Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Comparative Performance of the Ni/SF and Ni/SB Catalysts for the Partial Hydrogenation of FAME
2.3. Catalyst Stability of Ni/SF and Ni/SB Catalysts
2.4. Properties of FAME before and after Partial Hydrogenation
3. Materials and Methods
3.1. Preparation of the Silica Fiber
3.2. Preparation of the Ni-Based Catalysts
3.3. Catalyst Characterization
3.4. Partial Hydrogenation of FAME
3.5. Analysis of Compositions and Properties of FAME and H-FAME
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Barnwal, B.K.; Sharma, M.P. Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev. 2005, 9, 363–378. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Jitjamnong, J.; Luengnaruemitchai, A.; Numwong, N.; Chollacoop, N.; Yoshimura, Y. Influence of Mg modifier on cis-trans selectivity in partial hydrogenation of biodiesel using different metal types. Appl. Catal. A Gen. 2016, 520, 170–177. [Google Scholar] [CrossRef]
- Shin, H.-Y.; Ryu, J.-H.; Bae, S.-Y.; Kim, Y.C. Biodiesel production from highly unsaturated feedstock via simultaneous transesterification and partial hydrogenation in supercritical methanol. J. Supercrit. Fluids 2013, 82, 251–255. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Attanatho, L.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Kumpidet, C.; Somwonhsa, P.; Lao-ubol, S. Upgrading of palm biodiesel fuel over supported palladium catalysts. C. R. Chim. 2016, 19, 1166–1173. [Google Scholar] [CrossRef]
- Krstić, J.; Gabrovska, M.; Lončarević, D.; Nikolova, D.; Radonjić, V.; Vukelić, N.; Jovanovic, D.M. Influence of Ni/SiO2 activity on the reaction pathway in sunflower oil hydrogenation. Chem. Eng. Res. Des. 2015, 100, 72–80. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chollacoop, N.; Yoshimura, Y. Catalytic upgrading of soybean oil methyl esters by partial hydrogenation using Pd catalysts. Fuel 2016, 163, 8–16. [Google Scholar] [CrossRef]
- Prasongthum, N.; Xiao, R.; Zhang, H.; Tsubaki, N.; Natewong, P.; Reubroycharoen, P. Highly active and stable Ni supported on CNTs-SiO2 fiber catalysts for steam reforming of ethanol. Fuel Process. Technol. 2017, 160, 185–195. [Google Scholar] [CrossRef]
- Numwong, N.; Luengnaruemitchai, A.; Chollacoop, N.; Yoshimura, Y. Effect of SiO2 pore size on partial hydrogenation of rapeseed oil-derived FAMEs. Appl. Catal. A Gen. 2012, 441–442, 72–78. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, L.; Li, Z.; Wei, G.; Xin, Z.; Luo, B. Synthesis of bentonite-based nickel catalyst using [Ni(NH3)6](NO3)2 as precursor for enhanced hydrogenation of biodiesel. Mater. Lett. 2019, 256, 126585. [Google Scholar] [CrossRef]
- Klaigaew, K.; Samart, C.; Chaiya, C.; Yoneyama, Y.; Tsubaki, N.; Reubroycharoen, P. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chem. Eng. J. 2015, 278, 166–173. [Google Scholar] [CrossRef]
- Salmi, T.; Mäki-Arvela, P.; Toukoniitty, E.; Kalantar Neyestanaki, A.; Tiainen, L.-P.; Lindfors, L.-E.; Sjöholm, R.; Laine, E. Liquid-phase hydrogenation of citral over an immobile silica fibre catalyst. Appl. Catal. A Gen. 2000, 196, 93–102. [Google Scholar] [CrossRef]
- Dvoyashkin, M.; Wilde, N.; Haase, J.; Gläser, R. Diffusion of methyl oleate in hierarchical micro-/mesoporous TS-1-based catalysts probed by PFG NMR spectroscopy. RSC Adv. 2018, 8, 38941–38944. [Google Scholar] [CrossRef] [Green Version]
- Mitra, J.; Ghosh, M.; Bordia, R.K.; Sharma, A. Photoluminescent electrospun submicron fibers of hydrid organosiloxane and derived silica. RSC Adv. 2013, 3, 7591–7600. [Google Scholar] [CrossRef]
- Le, T.A.; Kang, J.K.; Park, E.D. Active Ni/SiO2 catalysts with high Ni content for benzene hydrogenation and CO methanation. Appl. Catal. A Gen. 2019, 581, 67–73. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, L.; Tian, H.; Li, D.; Wang, X.; Li, X.; Gong, J. Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts. Appl. Catal. B Environ. 2016, 181, 321–331. [Google Scholar] [CrossRef]
- Mhadmhan, S.; Natewong, P.; Prasongthum, N.; Samart, C.; Reubroycharoen, P. Investigation of Ni/SiO2 fiber catalysts prepared by different methods on hydrogen production from ethanol steam reforming. Catalysts 2018, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Daroughegi, R.; Meshkani, F.; Rezaei, M. Characterization and evaluation of mesoporous high surface area promoted Ni-Al2O3 catalysts in CO2 methanation. J. Energy Inst. 2020, 93, 482–495. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, G.; Li, M.; Wu, Y.; Nie, H.; Li, D. Effect of support on the performance of Ni-based catalyst in methane dry reforming. J. Fuel Chem. Technol. 2015, 43, 1359–1365. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Nie, S.; Yang, X.; Wang, Y.; Yang, M.; Li, C. The analysis of trans fatty acid profiles in deep frying palm oil and chicken fillets with an improved gas chromatography method. Food Control. 2014, 44, 191–197. [Google Scholar] [CrossRef]
- Markom, M.; Singh, H.; Hasan, M. Supercritical CO2 fractionation of crude palm oil. J. Supercrit. Fluids 2001, 20, 45–53. [Google Scholar] [CrossRef]
- Kim, J.K.; Jeon, C.H.; Lee, H.W.; Park, Y.K.; Min, K.; Hwang, I.; Kim, Y.M. Effect of accelerated high temperature on oxidation and polymerization of biodiesel from vegetable oils. Energies 2018, 11, 3514. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Deman, J.M. Principles of Food Chemistry, 3rd ed.; Aspen Publishers, Inc.: Gaithersburg, MD, USA, 1999; pp. 33–110. [Google Scholar]
- Yan, P.; Li, M.M.-J.; Kennedy, E.; Adesina, A.; Zhao, G.; Setiawan, A.; Stockenhuber, M. The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts. Catal. Sci. Technol. 2020, 10, 810–825. [Google Scholar] [CrossRef]
- Demirbas, A. Thermal degradation of fatty acids in biodiesel production by supercritical methanol. Energy Explor. Exploit. 2007, 25, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Numwong, N.; Luengnaruemitchai, A.; Chollacoop, N.; Yoshimura, Y. Partial hydrogenation of polyunsaturated fatty acid methyl esters over Pd/activated carbon: Effect of type of reactor. Chem. Eng. J. 2012, 210, 173–181. [Google Scholar] [CrossRef]
- Alsobaai, A.M.; Shaibani, A.M.A.; Moustafa, T.; Derhem, A. Effect of hydrogenation temperature on the palm mid-fraction fatty acids composition and conversion. J. King Saud Univ. Eng. Sci. 2012, 24, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Y.; Li, S.; Wang, G.; Xu, C.; Deng, Y.; Wang, S. Mechanism of formation of trans fatty acids under heating conditions in triolein. J. Agric. Food Chem. 2013, 61, 10392–10397. [Google Scholar] [CrossRef]
- Olafisoye, O.B.; Fatoki, O.S.; Oguntibeju, O.O.; Osibote, O.A. Accumulation and risk assessment of metals in palm oil cultivated on contaminated oil palm plantation soils. Toxicol. Rep. 2020, 7, 324–334. [Google Scholar] [CrossRef]
- Donough, C.R.; Cahyo, A.; Wandri, R.; Fisher, M.; Oberthür, T. Plant nutrients in palm oil. Better Crops 2016, 100, 19–22. [Google Scholar]
- Outlook on Standardization of Alternative Vehicle Fuels. Available online: https://amf-tcp.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_28_standardisation.pdf (accessed on 22 October 2019).
- Zuleta, E.C.; Baena, L.; Rios, L.A.; Calderón, J.A. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc. 2012, 23, 2159–2175. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Hunold, J.; Keck, M.; Kraak, P.; Pachulski, A.; Schödel, R. Method for determining the metal crystallite size of Ni supported catalysts. Chem. Ing. Tech. 2012, 84, 160–164. [Google Scholar] [CrossRef]
Samples | SA a (m2 g−1) | PV b (cm3 g−1) | PD c (nm) | Acidity e (mmol NH3/g) |
---|---|---|---|---|
Silica ball (CARiACT Q10) | 38 | 0.14 | 14.6 | 0.162 |
Silica fiber | 7 | n.d. d | n.d. d | 0.587 |
Catalysts | Actual Ni Loading a (wt%) | SA b (m2 g−1) | PV c (cm3 g−1) | PD d (nm) | DNiO e (nm) | Ni Dispersion f (%) | H2 Consumption g | Reducibility h (%) |
---|---|---|---|---|---|---|---|---|
10 wt% Ni/SB | 10.2 | 36 | 0.10 | 12.7 | 21.8 | 3.4 | 1.10 | 63.3 |
20 wt% Ni/SB | 21.0 | 36 | 0.11 | 12.9 | 23.5 | 2.8 | 1.39 | 38.8 |
30 wt% Ni/SB | 30.3 | 33 | 0.15 | 19.2 | 25.9 | 1.7 | 1.93 | 37.3 |
40 wt% Ni/SB | 39.3 | 31 | 0.13 | 17.2 | 30.6 | 1.5 | 2.07 | 30.9 |
50 wt% Ni/SB | 41.1 | 31 | 0.13 | 17.3 | 36.6 | 1.3 | 1.66 | 22.6 |
10 wt% Ni/SF | 9.9 | 13 | 0.01 | 4.89 | 20.8 | 3.4 | 1.29 | 76.5 |
20 wt% Ni/SF | 18.8 | 11 | 0.02 | 37.9 | 21.1 | 3.2 | 2.34 | 73.1 |
30 wt% Ni/SF | 29.6 | 10 | 0.02 | 14.1 | 20.9 | 2.3 | 3.75 | 74.3 |
40 wt% Ni/SF | 41.4 | 11 | 0.02 | 38.4 | 23.6 | 1.9 | 5.00 | 70.9 |
50 wt% Ni/SF | 47.4 | 12 | 0.03 | 14.8 | 24.1 | 1.9 | 5.39 | 66.7 |
Metals | FAME | 30Ni/SB | 30%Ni/SF |
---|---|---|---|
Zn | 36.0 ppm | 33.1 ppm | 27.4 ppm |
Ni | n.d. | n.d. | 93.9 ppm |
Si | n.d. | n.d. | n.d. |
Sample | Catalyst | C18:2 Conversion [%] | Heating Value [MJ kg−1] | Flash Point [°C] | Pour Point [°C] | Oxidation Stability [h] |
---|---|---|---|---|---|---|
FAME | - | - | 39.9 | 184 | 16 | 16 |
H-FAME | 30 wt % Ni/SB a | 26.2 | 39.8 | 182 | 18 | 19 |
30 wt% Ni/SF a | 71.3 | 39.7 | 184 | 20 | 23 | |
30 wt% Ni/SF b | 85.0 | 39.6 | 180 | 24 | >48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phumpradit, S.; Reubroycharoen, P.; Kuchonthara, P.; Ngamcharussrivichai, C.; Hinchiranan, N. Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts 2020, 10, 993. https://doi.org/10.3390/catal10090993
Phumpradit S, Reubroycharoen P, Kuchonthara P, Ngamcharussrivichai C, Hinchiranan N. Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts. 2020; 10(9):993. https://doi.org/10.3390/catal10090993
Chicago/Turabian StylePhumpradit, Supanut, Prasert Reubroycharoen, Prapan Kuchonthara, Chawalit Ngamcharussrivichai, and Napida Hinchiranan. 2020. "Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts" Catalysts 10, no. 9: 993. https://doi.org/10.3390/catal10090993
APA StylePhumpradit, S., Reubroycharoen, P., Kuchonthara, P., Ngamcharussrivichai, C., & Hinchiranan, N. (2020). Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts, 10(9), 993. https://doi.org/10.3390/catal10090993