 5938–5946. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Zhao, B.; Ning, Y.; Zhang, L.; Bradley, R.H.; Wu, W.; Lijian, W. Carbon Nanobowls Filled with MoS2 Nanosheets as Electrode Materials for Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 6448–6459. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Choudhary, R.J.; Phase, D.M.; Devan, R.S. Structural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitor. RSC Adv. 2020, 10, 23446–23456. [Google Scholar] [CrossRef]
- Haldar, S.; Kushwaha, R.; Maity, R.; Vaidhyanathan, R. Pyridine-Rich Covalent Organic Frameworks as High-Performance Solid-State Supercapacitors. ACS Mater. Lett. 2019, 1, 490–497. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chen, Y.; Wang, C.; Guo, L. NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl. Surf. Sci. 2020, 507, 145089. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/Mno2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xia, Y. Electronic materials: Buckling down for flexible electronics. Nat. Nanotechnol. 2006, 1, 163–164. [Google Scholar] [CrossRef]
- Miller, J.R. Reliability of Electrochemical Capacitors. In Supercapacitors; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 473–507. [Google Scholar]
- Maggetto, G. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: State of the art and perspectives. Ann. Chim. Sci. des Matà riaux 2001, 26, 9–26. [Google Scholar] [CrossRef]
- He, Z.; Gao, B.; Li, T.; Liao, J.; Liu, B.; Liu, X.; Wang, C.; Feng, Z.-Q.; Gu, Z. Piezoelectric-Driven Self-Powered Patterned Electrochromic Supercapacitor for Human Motion Energy Harvesting. ACS Sustain. Chem. Eng. 2019, 7, 1745–1752. [Google Scholar] [CrossRef]
- Hsu, H.H.; Khosrozadeh, A.; Li, B.; Luo, G.; Xing, M.; Zhong, W. An Eco-Friendly, Nanocellulose/RGO/in Situ Formed Polyaniline for Flexible and Free-Standing Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 4766–4776. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Lee, L.H.; Shafiabady, N.; Isa, D. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 2015, 137, 588–602. [Google Scholar] [CrossRef]
- Habibzadeh, M.; Hassanalieragh, M.; Ishikawa, A.; Soyata, T.; Sharma, G. Hybrid Solar-Wind Energy Harvesting for Embedded Applications: Supercapacitor-Based System Architectures and Design Tradeoffs. IEEE Circuits Syst. Mag. 2017, 17, 29–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, N.; Lin, X.; Nie, S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym. 2020, 234, 115888. [Google Scholar] [CrossRef]
- Miller, J.R. Market and Applications of Electrochemical Capacitors. In Supercapacitors; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 509–526. [Google Scholar]
- Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors. ACS Nano 2017, 11, 11056–11065. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Han, T.Y.-J.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef] [PubMed]
- Couly, C.; Alhabeb, M.; Van Aken, K.L.; Kurra, N.; Gomes, L.; Anasori, B.; Alshareef, H.N.; Gogotsi, Y.; Navarro-Suárez, A.M. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.J.; Anasori, B.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Shmeliov, A.; Duesberg, G.S.; Coleman, J.N.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Miroshnikov, M.; Mahankali, K.; Thangavel, N.K.; Satapathy, S.; Arava, L.M.R.; Ajayan, P.M.; John, G. Bioderived Molecular Electrodes for Next-Generation Energy-Storage Materials. ChemSusChem 2020, 1–20. [Google Scholar] [CrossRef]
Nanocomposite | Cs of the Electrode Material at Current Density (A·g−1) or at Scan Rate (mV·s−1) | Cs of the SC at Current Density (A·g−1) or at Scan Rate (mV·s−1) | Ed of the SC | Pd of the SC | Capacitance Retention (%)/Number of Cycles/Current Density (A·g−1) or at Scan Rate (mV·s−1) | Electrolyte | Type of the SC Device | Ref. |
---|---|---|---|---|---|---|---|---|
MnO2/GPCNs | 438 F·g−1 at 0.5 A·g−1 | 72.4 F·g−1 | 50.2 Wh·kg−1 | 516 W·kg−1 | 67.8/-/50 A·g−1 for the electrode, and 77.8/-/0.5 to 50 A·g−1 for the device | Aqueous 1.0 M Na2SO4 | ASSC (MnO2/GPCN-SS//GPCN-SS) | [296] |
Mn3O4@NiCo2O4@NiO | 1905 F·g−1 at 1 A·g−1 | 216 F·g−1 at 1 A·g−1 | 76.8 Wh·kg−1 | 800 W·kg−1 | 92/10,000 | Aqueous 2 M KOH | ASSC (MNN//AC) | [297] |
MnO2-coated graphene paper | 385.2 F·g−1 at 1 mV·s−1 | 76.8 mF·cm−2 at 0.05 mA·cm−2 | 6.14 mWh·cm−2 | 36 mW·cm−2 | 82.2/5000/- | Aqueous 0.1 M Na2SO4 | Flexible solid-state ASSC (MnO2-coated graphene paper//graphene paper) | [298] |
MnO2/CNTs | 1980 Fm−2 at 10 A.m−2 | - | 177 Wh.m−2 | 250 W.m−2 | 87/3000/10 A.m−2 | Aqueous 1.0 M Na2SO4 | SSC | [299] |
CNTs/MnO2 | 1229 F·g−1 at 1 A·g−1 | 152 F·g−1 at 0.3 1 A·g−1 | 84.6 Wh·kg−1 | 190 W·kg−1 | 94.4/10,000/- for the electrode, and 91/10,000/- for the device | Aqueous 1 M Na2SO4 | ASSC (CNTs/MnO2//AC) | [300] |
Mno2/CNTs-60 | 3.54 Fcm−2 at 1 mA·cm−2 | - | 93.8 μWh.cm−2 | 193 μW.cm−2 | >98/1000/- for the electrode | Polymer gel PVA-LiCl (6 M) | SSC | [301] |
MnO2/CNTs | 201 F·g−1 at 20 A·g−1 | - | 13.3 Wh·kg−1 | 600 W·kg−1 | 70/10,000/1 A·g−1 for the electrode | Aqueous 1 M Na2SO4 | ASSC (AC//MnO2/CNTs) | [302] |
MnO2-AgCNT-CC | up to 325 F·g−1 at 1 A·g−1 | - | - | - | - | Aqueous 0.5 M Na2SO4 | FSC | [303] |
CoMCNFs@MnO2 | 265 F·g−1 at 0.5 A·g−1 | 66 F·g−1 at 0.3 A·g−1 | 19.27 Wh·kg−1 | 217.51 W·kg−1 | 98.7/10,000/for the electrode, and 94.9/10,000/for the device | Aqueous 3 M KOH | ASSC (CoMCNFs@MnO2//CNFs) | [304] |
Mn3O4/CNFs | 300.7 F·g−1 at 5 mV·s−1 | - | 79.4 mWh·cm−2 | - | 100/7500/- | Aqueous 1 M Na2SO4 | SSC | [305] |
Mn3O4/Ni(OH)2 | 742 F·g−1 at 1 A·g−1 | 43 F·g−1 at 0.2 A·g−1 | 15.3 Wh·kg−1 | 168.8 W·kg−1 | - | Aqueous 1 M KOH | ASSC (Mn3O4/Ni(OH)2//AC) | [306] |
Porous graphene@Mn3O4 | 208.3 F·g−1 | 60.1 F·g−1 at 0.5 A·g−1 | 30.1 Wh·kg−1 | 475 W·kg−1 | 86/2000/- | Aqueous 1 M Na2SO4 | ASSC (porous graphene@Mn3O4//AG) | [307] |
Zn2SnO4/SnO2/CNT | 702 F·g−1 at 1 A·g−1 | - | 98 Wh·kg−1 | 1000 W·kg−1 | 93/15,000 | Aqueous 6 M KOH | SSC | [308] |
CuO@NiO/PANI/MWCNT | 1372 F·g−1 at 5 mV·s−1 | - | - | - | 83/1500/- | Aqueous 3 M NaOH | - | [309] |
NiO/PANI/CNT | 356 F·g−1 at 5 mV·s−1 | - | - | - | 93.4/-/- | Aqueous 0.1 M, 10 mL KCl in acetonitrile | - | [310] |
ZnO/MnOx | 556 F·g−1 at 1 A·g−1 | - | 16 Wh·kg−1 | 225 W·kg−1 | 96/10,000/- | Aqueous 1 M Na2SO4 | SSC | [311] |
RuO2-CNFs | 188 F·g−1 at 1 mA·cm−2 | - | - | - | 93/3000/-for the electrode | Aqueous 6 M KOH | - | [312] |
RuO2−ITO nanopillars | 1235 F·g−1 at 50 mV·s−1 | - | - | - | 75/4000/-for the electrode | Aqueous 0.5 M H2SO4 | - | [313] |
Co3O4@RuO2 nanosheet | - | 3.42 F·cm−3 | 1.21 mWh·cm−3 | 13.29 | - | Aqueous 3 M KOH | ASSC (Co3O4@RuO2 nanosheet/Co9S8) | [314] |
Co3O4@RuO2 nanosheet | - | 4.28 F·cm−3 | 1.44 mWh·cm−3 | 0.89 W.cm−3 | - | Solid-state PVA/KOH gel | ASSC (Co3O4@RuO2 nanosheet/Co9S8) | [314] |
carbon/Fe3O4 | 536 F·g−1 at 3 A·g−1 | 368 F·g−1 at 1 A·g−1 | 42 Wh·kg−1 | 14.5 k W·kg−1 | 77/20,000/20 A·g−1 | Aqueous 3.5 M KOH | SSC | [315] |
Fe2O3/GNSs/CNTs | 675.7 F·g−1 at 1 A·g−1 | 169.5 F·g−1 at 0.5 A·g−1 | 60.3 Wh·kg−1 | - | 82.2/5000/5 A·g−1 | Aqueous 6 M KOH | All-solid-state ASSC | [316] |
PANI/rGO/Fe2O3 @ CC | 1124 F·g−1 at 0.25 A·g−1 | - | - | - | 82/10,000/- | Aqueous 1 M H2SO4 | - | [317] |
CNT−Fe3O4 | 373 F·g−1 at 10 mV·s−1 | 135.2 F·g−1 at 10 mV·s−1 | 37 Wh·kg−1 | 10 k W·kg−1 | 100/15,000/- | Aqueous 1 M Na2SO4 | HASSC (CNT−Fe3O4//CNT−Mn3O4) | [318] |
CNT−Mn3O4 | 453 F·g−1 at 10 mV·s−1 | 135.2 F·g−1 at 10 mV·s−1 | 37 Wh·kg−1 | 10 k W·kg−1 | 100/15,000/- | Aqueous 1 M Na2SO4 | HASSC (CNT−Fe3O4//CNT−Mn3O4) | [276] |
(Fe,Cr)2O3 oxide layer | 45.92 mF·cm−2 at 5 mV·s−1 | 16.88 mF·cm−2 at 5 mV·s−1 | 0.57 mWh·cm−2 | 200 mW·cm−2 | 97/10 000/-for the electrode, and 90/10 000/-for the device | Polymer gel LiClO4−PC | Flexible solid-state SSC | [306] |
WS2@NiCo2O4/CC | 2449.9 mF·cm−2 at 1 mA·cm−2 | - | 45.67 Wh·kg−1 | 992.83 W·kg−1 | 85.59/5000/2 mA·cm−2 | Aqueous 3 M KOH | Flexible solid-state SSC | [319] |
CoO/NiO−Cu@CuO | 2035 mF·cm−2 at 2 mA·cm−2 | - | 69.3 Wh·kg−1 | 1080 W·kg−1 | 90.3/5000/ | Solid-state PVA/KOH hydrogel | Solid-state aASSC | [320] |
NiO@Nanofiber-based composite | - | 161 at 1.0 A·g−1 | 22 Wh·kg−1 | 491.9 W·kg−1 | ∼96.0/5000/10 A·g−1 | Li gel | Flexible transparent SSC | [321] |
Ni(OH)2@CCF | 502.00 at 1 A·g−1 | 131.43 F·g−1 at 0.25 A·g−1 | 35.78 Wh·kg−1 | 0.35 k W·kg−1 | 102.61 even at a bending angle of 180° | Aqueous 6 M KOH | Flexible and wearable SSC | [322] |
Ni-Mn-oxides | 1215.5 F·g−1 at 2 mV·s−1 | 196.5 F·g−1 at 1.5 A·g−1 | 132.3 Wh·kg−1 | 1651 W·kg−1 | 97/3000/- | Aqueous 1 M Na2SO4 | ASSC (Ni-Mn-oxide//AC) | [323] |
V2O5/Pt/conductive printing paper | 343 F·g−1 at 10 mV·s−1 | 160 F·g−1 | 355 Wh·kg−1 | 0.2 kW·kg−1 | 91/5000/- | Urea−LiClO4−PVA (ULP) | Wearable SSC pseudocapacitor | [324] |
VO2/graphene@NiS2 hybrid aerogel | 1280.0 F·g−1 at 1 A·g−1 | 222.2 F·g−1 at 2 mV·s−1 | 60.2 Wh·kg−1 | 350.0 W·kg−1 | 86.2/10,000/- | PVA/KOH gel | All-solid state ASSC (VO2/graphene@NiS2 hybrid aerogel//graphene aerogel) | [325] |
Gradient oxygen-vacant V2O5/PEDOT | - | 614 F·g−1 at 0.5 A·g−1 | 85 Wh·kg−1 | 250 W·kg−1 | 122/50 000 | Aqueous 1 M Na2SO4 | SSC | [326] |
2D Nanomaterial | Type of the Corresponding Composite-Based Electrode Material | Charge Storage Behavior of the Resultant Composite-Based Electrode Material | Cs of the Electrode Material at Current Density (A·g−1) or at Scan Rate (mV·s−1) | Capacitance Retention (%)/Number of Cycles | Ref. |
---|---|---|---|---|---|
MXene | CoF/MXene | The faradaic charge storage mechanism of CoF NPs and the EDLC behaviour of MXene flakes resulted in a battery-like charge−discharge behaviour for the resultant composite. | 1268.75 F·g−1 at 1 A·g−1 | 97/5000 | [469] |
BN | Ternary nanohybrids (mK-BN/CNT/PANI) | The combination of EDLC and pseudocapacitive behaviour. (Pure BN and modified BN exhibited EDLC behaviour mainly. mK-BN showed the maximum pseudocapacitive involvement (28%) with respect to BN and mH-BN. The maximum pseudocapacitive contribution has been reported for the ternary composites.) | 515 F·g−1 | 98/10,000 | [455] |
h-BN | (h-BN)/rGO | A prominent pseudo nature combined with EDLC was observed due to the EDLC behaviour of graphene and the intrinsic pseudocapacitive nature of h-BN heteroatoms. | ∼824 F·g−1 at 4 A·g−1 | 100/4000 | [454] |
BP | BP thin film | EDLC behaviour | 94.3/50,000 | [470] | |
TMDs | MoS2@HCNBs | The domination of EDLC with slight faradaic pseudocapacitance, which arises from the faradaic charge transfer Mo in MoS2 structure | 560 F·g−1 at 0.2 A·g−1 | 94.4/5000 | [471] |
PSK | Mesoporous CoTiO3 PSK | Pseudocapacitive behavior of the CoTiO3 microrods | 608.4 F·g−1 at 5 mV·s−1 | 82.3/1950 | [472] |
LDHs | NiCo-LDHs | The EDLC behaviour and faradic behaviour contribution | 1272 C·g−1 at 2 A·g−1 | 103.9/5000 | |
COFs | pyridyl-hydroxyl functionalized COFs | The domination of EDLC due to the high surface area of COFs (through the formation of the EDLC between the COF surface and the H+ ions) along with a pseudocapacitance, which increased by increasing the number of OH groups | 546 F·g−1 at 0.5 A·g−1 | 100/10,000 | [473] |
MOFs | NiCo-MOF@PNTs | The pseudocapacitive behaviour, which was derived from the faradaic reactions of Ni2+/Ni3+ and Co2+/Co3+, as well as an extra pseudocapacitance due to the presence of the PNTs. | 1109 F·g−1 at 0.5 A·g−1 | 79.1/10,000 | [474] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10, 969. https://doi.org/10.3390/catal10090969
Forouzandeh P, Kumaravel V, Pillai SC. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts. 2020; 10(9):969. https://doi.org/10.3390/catal10090969
Chicago/Turabian StyleForouzandeh, Parnia, Vignesh Kumaravel, and Suresh C. Pillai. 2020. "Electrode Materials for Supercapacitors: A Review of Recent Advances" Catalysts 10, no. 9: 969. https://doi.org/10.3390/catal10090969
APA StyleForouzandeh, P., Kumaravel, V., & Pillai, S. C. (2020). Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10(9), 969. https://doi.org/10.3390/catal10090969