Effective Depolymerization of Sodium Lignosulfonate over SO42−/TiO2 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Reaction Conditions on Lignin Liquefaction
2.1.1. Effect of Temperature
2.1.2. Effect of Reaction Time
2.1.3. Effect of Solvent Ratio
2.1.4. Effect of Catalyst Dosage
2.2. Analysis of Liquefaction Products
2.2.1. FTIR Analysis
2.2.2. Elemental Analysis
2.2.3. GC-MS Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalyst
3.3. Experimental Set-Up
3.4. Characterizations of Experiment
3.4.1. FT-IR
3.4.2. Elemental Analysis
3.4.3. GC/MS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal conversion of lignin: A review. Renew. Sust. Energ. Rev. 2013, 27, 546–558. [Google Scholar] [CrossRef]
- Shuai, L.; Amiri, M.T.; Questell-Santiago, Y.M.; Heroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J.S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 2016, 354, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.P.; Wang, S.; Li, H.; Li, Z.; Shi, Z.J.; Xiao, L.; Sun, R.G.; Fang, Y.; Song, G. Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catal. 2017, 7, 7535–7542. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Q.; Wang, A.; Zhang, T. Direct Catalytic Hydrogenolysis of Kraft Lignin to Phenols in Choline-Derived Ionic Liquids. ACS Sustain. Chem. Eng. 2016, 4, 3850–3856. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Liu, C.; Wang, Y.; Dai, L. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H-2-rich gas over Rh supported on La2O3/CeO2-ZrO2. Bioresour. Technol. 2016, 218, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, C.; Wu, S.; Liang, J.; Lei, M. Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv. 2016, 6, 107970–107976. [Google Scholar] [CrossRef]
- Paysepar, H.; Ren, S.; Kang, S.; Shui, H.; Xu, C. Catalytic co-liquefaction of lignin and lignite coal for aromatic liquid fuels and chemicals in mixed solvent of ethanol-water in the presence of a hematite ore. J. Anal. Appl. Pyrolysis 2018, 134, 301–308. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Wang, H.; Ma, Q.; Li, S.; Chang, H.M.; Jameel, H. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst. Bioresour. Technol. 2017, 243, 100–106. [Google Scholar] [CrossRef]
- Yuan, Z.; Tymchyshyn, M.; Xu, C. Reductive Depolymerization of Kraft and Organosolv Lignin in Supercritical Acetone for Chemicals and Materials. Chemcatchem 2016, 8, 1968–1976. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Classified Separation of Lignin Hydrothermal Liquefied Products. Ind. Eng. Chem. Res. 2011, 50, 11288–11296. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, P.X.; Alma, M.H.; Sun, D.F.; Li, R.; Jiang, J.X. Improvement of direct liquefaction of technical alkaline lignin pretreated by alkaline hydrogen peroxide. J. Anal. Appl. Pyrolysis 2016, 122, 277–281. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energ. Environ. Sci. 2013, 6, 994–1007. [Google Scholar] [CrossRef]
- Kristianto, I.; Limarta, S.O.; Lee, H.; Ha, J.M.; Suh, D.J.; Jae, J. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Bioresour. Technol. 2017, 234, 424–431. [Google Scholar] [CrossRef]
- Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; Barth, T. Solvent and catalyst effect in the formic acid aided lignin-to-liquids. Bioresour. Technol. 2018, 270, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Hidajat, M.J.; Riaz, A.; Kim, J. A two-step approach for producing oxygen-free aromatics from lignin using formic acid as a hydrogen source. Chem. Eng. J. 2018, 348, 799–810. [Google Scholar] [CrossRef]
- Limarta, S.O.; Ha, J.M.; Park, Y.K.; Lee, H.; Suh, D.J.; Jae, J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J. Ind. Eng. Chem. 2018, 57, 45–54. [Google Scholar] [CrossRef]
- Jin, Y.; Ruan, X.; Cheng, X.; Lue, Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour. Technol. 2011, 102, 3581–3583. [Google Scholar] [CrossRef]
- Xi, D.; Jiang, C.; Zhou, R.; Fang, Z.; Zhang, X.; Liu, Y.; Luan, B.; Feng, Z.; Chen, G.; Chen, Z.; et al. The universality of lignocellulosic biomass liquefaction by plasma electrolysis under acidic conditions. Bioresour. Technol. 2018, 268, 531–538. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach. Chemsuschem 2016, 9, 3262–3267. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Kuhn, E.; Tucker, M.P.; Yang, B. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts. Chemsuschem 2018, 11, 285–291. [Google Scholar] [CrossRef]
- Dabral, S.; Engel, J.; Mottweiler, J.; Spoehrle, S.S.M.; Lahive, C.W.; Bolm, C. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem. 2018, 20, 170–182. [Google Scholar] [CrossRef]
- Katahira, R.; Mittal, A.; McKinney, K.; Chen, X.; Tucker, M.P.; Johnson, D.K.; Beckham, G.T. Base-Catalyzed Depolymerization of Biorefinery Lignins. ACS Sustain. Chem. Eng. 2016, 4, 1474–1486. [Google Scholar] [CrossRef]
- Jin, L.; Li, W.; Liu, Q.; Wang, J.; Zhu, Y.; Xu, Z.; Wei, X.; Zhang, Q. Liquefaction of kraft lignin over the composite catalyst HTaMoO6 and Rh/C in dioxane-water system. Fuel Process. Technol. 2018, 178, 62–70. [Google Scholar] [CrossRef]
- Bengoechea, M.O.; Hertzberg, A.; Miletic, N.; Arias, P.L.; Barth, T. Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 as bifunctional catalysts. J. Anal. Appl. Pyrolysis 2015, 113, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.G.; Lu, Z.M. Liquefaction of Wheat Straw and Preparation of Rigid Polyurethane Foam from the Liquefaction Products. J. Appl. Polym. Sci. 2009, 111, 508–516. [Google Scholar] [CrossRef]
- Bengoechea, M.O.; Miletic, N.; Vogt, M.H.; Arias, P.L.; Barth, T. Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design. Bioresour. Technol. 2017, 234, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Xinyu, L.; Xiaojun, Z.; Haoquan, G.; Han, Q.; Dandan, W.; Dingliang, X.; Tao, H.; Chengjuan, H.; Chaozhong, X.; Xiaoli, G. Efficient depolymerization of alkaline lignin to phenolic compounds at low temperatures with formic acid over inexpensive Fe-Zn/Al2O3 catalyst. Energy Fuel. 2020, 34, 7121–7130. [Google Scholar]
- Long, J.; Guo, B.; Teng, J.; Yu, Y.; Wang, L.; Li, X. SO3H-functionalized ionic liquid: Efficient catalyst for bagasse liquefaction. Bioresour. Technol. 2011, 102, 10114–10123. [Google Scholar] [CrossRef]
- Lohre, C.; Barth, T.; Kleinert, M. The effect of solvent and input material pretreatment on product yield and composition of bio-oils from lignin solvolysis. J. Anal. Appl. Pyrolysis 2016, 119, 208–216. [Google Scholar] [CrossRef]
- Long, J.; Zhang, Q.; Wang, T.; Zhang, X.; Xu, Y.; Ma, L. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour. Technol. 2014, 154, 10–17. [Google Scholar] [CrossRef]
- Chekem, C.T.; Goetz, V.; Richardson, Y.; Plantard, G.; Blin, J. Modelling of adsorption/photodegradation phenomena on AC-TiO2 composite catalysts for water treatment detoxification. Catal. Today 2019, 328, 183–188. [Google Scholar] [CrossRef]
- Li, L.; Yue, H.; Ji, T.; Li, W.; Zhao, X.; Wang, L.; She, J.; Gu, X.; Li, X. Novel mesoporous TiO2(B) whisker-supported sulfated solid superacid with unique acid characteristics and catalytic performances. Appl. Catal. A-Gen. 2019, 574, 25–32. [Google Scholar] [CrossRef] [Green Version]
Wavenumbers (cm−1) | Functional Groups |
---|---|
3450–3300 | O-H stretching vibration |
2935 | C-H stretching vibration of -CH3 |
2841 | C-H stretching vibration of -CH2 |
1713 | C=O stretching vibration |
1514,1462 | Aromatic C=C ring breathing |
1215,1032 | Ar-O stretching breathing |
1141 | Aromatic C-H in-plane deformation |
1034 | Aromatic C-H in-plane deformation plus C-O deformation in primary alcohols plus C-H stretching. |
843 | Aromatic C-H ring out-of-plane vibration breathing |
618 | Aliphatic ketone vibration breathing |
Sample | C/% | N/% | H/% | O% 1 | O/C | H/C | HHV 2/(MJ/kg) |
---|---|---|---|---|---|---|---|
Bio-oil | 40.61 | 0.92 | 6.96 | 51.40 | 1.27 | 0.17 | 18.45 |
SL | 39.74 | 0.26 | 4.3 | 55.7 | 1.40 | 0.11 | 9.66 |
Solid residue | 35.48 | 0.27 | 3.27 | 60.98 | 1.72 | 0.09 | 5.81 |
No | Compounds | Formula | Mol. Weight (g/mol) | Type | R.T. b (min) | Relative Content c/% |
---|---|---|---|---|---|---|
1 | Acetic acid | C2H4O2 | 60 | Acid | 2.79 | 39.52 |
2 | Methyl glycolate | C3H6O3 | 90 | Ester | 3.15 | 5.70 |
3 | Furfuryl alcohol | C5H6O2 | 98 | Alcohol | 4.96 | 3.66 |
4 | Di(Ethylene Glycol) Vinyl Ether | C6H12O3 | 132 | Ether | 5.34 | 2.65 |
5 | Methylcyclopentenolone | C6H8O2 | 112 | Ketone | 7.45 | 1.39 |
6 | 4-Vinyl-2-methoxyphenol | C9H10O2 | 153 | Phenol-G | 11.81 | 4.78 |
7 | 1,4-Benzenediol | C6H6O2 | 110 | Phenol-H | 12.20 | 16.55 |
8 | Vanillin | C8H8O3 | 152 | Phenol-G | 13.01 | 4.55 |
9 | 4-Hydroxy-3-methoxyacetophenone | C9H10O3 | 166 | Phenol-G | 14.20 | 2.42 |
10 | Methyl vanillate | C9H10O4 | 182 | Phenol-G | 14.43 | 1.35 |
11 | 4-Hydroxy-3-methoxypropiophenone | C10H12O3 | 180 | Phenol-G | 14.59 | 3.36 |
12 | 4-Hydroxy-3-methoxybenzaldehyde | C8H8O3 | 152 | Phenol-G | 15.31 | 0.49 |
13 | Homovanillic acid | C9H10O4 | 182 | Phenol-G | 16.06 | 2.40 |
14 | N-hexadecanoic acid | C16H32O2 | 256 | Acid | 19.28 | 7.90 |
15 | Octadecanoic acid | C18H32O2 | 284 | Acid | 21.09 | 3.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, C.; Hu, C.; Hu, Q.; Sun, C.; Li, L.; Liang, X.; Dong, Y.; Gu, X. Effective Depolymerization of Sodium Lignosulfonate over SO42−/TiO2 Catalyst. Catalysts 2020, 10, 995. https://doi.org/10.3390/catal10090995
Mei C, Hu C, Hu Q, Sun C, Li L, Liang X, Dong Y, Gu X. Effective Depolymerization of Sodium Lignosulfonate over SO42−/TiO2 Catalyst. Catalysts. 2020; 10(9):995. https://doi.org/10.3390/catal10090995
Chicago/Turabian StyleMei, Chengguo, Chengjuan Hu, Qixiang Hu, Chang Sun, Liang Li, Xiaoxuan Liang, Yuguo Dong, and Xiaoli Gu. 2020. "Effective Depolymerization of Sodium Lignosulfonate over SO42−/TiO2 Catalyst" Catalysts 10, no. 9: 995. https://doi.org/10.3390/catal10090995
APA StyleMei, C., Hu, C., Hu, Q., Sun, C., Li, L., Liang, X., Dong, Y., & Gu, X. (2020). Effective Depolymerization of Sodium Lignosulfonate over SO42−/TiO2 Catalyst. Catalysts, 10(9), 995. https://doi.org/10.3390/catal10090995