Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis
Abstract
:1. Introduction
2. Theoretical Ground of Multicomponent Catalysis: Synergy, Ensemble and Ligand Effects
3. Environmental Catalysis Is Where Economy Drives Chemistry
4. Ru and Ni—Privileged Elements for Catalysis
4.1. Ru and Ni for Catalysis
4.2. Physics of Metal Alloying, Combining of Ru and Ni
4.3. Ru and Ni Combinations—Preparation and Applications
5. Carbon (Di)oxide Methanation
6. Ru/Ni Catalysts for Low-Temperature CO2 (CO) Methanation
7. Mechanisms for Carbon (Di)oxide Hydrogenation
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Fletcher, S.E.M. Ocean circulation drove increase in CO2 uptake. Nature 2017, 542, 169–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVries, T.; Holzer, M.; Primeau, F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 2017, 542, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK; New York, NY, USA, 1998; ISBN 978-0-19-850234-0. [Google Scholar]
- Rodríguez-Padrón, D.; Puente-Santiago, A.R.; Balu, A.M.; Muñoz-Batista, M.J.; Luque, R. Environmental Catalysis: Present and Future. ChemCatChem 2019, 11, 18–38. [Google Scholar] [CrossRef]
- Jia, J.; Qian, C.; Dong, Y.; Li, Y.F.; Wang, H.; Ghoussoub, M.; Butler, K.T.; Walsh, A.; Ozin, G.A. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: Defect engineering—Perfecting imperfection. Chem. Soc. Rev. 2017, 46, 4631–4644. [Google Scholar] [CrossRef]
- Alshammari, A.; Kalevaru, V.; Martin, A. Bimetallic catalysts containing gold and palladium for environmentally important reactions. Catalysts 2016, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Sinfelt, J.H. Bimetallic Catalysts: Discoveries, Concepts, and Applications; Wiley: New York, NY, USA, 1983; ISBN 978-0-471-88321-0. [Google Scholar]
- Calzada Hernandez, A.R.; Gibran González Castañeda, D.; Sánchez Enriquez, A.; de Lasa, H.; Serrano Rosales, B. Ru-Promoted Ni/γAl2O3 fluidized catalyst for biomass gasification. Catalysts 2020, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Italiano, C.; Bizkarra, K.; Barrio, V.L.; Cambra, J.F.; Pino, L.; Vita, A. Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts. Int. J. Hydrogen Energy 2019, 44, 14671–14682. [Google Scholar] [CrossRef]
- Zhu, C.; Cao, J.-P.; Zhao, X.-Y.; Xie, T.; Zhao, M.; Wei, X.-Y. Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on Nickel-Ruthenium catalysts. Fuel Process. Technol. 2019, 194, 106126. [Google Scholar] [CrossRef]
- Khan, Z. Trimetallic nanoparticles: Synthesis, characterization and catalytic degradation of formic acid for hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 11503–11513. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Asefa, T. (Eds.) Nanocatalysis: Synthesis and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14886-0. [Google Scholar]
- Musiol, R.; Mrozek-Wilczkiewicz, A.; Polanski, J. Synergy against fungal pathogens: Working together is better than working alone. Curr. Med. Chem. 2014, 21, 870–893. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Goodman, D.W. Pd–Au bimetallic catalysts: Understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 2012, 41, 8009. [Google Scholar] [CrossRef] [PubMed]
- Spivey, J.J.; Agarwal, S.K. (Eds.) Catalysis; Royal Society of Chemistry: Cambridge, UK, 2007; Volume 11, ISBN 978-0-85186-654-3. [Google Scholar]
- Shi, J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013, 113, 2139–2181. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.D. Clusters of transition-metal atoms. Chem. Rev. 1986, 86, 1049–1109. [Google Scholar] [CrossRef]
- Allred, A.L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215–221. [Google Scholar] [CrossRef]
- Allen, L.C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 1989, 111, 9003–9014. [Google Scholar] [CrossRef]
- Mann, J.B.; Meek, T.L.; Knight, E.T.; Capitani, J.F.; Allen, L.C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 2000, 122, 5132–5137. [Google Scholar] [CrossRef]
- Morss, L.R.; Edelstein, N.M.; Fuger, J.; Katz, J.J. (Eds.) The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-3555-5. [Google Scholar]
- Taylor, S.; Spain, E.M.; Morse, M.D. Spectroscopy and electronic structure of jet-cooled NiPd and PdPt. J. Chem. Phys. 1990, 92, 2710–2720. [Google Scholar] [CrossRef]
- Simard, B.; Lebeault-Dorget, M.-A.; Marijnissen, A.; Ter Meulen, J.J. Photoionization spectroscopy of dichromium and dimolybdenum: Ionization potentials and bond energies. J. Chem. Phys. 1998, 108, 9668–9674. [Google Scholar] [CrossRef]
- Taylor, S.; Lemire, G.W.; Hamrick, Y.M.; Fu, Z.; Morse, M.D. Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J. Chem. Phys. 1988, 89, 5517–5523. [Google Scholar] [CrossRef]
- Fricke, B. Superheavy elements a prediction of their chemical and physical properties. In Recent Impact of Physics on Inorganic Chemistry; Springer: Berlin/Heidelberg, Germany, 1975; Volume 21, pp. 89–144. ISBN 978-3-540-07109-9. [Google Scholar]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 88th ed.; CRC: Boca Raton, FL, USA; London, UK, 2008; ISBN 978-0-8493-0488-0. [Google Scholar]
- Freiser, B.S. Organometallic Ion Chemistry; Kluwer Academic: Dordrecht, The Netherlands; London, UK, 1996; ISBN 978-94-009-0111-7. [Google Scholar]
- Loh, S.K.; Lian, L.; Hales, D.A.; Armentrout, P.B. Collision-induced dissociation of iron ion (Fe2+). J. Phys. Chem. 1988, 92, 4009–4012. [Google Scholar] [CrossRef]
- Pinegar, J.C.; Langenberg, J.D.; Arrington, C.A.; Spain, E.M.; Morse, M.D. Ni2 revisited: Reassignment of the ground electronic state. J. Chem. Phys. 1995, 102, 666–674. [Google Scholar] [CrossRef]
- Langenberg, J.D.; Morse, M.D. The bond energy of Rh2. J. Chem. Phys. 1998, 108, 2331–2335. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Haouari, H.; Craig, R.; Lombardi, J.R.; Lindsay, D.M. Raman spectra of ruthenium dimers. J. Chem. Phys. 1997, 106, 6534–6537. [Google Scholar] [CrossRef]
- Liu, H. Ammonia Synthesis Catalysts: Innovation and Practice; World Scientific: Singapore, 2013; ISBN 978-981-4355-78-0. [Google Scholar]
- Younas, M.; Loong Kong, L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 2016, 30, 8815–8831. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832. [Google Scholar] [CrossRef]
- Tyson, W.R.; Miller, W.A. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 1977, 62, 267–276. [Google Scholar] [CrossRef]
- de Boer, F.R. (Ed.) Cohesion in Metals: Transition Metal Alloys; North Holland: Amsterdam, The Netherlands, 1988; ISBN 978-0-444-87098-8. [Google Scholar]
- Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble metal-based bimetallic nanoparticles: The effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 2016, 229, 80–107. [Google Scholar] [CrossRef]
- Fechete, I. Paul Sabatier—The father of the chemical theory of catalysis. Comptes Rendus Chim. 2016, 19, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Tieves, F.; Tonin, F.; Fernández-Fueyo, E.; Robbins, J.M.; Bommarius, B.; Bommarius, A.S.; Alcalde, M.; Hollmann, F. Energising the E-factor: The E+-factor. Tetrahedron 2019, 75, 1311–1314. [Google Scholar] [CrossRef]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Mond, L.; Langer, C.; Quincke, F.L. Action of carbon monoxide on nickel. J. Chem. Soc. Trans. 1890, 57, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Roduner, E. Understanding catalysis. Chem. Soc. Rev. 2014, 43, 8226–8239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, F.; Tropsch, H.; Dilthey, P. Reduction of carbon monoxide to methane in the presence of various metals. Brennst. Chem. 1925, 6, 265–271. [Google Scholar]
- Graf, F.; Götz, M.; Henel, M.; Schaaf, T.; Tichler, R. Technoökonomische Studie von Power-to-Gas-Konzepten; DVGW: Bonn, Germany, 2014. [Google Scholar]
- Ghaib, K.; Nitz, K.; Ben-Fares, F.-Z. Chemical methanation of CO2: A review. ChemBioEng Rev. 2016, 3, 266–275. [Google Scholar] [CrossRef]
- Jang, H.; Jin, W.; Nam, G.; Yoo, Y.; Jeon, J.S.; Park, J.; Kim, M.G.; Cho, J. Exploring the artificially induced nonstoichiometric effect of Li2RuO3 as a reactive promoter on electrocatalytic behavior. Energy Environ. Sci. 2020, 13, 2167–2177. [Google Scholar] [CrossRef]
- Ananikov, V.P. Nickel: The “Spirited Horse” of Transition Metal Catalysis. ACS Catal. 2015, 5, 1964–1971. [Google Scholar] [CrossRef]
- Sabatier, P. Catalysis in Organic Chemistry; Van Nostrand: New York, NY, USA, 1922. [Google Scholar]
- Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46. [Google Scholar] [CrossRef]
- Andersson, M.; Bligaard, T.; Kustov, A.; Larsen, K.; Greeley, J.; Johannessen, T.; Christensen, C.; Norskov, J. Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. J. Catal. 2006, 239, 501–506. [Google Scholar] [CrossRef]
- Lang, S.M.; Bernhardt, T.M.; Krstić, M.; Bonačić-Koutecký, V. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: A gas-phase approach. Angew. Chem. Int. Ed. 2014, 53, 5467–5471. [Google Scholar] [CrossRef]
- Polanski, J.; Siudyga, T.; Bartczak, P.; Kapkowski, M.; Ambrozkiewicz, W.; Nobis, A.; Sitko, R.; Klimontko, J.; Szade, J.; Lelątko, J. Oxide passivated Ni-supported Ru nanoparticles in silica: A new catalyst for low-temperature carbon dioxide methanation. Appl. Catal. B Environ. 2017, 206, 16–23. [Google Scholar] [CrossRef]
- Gupta, S.S.; Singh, S.; Datta, J. Promoting role of unalloyed Sn in PtSn binary catalysts for ethanol electro-oxidation. Mater. Chem. Phys. 2009, 116, 223–228. [Google Scholar] [CrossRef]
- Czerczak, S.; Gromiec, J.; Płaszewska-Tkacz, A.; Świdwińska-Gajewska, A.M. Nickel, ruthenium, rhodium, palladium, osmium, and platinum. In Patty’s Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 1. [Google Scholar]
- Schutz, W. Ruthenium enhanced titanium alloys. Platin. Met. Rev. 1996, 40, 54–61. [Google Scholar]
- Tin, S.; Yeh, A.C.; Ofori, A.P.; Reed, R.C.; Babu, S.S.; Miller, M.K. Atomic partitioning of ruthenium in ni-based superalloys. In Proceedings of the Superalloys 2004 (Tenth International Symposium), TMS, Champion, PA, USA, 19–23 September 2004; pp. 735–741. [Google Scholar]
- Koizumi, Y.; Jianxin, Z.; Kobayashi, T.; Yokokawa, T.; Harada, H.; Aoki, Y.; Arai, M. Development of next generation ni-base single crystal superalloys containing ruthenium. J. Jpn. Inst. Met. 2003, 67, 468–471. [Google Scholar] [CrossRef] [Green Version]
- Walston, S.; Cetel, A.; MacKay, R.; O’Hara, K.; Duhl, D.; Dreshfield, R. Joint development of a fourth generation single crystal superalloy. In Proceedings of the Superalloys 2004 (Tenth International Symposium), Champion, PA, USA, 19–23 September 2004; pp. 15–24. [Google Scholar]
- Bondarenko, Y.A.; Kablov, E.N.; Surova, V.A.; Echin, A.B. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy. Met. Sci. Heat Treat. 2006, 48, 360–363. [Google Scholar] [CrossRef]
- Liu, N.; Yin, K.; Si, C.; Kou, T.; Zhang, Y.; Ma, W.; Zhang, Z. Hierarchically porous nickel–iridium–ruthenium–aluminum alloys with tunable compositions and electrocatalytic activities towards the oxygen/hydrogen evolution reaction in acid electrolyte. J. Mater. Chem. A 2020, 8, 6245–6255. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.H.; Zhu, Y.; Davis, Z.; Tatarchuk, B.J. Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Appl. Energy 2013, 106, 307–313. [Google Scholar] [CrossRef]
- Willey, D.B.; Harris, I.R.; Pratt, A.S. The improvement of the hydrogenation properties of nickel-metal hydride battery alloy by surface modification with platinum group metals (PGMs). J. Alloys Compd. 1999, 293–295, 613–620. [Google Scholar] [CrossRef]
- Willey, D.B.; Pederzolli, D.; Pratt, A.S.; Swift, J.; Walton, A.; Harris, I.R. Low temperature hydrogenation properties of platinum group metal treated, nickel metal hydride electrode alloy. J. Alloy. Compd. 2002, 330–332, 806–809. [Google Scholar] [CrossRef]
- Chen, G.; Zou, N.; Chen, B.; Sambur, J.B.; Choudhary, E.; Chen, P. Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent. Sci. 2017, 3, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Somorjai, G.A. Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 2015, 145, 233–248. [Google Scholar] [CrossRef]
- Roduner, E. Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles/ Emil Roduner, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2014; ISBN 978-1-84973-907-8. [Google Scholar]
- Morag, A.; Maman, N.; Froumin, N.; Ezersky, V.; Rechav, K.; Jelinek, R. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Adv. Electron. Mater. 2020, 6, 1900844. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, L.; Hu, G.; Mai, L.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109. [Google Scholar] [CrossRef] [PubMed]
- Trasatti, S.; Buzzanca, G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, A1–A5. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, M.C.; Navarro Yerga, R.M.; Kondarides, D.I.; Verykios, X.E.; Fierro, J.L.G. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on γ-Al2O3. J. Phys. Chem. A 2010, 114, 3873–3882. [Google Scholar] [CrossRef] [PubMed]
- Siudyga, T.; Kapkowski, M.; Bartczak, P.; Zubko, M.; Szade, J.; Balin, K.; Antoniotti, S.; Polanski, J. Ultra-low temperature carbon (di)oxide hydrogenation catalyzed by hybrid ruthenium–nickel nanocatalysts: Towards sustainable methane production. Green Chem. 2020. [Google Scholar] [CrossRef]
- Shang, X.; Deng, D.; Wang, X.; Xuan, W.; Zou, X.; Ding, W.; Lu, X. Enhanced low-temperature activity for CO2 methanation over Ru doped the Ni/CexZr(1−)O2 catalysts prepared by one-pot hydrolysis method. Int. J. Hydrogen Energy 2018, 43, 7179–7189. [Google Scholar] [CrossRef]
- Siudyga, T.; Kapkowski, M.; Janas, D.; Wasiak, T.; Sitko, R.; Zubko, M.; Szade, J.; Balin, K.; Klimontko, J.; Lach, D.; et al. Nano-Ru supported on Ni nanowires for low-temperature carbon dioxide methanation. Catalysts 2020, 10, 513. [Google Scholar] [CrossRef]
- Stangeland, K.; Kalai, D.Y.; Li, H.; Yu, Z. Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO2 methanation. Appl. Energy 2018, 227, 206–212. [Google Scholar] [CrossRef]
- le Saché, E.; Pastor-Pérez, L.; Haycock, B.J.; Villora-Picó, J.J.; Sepúlveda-Escribano, A.; Reina, T.R. Switchable catalysts for chemical CO2 recycling: A step forward in the methanation and reverse water–Gas shift reactions. ACS Sustain. Chem. Eng. 2020, 8, 4614–4622. [Google Scholar] [CrossRef]
- Lange, F.; Armbruster, U.; Martin, A. Heterogeneously-catalyzed hydrogenation of carbon dioxide to methane using RuNi bimetallic catalysts. Energy Technol. 2015, 3, 55–62. [Google Scholar] [CrossRef]
- Martins, J.A.; Faria, A.C.; Soria, M.A.; Miguel, C.V.; Rodrigues, A.E.; Madeira, L.M. CO2 methanation over hydrotalcite-derived nickel/ruthenium and supported ruthenium catalysts. Catalysts 2019, 9, 1008. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Yao, N.; Wang, X.; Wang, J.; Lv, D.; Li, X. The SiO2 supported bimetallic Ni–Ru particles: A good sulfur-tolerant catalyst for methanation reaction. Chem. Eng. J. 2015, 260, 1–10. [Google Scholar] [CrossRef]
- Li, S.; Gong, D.; Tang, H.; Ma, Z.; Liu, Z.-T.; Liu, Y. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation. Chem. Eng. J. 2018, 334, 2167–2178. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, W.; Hou, Z.; Zhang, Y. Homogeneous and highly dispersed Ni–Ru on a silica support as an effective CO methanation catalyst. RSC Adv. 2018, 8, 2123–2131. [Google Scholar] [CrossRef] [Green Version]
- Andraos, S.; Abbas-Ghaleb, R.; Chlala, D.; Vita, A.; Italiano, C.; Laganà, M.; Pino, L.; Nakhl, M.; Specchia, S. Production of hydrogen by methane dry reforming over ruthenium-nickel based catalysts deposited on Al2O3, MgAl2O4, and YSZ. Int. J. Hydrogen Energy 2019, 44, 25706–25716. [Google Scholar] [CrossRef]
- Álvarez, A.M.; Bobadilla, L.F.; Garcilaso, V.; Centeno, M.A.; Odriozola, J.A. CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study. J. CO2 Util. 2018, 24, 509–515. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, Y.; Zheng, J.; Zhang, N.; Yu, C.; Li, Y.; Pao, C.-W.; Chen, J.-L.; Jin, C.; Lee, J.-F.; et al. Ultrafine nanoparticle-supported ru nanoclusters with ultrahigh catalytic activity. Small 2015, 11, 4385–4393. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Ma, N.; Yu, C.; Ding, N.; Chen, J.-L.; Pao, C.-W.; Lee, J.-F.; Xiao, Q.; Chen, H.B. Tuning the interfaces in the ruthenium-nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. J. Catal. 2019, 377, 299–308. [Google Scholar] [CrossRef]
- Chen, S.; Vequizo, J.J.M.; Hisatomi, T.; Nakabayashi, M.; Lin, L.; Wang, Z.; Yamakata, A.; Shibata, N.; Takata, T.; Yamada, T.; et al. Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chem. Sci. 2020, 11, 6436–6441. [Google Scholar] [CrossRef] [Green Version]
- Stangeland, K.; Kalai, D.; Li, H.; Yu, Z. CO2 methanation: The effect of catalysts and reaction conditions. Energy Procedia 2017, 105, 2022–2027. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2011; ISBN 978-3-527-64463-6. [Google Scholar]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012, 2, 2358. [Google Scholar] [CrossRef]
- Mizuno, N.; Misono, M. Heterogeneous catalysis. Chem. Rev. 1998, 98, 199–218. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [Green Version]
- Shiju, N.R.; Guliants, V.V. Recent developments in catalysis using nanostructured materials. Appl. Catal. Gen. 2009, 356, 1–17. [Google Scholar] [CrossRef]
- Argyle, M.; Bartholomew, C. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef] [Green Version]
- Wysocka, I.; Hupka, J.; Rogala, A. Catalytic activity of nickel and ruthenium–nickel catalysts supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a dry reforming process. Catalysts 2019, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal. Today 2020. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, Y.; Jiang, Y.; Liu, Z.; Ji, H. Recent advances in heterogeneous catalytic hydrogenation of CO2 to methane. In New Advances in Hydrogenation Processes—Fundamentals and Applications; Ravanchi, M.T., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-2869-4. [Google Scholar]
- Mills, G.A.; Steffgen, F.W. Catalytic methanation. Catal. Rev. 1974, 8, 159–210. [Google Scholar] [CrossRef]
- Yan, Z.-H.; Ma, B.; Li, S.-R.; Liu, J.; Chen, R.; Du, M.-H.; Jin, S.; Zhuang, G.-L.; Long, L.-S.; Kong, X.-J.; et al. Encapsulating a Ni (II) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO2. Sci. Bull. 2019, 64, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Hyeon, S.; Lee, J.; Kim, W.D.; Lee, D.C.; Kim, J.; Lee, H. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat. Commun. 2018, 9, 3027. [Google Scholar] [CrossRef] [Green Version]
- Fajín, J.L.C.; Gomes, J.R.B.; Natália, M.; Cordeiro, M.N. Mechanistic study of carbon monoxide methanation over pure and rhodium- or ruthenium-doped nickel catalysts. J. Phys. Chem. C 2015, 119, 16537–16551. [Google Scholar] [CrossRef]
- Xiaoding, X.; Moulijn, J.A. Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy Fuels 1996, 10, 305–325. [Google Scholar] [CrossRef]
- Porta, A.; Falbo, L.; Visconti, C.G.; Lietti, L.; Bassano, C.; Deiana, P. Synthesis of Ru-based catalysts for CO2 methanation and experimental assessment of intraporous transport limitations. Catal. Today 2020, 343, 38–47. [Google Scholar] [CrossRef]
- Chai, S.; Men, Y.; Wang, J.; Liu, S.; Song, Q.; An, W.; Kolb, G. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J. CO2 Util. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Serp, P.; Philippot, K. (Eds.) Nanomaterials in Catalysis; Wiley-VCH: Weinheim, Germany, 2013; ISBN 978-3-527-33124-6. [Google Scholar]
- Ocampo, F.; Louis, B.; Roger, A.-C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method. Appl. Catal. Gen. 2009, 369, 90–96. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Jalil, A.A.; Wongsakulphasatch, S.; Vo, D.-V.N. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: A short review. Catal. Sci. Technol. 2020, 10, 35–45. [Google Scholar] [CrossRef]
- Chaemchuen, S.; Kabir, N.A.; Zhou, K.; Verpoort, F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 2013, 42, 9304. [Google Scholar] [CrossRef] [PubMed]
- Conner, W.C.; Falconer, J.L. Spillover in heterogeneous catalysis. Chem. Rev. 1995, 95, 759–788. [Google Scholar] [CrossRef]
- Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738. [Google Scholar] [CrossRef]
- Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J.A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68–71. [Google Scholar] [CrossRef]
- Chen, H.; Yang, H.; Omotoso, O.; Ding, L.; Briker, Y.; Zheng, Y.; Ring, Z. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts. Appl. Catal. Gen. 2009, 358, 103–109. [Google Scholar] [CrossRef]
- Xia, S.; Nie, R.; Lu, X.; Wang, L.; Chen, P.; Hou, Z. Hydrogenolysis of glycerol over Cu0.4/Zn5.6−xMgxAl2O8.6 catalysts: The role of basicity and hydrogen spillover. J. Catal. 2012, 296, 1–11. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chang, J.-K.; Tsai, W.-T.; Hung, C.-H. Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover. J. Mater. Chem. 2011, 21, 19063. [Google Scholar] [CrossRef]
- Jiang, N.; Rao, K.S.R.; Jin, M.-J.; Park, S.-E. Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts. Appl. Catal. Gen. 2012, 425–426, 62–67. [Google Scholar] [CrossRef]
- Navarrete, C.; García, R.; Sepulveda, C.; Gil-Llambias, F.J.; Fierro, J.L.G.; Escalona, N. Deep hydrodesulphurization via hydrogen spillover. Catal. Lett. 2011, 141, 1796–1802. [Google Scholar] [CrossRef]
Metal a | Covalent Radius b [Å] | Surface Energies c [J m−2] | Dissociation Energy [kJ mol−1] | Ionization Energy [kJ/mol] | Electronegativity Pauling/Allen Scale | Ref. |
---|---|---|---|---|---|---|
47Ag | 1.45 | 1.246, 1.250 | 159.20 ± 2.89 | I = 731.0 | 1.93/1.87 | [18,19,20,21,22] |
II = 2070 | ||||||
III = 3361 | ||||||
46Pd | 1.39 | 2.003, 2.050 | <136.04 | I = 804.4 | 2.20/1.58 | [19,20,21,22,23] |
II = 1870 | ||||||
III = 3177 | ||||||
42Mo | 1.54 | 2.907, 3.000 | 431,68 ± 0.96 | I = 684.3 | 2.16/1.47 | [19,20,21,22,24] |
II = 1560 | ||||||
III = 2618 | ||||||
77Ir | 1.41 | 3.048, 3.000 | 357 ± 67,54 | I = 880 | 2.20/1.68 | [18,19,20,21,22] |
II = 1600 | ||||||
78Pt | 1.36 | 2.489, 2.475 | 302.96 ± 1.93 | I = 870 | 2.28/1.72 | [19,20,21,22,25,26] |
II = 1791 | ||||||
76Os | 1.44 | 3.439, 3.450 | 414.89 ± 77.19 | I = 840 | 2.2/1.65 | [18,20,21,22,26,27] |
II = 1600 | ||||||
27Co | 1.26 | 2.522, 2.550 | ≤127 | I = 760.4 | 1.88/1.84 | [19,20,21,22,28] |
II = 1648 | ||||||
III = 3232 | ||||||
26Fe | 1.32 | 2.417, 2.475 | 110.96 ± 8.68 | I = 762.5 | 1.83/1.80 | [19,20,21,22,29] |
II =78 1561.9 | ||||||
III = 2957 | ||||||
28Ni | 1.24 | 2.380, 2.450 | 197.02 ± 0.19 | I = 737.1 | 1.91/1.88 | [19,20,21,22,30] |
II = 1753.0 | ||||||
III = 3395 | ||||||
45Rh | 1.42 | 2.659, 2.700 | 232.13 ± 0.05 | I = 719.7 | 2.28/1.56 | [19,20,21,22,31] |
II = 1740 | ||||||
III = 2997 | ||||||
44Ru | 1.46 | 3.043, 3.050 | 192.97 ± 19.3 | I = 710.2 | 2.2/1.54 | [19,20,21,22,32,33] |
II = 1620 | ||||||
III = 2747 |
Composition | Preparation Method | Application | Ref. |
---|---|---|---|
Ti-0.1 wt.% Ru, Ti-3 wt.% Al-2.5 wt.% V-0.1 wt.% Ru, Ti-6 wt.% Al-4 wt.% V-0.1 wt.% Ru | melting | increasing the corrosion resistance of titanium alloys | [56] |
Ni-24 wt.% Al-2 wt.% Ru, Ni-9.4 wt.% Al-5.7 wt.% Ru | melting | superalloys | [57] |
Ni-34.1 wt.% other metals-2 wt.% Ru | melting | superalloys | [58] |
Superalloy with 2–3 wt.% Ru | melting | improved the microstructural stability of superalloys | [59] |
Ni alloys with 2–9 wt.% Ru | melting | superalloys | [60] |
Ni/Ru/RuO2 | Ru deposition/Ni etching cycles, electrochemical oxidation | supercapacitor electrode | [69] |
NiAlIrRu nanoporous nanowires-variable composition | melting and dealloying | electrocatalytic O/H evolution reaction (OER/HER) | [61] |
Ru coated MnAlCoMnNi alloy | reduction of Ru complex | improvement of the hydrogenation properties of nickel-metal hydride battery alloy | [62,64] |
3.3 at% Pd–0.6 at% Ru coated commercial nickel metal hydride electrode alloy | hydrazine reduction of metal precursors | enhanced the kinetics at low temperatures—nickel-metal hydride battery alloy | [65] |
1.5% Ru/Ni | selective etching with nanoparticle transfer | methanation | [53] |
1.44 wt.% Ru/Ni | selective etching with nanoparticle transfer | methanation | [73] |
3% Ru–30% Ni/Ce0,9Zr0,1O2 | one pot hydrolysis of metal nitrates, calcination | methanation | [74] |
1.0% Ru/Ni nanowires | Ni precursor wet reduction, selective etching with nanoparticle transfer | methanation | [75] |
0.5% Ru–20%Ni/Al2O3 | wet impregnation, calcination | methanation | [76] |
1% Ru–15% Ni/CeO2-ZrO2 | sequential wet impregnation, calcination | methanation/reverse water−gas shift | [77] |
Ni-Ru/ZrO2 | wetness impregnation, calcination | methanation | [78] |
0.39 wt.% Ru/NiMgAl | co-precipitation, wet impregnation, calcination | CO2 methanation | [79] |
9.2 wt.% Ni–0.8 wt.% Ru/SiO2 | impregnation, calcination | CO methanation | [80] |
6.5 wt.% Ni@Ru-La2O3/SiO2 | wetness impregnation, calcination | CO methanation | [81] |
20 wt.% Ni–0.5 wt.% Ru/SiO2 | wetness impregnation, calcination | CO methanation | [82] |
5 wt.% Ni–1 wt.% Ru/Al2O3, 5 wt.% Ni–1 wt.% Ru/YSZ, 5 wt.% Ni–1 wt.% Ru/MgAl2O4 | wet impregnation, calcination | dry reforming of methane | [83] |
15 wt.% Ni–0.5 wt.% Ru/MgO/Al2O3 | wet impregnation, calcination | dry reforming of methane | [84] |
14 wt.% Ni–1 wt.% Ru/CeO2-Al2O3 | co-precipitation, wet impregnation, calcination | hydrogen production via steam reforming of simulated bio-oil | [10] |
10 wt.% Ni–1 wt.% Ru/C | incipient-wetness impregnation, calcination | hydrogenolysis of lignin | [11] |
Ni-Ru (various loading)/C | chemical reduction, galvanic replacement, calcination | catalic hydrogenation | [85,86] |
1 wt.% Ni–0.3 wt.% Ru/ZnSe: CGSe | flux-assisted method, precipitation | photocatalytic hydrogen evolution | [87] |
Catalysts (wt.%) | Reagent | WHSV (L·g−1·h−1) | T (°C) | Conv. (%) | TOF (h−1) | Ref. |
---|---|---|---|---|---|---|
0.5% Ru/Al2O3 | CO2 | 5.0 | 430 | 71 | 20.9 | [106] |
0.39% Ru/NiMgAl | CO2 | 2.4 | 350 | 83 | 121.2 | [79] |
2.39% Ru/TiO2 | CO2 | 3.0 | 350 | 88 | 260.6 | [107] |
2.41% Ru/TiO2 | CO2 | 3.0 | 375 | 74 | 260.6 | [107] |
1.0% Ru/Ni nanowires | CO2 | 15.0 | 179 | 100 | 24.8 | [75] |
1.5% Ru/Ni | CO2 | 15.0 | 204 | 100 | 14.1 | [53] |
3% Ru-30% Ni/Ce0,9Zr0,1O2 | CO2 | 2.4 | 230 | 98.2 | no data | [74] |
1% Ru–15% Ni/CeZr | CO2 | 24.0 | 350 | 53 | no data | [77] |
0.5% Ru–20%Ni/Al2O3 | CO2 | 56.0 | 350 | 84.9 | no data | [76] |
9.2% Ni 0.8%Ru/SiO2 | CO | 3.6 | 320 | 100 | 2.24 | [80] |
6.5% Ni@Ru–La2O3/SiO2 | CO | 90.0 | 280 | 97 | 46.2 | [81] |
20% Ni 0.5% Ru/SiO2 | CO | 40.0 | 275 | 80 | 21.4 | [82] |
1.44% Ru/Ni | CO | 15.0 | 178 | 100 | 9.89 | [73] |
1.44% Ru/Ni | CO | 15.0 | −7 | 1.2 | 0.12 | [73] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanski, J.; Lach, D.; Kapkowski, M.; Bartczak, P.; Siudyga, T.; Smolinski, A. Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts 2020, 10, 992. https://doi.org/10.3390/catal10090992
Polanski J, Lach D, Kapkowski M, Bartczak P, Siudyga T, Smolinski A. Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts. 2020; 10(9):992. https://doi.org/10.3390/catal10090992
Chicago/Turabian StylePolanski, Jaroslaw, Daniel Lach, Maciej Kapkowski, Piotr Bartczak, Tomasz Siudyga, and Adam Smolinski. 2020. "Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis" Catalysts 10, no. 9: 992. https://doi.org/10.3390/catal10090992
APA StylePolanski, J., Lach, D., Kapkowski, M., Bartczak, P., Siudyga, T., & Smolinski, A. (2020). Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts, 10(9), 992. https://doi.org/10.3390/catal10090992