Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biomass Characterization
2.2. Effect of Biomass Inorganics on the Properties of HZSM-5
2.3. Effect of Biomass Inorganics on In-Situ CFP
3. Materials and Methods
3.1. Materials
3.2. Experimental Procedure—Pyrolysis GC–MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, T.; Tompsett, G.; Conner, W.; Huber, G. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 2009, 52, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Dayton, D.C.; Carpenter, J.R.; Kataria, A.; Peters, J.E.; Barbee, D.; Mante, O.D.; Gupta, R. Design and operation of a pilot-scale catalytic biomass pyrolysis unit. Green Chem. 2015, 17, 4680–4689. [Google Scholar] [CrossRef]
- Peters, J.E.; Carpenter, J.R.; Dayton, D.C. Anisole and guaiacol hydrodeoxygenation reaction pathways over selected catalysts. Energy Fuels 2015, 29, 909–916. [Google Scholar] [CrossRef]
- Mante, O.D.; Agblevor, F.A.; Oyama, S.T.; McClung, R. Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y-zeolite in two reactor configurations. Fuel 2014, 117, 649–659. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A.; Dadson, R.B.; Hashem, F.M. Biological Mineral Range Effects on Biomass Conversion to Aromatic Hydrocarbons via Catalytic Fast Pyrolysis over HZSM-5. Energy Fuels 2014, 28, 7014–7024. [Google Scholar] [CrossRef]
- Lødeng, R.; Hannevold, L.; Bergem, H.; Stöcker, M. Chapter 11—Catalytic hydrotreatment of bio-oils for high-quality fuel production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Triantafyllidis, K.S., Lappas, A.A., Stöcker, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 351–396. [Google Scholar] [CrossRef]
- Baker, E.G.; Elliott, D.C. Catalytic hydrotreating of biomass-derived oils. Pyrolysis Oils Biomass 1988, 376, 353. [Google Scholar]
- Mahadevan, R.; Shakya, R.; Neupane, S.; Adhikari, S. Physical and chemical properties and accelerated aging test of bio-oil produced from in situ catalytic pyrolysis in a bench-scale fluidized-bed reactor. Energy Fuels 2015. [Google Scholar] [CrossRef]
- Mihalcik, D.J.; Mullen, C.A.; Boateng, A.A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis 2011, 92, 224–232. [Google Scholar] [CrossRef]
- Shirazi, L.; Jamshidi, E.; Ghasemi, M.R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. 2008, 43, 1300–1306. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Stefanidis, S.; Kalogiannis, K.; Psarras, A.C.; Delimitis, A.; Triantafyllidis, K.S.; Lappas, A.A. Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours. Green Chem. 2014, 16, 662–674. [Google Scholar] [CrossRef]
- Mahadevan, R.; Shakya, R.; Adhikari, S.; Fasina, O.; Taylor, S.E. Fast pyrolysis of biomass: Effect of blending southern pine and switchgrass. Trans. Asabe 2016, 59, 5–10. [Google Scholar]
- Serapiglia, M.J.; Mullen, C.A.; Boateng, A.A.; Cortese, L.M.; Bonos, S.A.; Hoffman, L. Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield. Ind. Crop. Prod. 2015, 74, 957–968. [Google Scholar] [CrossRef]
- Pasangulapati, V.; Ramachandriya, K.D.; Kumar, A.; Wilkins, M.R.; Jones, C.L.; Huhnke, R.L. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour. Technol. 2012, 114, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009, 27, 562–567. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, X.S.; Shen, J.; Rhodes, M.J.; Tian, F.; Lee, W.-J.; Wu, H.; Li, C.-Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res. 2008, 47, 1846–1854. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2005, 20, 388–393. [Google Scholar] [CrossRef]
- Boateng, A.A.; Daugaard, D.E.; Goldberg, N.M.; Hicks, K.B. Bench-Scale Fluidized-Bed Pyrolysis of Switchgrass for Bio-Oil Production. Ind. Eng. Chem. Res. 2007, 46, 1891–1897. [Google Scholar] [CrossRef]
- Thangalazhy-Gopakumar, S.; Adhikari, S.; Ravindran, H.; Gupta, R.B.; Fasina, O.; Tu, M.; Fernando, S.D. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour. Technol. 2010, 101, 8389–8395. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Eom, I.-Y.; Kim, J.-Y.; Kim, T.-S.; Lee, S.-M.; Choi, D.; Choi, I.-G.; Choi, J.-W. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour. Technol. 2012, 104, 687–694. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef] [PubMed]
- Agblevor, F.A.; Besler, S. Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energy Fuels 1996, 10, 293–298. [Google Scholar] [CrossRef]
- Aho, A.; DeMartini, N.; Pranovich, A.; Krogell, J.; Kumar, N.; Eränen, K.; Holmbom, B.; Salmi, T.; Hupa, M.; Murzin, D.Y. Pyrolysis of pine and gasification of pine chars—Influence of organically bound metals. Bioresour. Technol. 2013, 128, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, P.R.; Brown, R.C.; Shanks, B.H. Understanding the fast pyrolysis of lignin. ChemSusChem 2011, 4, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- El-Nashaar, H.; Banowetz, G.; Griffith, S.; Casler, M.; Vogel, K.P. Genotypic variability in mineral composition of switchgrass. Bioresour. Technol. 2009, 100, 1809–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Park, Y.-K.; Kim, J.S. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis. Fuel Process. Technol. 2008, 89, 797–802. [Google Scholar] [CrossRef]
- Fahmi, R.; Bridgwater, A.V.; Darvell, L.I.; Jones, J.M.; Yates, N.; Thain, S.; Donnison, I.S. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 2007, 86, 1560–1569. [Google Scholar] [CrossRef]
- Yang, C.-y.; Lu, X.-s.; Lin, W.-g.; Yang, X.-m.; Yao, J.-z. TG-FTIR study on corn straw pyrolysis-influence of Minerals. Chem. Res. Chin. Univ. 2006, 22, 524–532. [Google Scholar] [CrossRef]
- Mahadevan, R.; Adhikari, S.; Shakya, R.; Wang, K.; Dayton, D.; Lehrich, M.; Taylor, S.E. Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: A microreactor study. Energy Fuels 2016, 30, 3045–3056. [Google Scholar] [CrossRef]
- Yildiz, G.; Ronsse, F.; Venderbosch, R.; van Duren, R.; Kersten, S.R.A.; Prins, W. Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl. Catal. B Environ. 2015, 168–169, 203–211. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Pilavachi, P.A.; Fougret, C.M.; Jordan, E.; Lappas, A.A. Catalyst hydrothermal deactivation and metal contamination during the in situ catalytic pyrolysis of biomass. Catal. Sci. Technol. 2016, 6, 2807–2819. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass. Ind. Eng. Chem. Res. 2013, 52, 17156–17161. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Kuoppala, E.; Solantausta, Y.; Oasmaa, A.; Lehto, J.; Lehtonen, J. Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chem. 2014, 16, 3549–3559. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, G.; Lathouwers, T.; Toraman, H.E.; van Geem, K.M.; Marin, G.B.; Ronsse, F.; van Duren, R.; Kersten, S.R.A.; Prins, W. Catalytic fast pyrolysis of pine wood: Effect of successive catalyst regeneration. Energy Fuels 2014, 28, 4560–4572. [Google Scholar] [CrossRef]
- Zheng, Y.; Jensen, A.D.; Johnsson, J.E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B Environ. 2005, 60, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhou, S.; Zhou, Y.; Zhang, Y.; Xu, J.; Wang, L. Influence of the alkali treatment of HZSM-5 zeolite on catalytic performance of PtSn-based catalyst for propane dehydrogenation. China Pet. Process. Petrochem. Technol. 2013, 15, 11–18. [Google Scholar]
- Wang, K.; Zhang, J.; Shanks, B.H.; Brown, R.C. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation. Appl. Energy 2015, 148, 115–120. [Google Scholar] [CrossRef]
Proximate | Analytical Standard | Result—Pine |
---|---|---|
Analysis, As Received | ||
Ash content, wt % | ASTM E1755 | 0.63 ± 0.07 |
Volatile Matter, wt % | ASTM E872 | 77.26 ± 0.32 |
Moisture content, wt % | ASTM E871 | 6.44 ± 0.53 |
Fixed carbon, wt % | By balance | 15.67 ± 0.48 |
Heating Value, M.J./kg | ASTM E870 | 18.31 ± 0.21 |
Ultimate | Analytical Instrument | Pine |
Analysis | ||
C, wt % | Perkin-Elmer, model CHNS/O 2400 | 45.69 ± 0.29 |
H, wt % | 6.63 ± 0.08 | |
N, wt % | 0.30 ± 0.09 | |
S, wt % | 0.12 ± 0.01 | |
O, wt % | By difference | 46.97 ± 0.13 |
Sample | Cellulose % | Hemicellulose % | Lignin % | Extractives % | |||||
---|---|---|---|---|---|---|---|---|---|
Xylan | Galactan | Arabinan | Mannan | Total | AIL | ASL | |||
Pine | 40.93 ± 0.82 | 7.38 ± 0.13 | 3.08 ± 0.05 | 1.52 ± 0.014 | 10.97 ± 0.09 | 22.96 ± 0.29 | 28.82 ± 0.42 | 1.83 ± 0.07 | 3.08 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahadevan, R.; Adhikari, S.; Shakya, R.; Fasina, O. Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis. Catalysts 2021, 11, 124. https://doi.org/10.3390/catal11010124
Mahadevan R, Adhikari S, Shakya R, Fasina O. Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis. Catalysts. 2021; 11(1):124. https://doi.org/10.3390/catal11010124
Chicago/Turabian StyleMahadevan, Ravishankar, Sushil Adhikari, Rajdeep Shakya, and Oladiran Fasina. 2021. "Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis" Catalysts 11, no. 1: 124. https://doi.org/10.3390/catal11010124
APA StyleMahadevan, R., Adhikari, S., Shakya, R., & Fasina, O. (2021). Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis. Catalysts, 11(1), 124. https://doi.org/10.3390/catal11010124