Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sulfuric Acid Treatment of Bulk Type Graphitic Carbon Nitride (BCN/SA)
2.2. Re-Polycondensation of Sulfuric Acid-Treated Graphitic Carbon Nitride Precursor
3. Materials and Methods
3.1. Materials
3.2. Synthesis of BCN
3.3. Synthesis of BCN/SA and BCN/SA-CN
3.4. Characterizations
3.5. Photoelectrochemical Analysis
3.6. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A.D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 2002, 26, 508–512. [Google Scholar] [CrossRef]
- Saplinova, T.; Bakumov, V.; Gmeiner, T.; Wagler, J.; Schwarz, M.; Kroke, E. 2,5,8-Trihydrazino-s-heptazine: A Precursor for Heptazine-based Iminophosphoranes. Z. Anorg. Allg. Chem. 2009, 635, 2480–2487. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.J.; Chiu, C.C. Influence of nonmetal dopants on charge separation of graphitic carbon nitride by time-dependent density functional theory. Phys. Chem. Chem. Phys. 2020, 22, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Jun, Y.-S.; Lee, E.Z.; Wang, X.; Hong, W.H.; Stucky, G.D.; Thomas, A. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Adv. Funct. Mater. 2013, 23, 3661–3667. [Google Scholar] [CrossRef]
- Jun, Y.S.; Hong, W.H.; Antonietti, M.; Thomas, A. Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites. Adv. Mater. 2009, 21, 4270–4274. [Google Scholar] [CrossRef]
- Lau, V.W.-H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M.B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B.V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, X.; Liu, D.; Wang, J.; Zhu, Y. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B Environ. 2015, 164, 77–81. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Thomas, A.; Antonietti, M.; Wang, X.C. Activation of Carbon Nitride Solids by Protonation: Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments. J. Am. Chem. Soc. 2009, 131, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Chen, X.F.; Thomas, A.; Fu, X.Z.; Antonietti, M. Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material. Adv. Mater. 2009, 21, 1609–1612. [Google Scholar] [CrossRef]
- Fu, J.W.; Liu, K.; Jiang, K.X.; Li, H.J.W.; An, P.D.; Li, W.Z.; Zhang, N.; Li, H.M.; Xu, X.W.; Zhou, H.Q.; et al. Graphitic Carbon Nitride with Dopant Induced Charge Localization for Enhanced Photoreduction of CO2 to CH4. Adv. Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Sun, J.; Wang, J.; Yang, Z.; Cheng, W.; Zhang, S. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 2014, 4, 1556–1562. [Google Scholar] [CrossRef]
- Bojdys, M.J.; Müller, J.-O.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chem. Eur. J. 2008, 14, 8177–8182. [Google Scholar] [CrossRef]
- Algara-Siller, G.; Severin, N.; Chong, S.Y.; Bjorkman, T.; Palgrave, R.G.; Laybourn, A.; Antonietti, M.; Khimyak, Y.Z.; Krasheninnikov, A.V.; Rabe, J.P.; et al. Triazine-Based Graphitic Carbon Nitride: A Two-Dimensional Semiconductor. Angew. Chem. Int. Edit. 2014, 53, 7450–7455. [Google Scholar] [CrossRef]
- Zhang, G.G.; Zhang, J.S.; Zhang, M.W.; Wang, X.C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Park, J.; Lee, S.U.; Thomas, A.; Hong, W.H.; Stucky, G.D. Three-Dimensional Macroscopic Assemblies of Low-Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution. Angew. Chem. Int. Ed. 2013, 52, 11083–11087. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Wang, J.H.; Yu, J.C.; Shen, Y.F.; Li, Y.; Liu, A.R.; Liu, S.Q.; Zhang, Y.J. Dissolution and Liquid Crystals Phase of 2D Polymeric Carbon Nitride. J. Am. Chem. Soc. 2015, 137, 2179–2182. [Google Scholar] [CrossRef]
- El-Gamel, N.E.A.; Seyfarth, L.; Wagler, J.; Ehrenberg, H.; Schwarz, M.; Senker, J.; Kroke, E. The Tautomeric Forms of Cyameluric Acid Derivatives. Chem. Eur. J. 2007, 13, 1158–1173. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.S.; Jorge, A.B.; Suter, T.M.; Sella, A.; Corà, F.; McMillan, P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017, 19, 15613–15638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyfarth, L.; Sehnert, J.; El-Gamel, N.E.A.; Milius, W.; Kroke, E.; Breu, J.; Senker, J. Structure elucidation of cyameluric acid by combining solid-state NMR spectroscopy, molecular modeling and direct-space methods. J. Mol. Struct. 2008, 889, 217–228. [Google Scholar] [CrossRef]
- Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, R.; Neeraj, S.; Cheetham, A.K. Alkalicyamelurates, M-3 C6N7O3 center dot xH(2)O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives. Dalton Trans. 2004, 3900–3908. [Google Scholar] [CrossRef] [PubMed]
- Sattler, A.; Pagano, S.; Zeuner, M.; Zurawski, A.; Gunzelmann, D.; Senker, J.; Muller-Buschbaum, K.; Schnick, W. Melamine-Melem Adduct Phases: Investigating the Thermal Condensation of Melamine. Chem. Eur. J. 2009, 15, 13161–13170. [Google Scholar] [CrossRef] [PubMed]
- Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792. [Google Scholar] [CrossRef]
- Gao, X.; Feng, J.; Su, D.; Ma, Y.; Wang, G.; Ma, H.; Zhang, J. In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy 2019, 59, 598–609. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017, 217, 388–406. [Google Scholar] [CrossRef]
- Meng, J.; Lin, Q.; Wu, S.; Pei, J.; Wei, X.; Li, J.; Zhang, Z. Hybrid CN-MEA microplates with enhanced photocatalytic hydrogen evolution under visible light irradiation. Catal. Sci. Technol. 2017, 7, 3777–3784. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Xu, S. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrog. Energy 2012, 37, 125–133. [Google Scholar] [CrossRef]
- Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019. [Google Scholar] [CrossRef] [PubMed]
EA | C (at.%) | N (at.%) | O (at.%) | S (at.%) |
---|---|---|---|---|
BCN | 29.51 | 47.18 | 13.88 | 0.01 |
BCN/SA | 24.28 | 35.31 | 17.87 | 3.72 |
XPS survey | C (at.%) | N (at.%) | O (at.%) | S (at.%) |
BCN | 45.25 | 51.59 | 3.09 | 0.07 |
BCN/SA | 35.75 | 36.91 | 22.12 | 5.23 |
EA | C (at.%) | N (at.%) | O (at.%) | S (at.%) | C/N Raito |
---|---|---|---|---|---|
BCN | 29.51 | 47.18 | 13.88 | 0.01 | 0.63 |
BCN/SA-CN | 29.81 | 44.88 | 14.06 | 0.46 | 0.66 |
XPS survey | C (at.%) | N (at.%) | O (at.%) | S (at.%) | C/N raito |
BCN | 45.25 | 51.59 | 3.09 | 0.07 | 0.88 |
BCN/SA-CN | 46.83 | 49.02 | 4.05 | 0.1 | 0.96 |
Material | Cat. (mg) | Donor (vol.%) | Pt (wt.%) | Cat. Conc. (mg/mL) | HER (µmol/h/g) | Ref. |
---|---|---|---|---|---|---|
BCN | 25 | TEOA (10) | 7 | 1.00 | 94.8 | This work |
BCN/SA | 25 | TEOA (10) | 7 | 1.00 | 0 | This work |
BCM/SA-CN | 25 | TEOA (10) | 7 | 1.00 | 182.8 | This work |
NCN nanosheets | 80 | TEOA (10) | 1 | - | 115.5 | [27] |
SCN nanosheets | 80 | TEOA (10) | 1 | - | 110.5 | [27] |
g-CN/monoethanolamine | 100 | MeOH (25) | - | 1.25 | 28.1 | [29] |
H2SO4/melamine-CN | 300 | TEOA (10) | 0.5 | 1.50 | 220 | [30] |
O-doped g-C3N4 | 100 | TEOA (10) | 1.2 | 1.00 | 375 | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.-J.; Lee, T.-G.; Bari, G.A.K.M.R.; Seo, H.-W.; Park, J.-W.; Hwang, H.J.; An, B.-H.; Suzuki, N.; Fujishima, A.; Kim, J.-H.; et al. Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation. Catalysts 2021, 11, 37. https://doi.org/10.3390/catal11010037
Kang H-J, Lee T-G, Bari GAKMR, Seo H-W, Park J-W, Hwang HJ, An B-H, Suzuki N, Fujishima A, Kim J-H, et al. Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation. Catalysts. 2021; 11(1):37. https://doi.org/10.3390/catal11010037
Chicago/Turabian StyleKang, Hui-Ju, Tae-Gyu Lee, Gazi A. K. M. Rafiqul Bari, Hye-Won Seo, Jae-Woo Park, Hyun Jin Hwang, Byeong-Hyeon An, Norihiro Suzuki, Akira Fujishima, Jong-Ho Kim, and et al. 2021. "Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation" Catalysts 11, no. 1: 37. https://doi.org/10.3390/catal11010037
APA StyleKang, H.-J., Lee, T.-G., Bari, G. A. K. M. R., Seo, H.-W., Park, J.-W., Hwang, H. J., An, B.-H., Suzuki, N., Fujishima, A., Kim, J.-H., Shon, H. K., & Jun, Y.-S. (2021). Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation. Catalysts, 11(1), 37. https://doi.org/10.3390/catal11010037