Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Nanostructures
2.1.1. Cu/Ti Structure Determination
2.1.2. Morphology, Structure and Elemental Semi-Quantitative Analysis
2.1.3. Optical Characterization by UV-Vis Measurements
2.1.4. Temperature Programmed Reduction
2.1.5. Oxidation States of the Cu/Ti Surface by XPS
2.1.6. Surface OH Groups
2.2. Photocatalytic Performance
3. Experimental Section
3.1. Synthesis of Cu/Ti Nanostructures from Sol–Gel TiO2
3.2. Characterization Techniques
3.3. DRIFTS and In-Situ UV-Vis Characterization
3.4. Water Splitting Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Daskalaki, V.M.; Panagiotopoulou, P.; Kondarides, D.I. Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chem. Eng. J. 2011, 170, 433–439. [Google Scholar] [CrossRef]
- Kumaravel, V.; Imam, M.D.; Badreldin, A.; Chava, R.K.; Do, J.Y.; Kang, M.; Abdel-Wahab, A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, G.; Li, S. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A 2001, 214, 179–185. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Y.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2. Chemosphere 2006, 63, 1312–1318. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int. J. Hydrog. Energy 2010, 35, 7116–7126. [Google Scholar] [CrossRef]
- Schneider, J.T.; Firak, D.S.; Ribeiro, R.R.; Peralta-Zamora, P. Use of scavenger agents in heterogeneous photocatalysis: Truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 2020, 22, 15723–15733. [Google Scholar] [CrossRef]
- Durán-Pérez, J.F.; García-Martínez, J.C.; Puebla-Núñez, H.; González-Brambila, M.M.; Colín-Luna, J.A. Kinetic Model of Photocatalytic Hydrogen Production Employing a Hole Scavenger. Chem. Eng. Technol. 2019, 42, 874–881. [Google Scholar] [CrossRef]
- Tawkaew, S.; Fujishiro, Y.; Yin, S.; Sato, T. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation. Colloids Surf. A 2001, 179, 139–144. [Google Scholar] [CrossRef]
- Nwankwoala, A.U.; Egiebor, N.O.; Nyavor, D. Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor. Biodegradation 2001, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zanella, R.; Delannoy, L.; Louis, C. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea. Appl. Catal. A 2005, 291, 62–72. [Google Scholar] [CrossRef]
- Hinojosa-Reyes, M.; Rodríguez-González, V.; Arriaga, S. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process. J. Hazard. Mater. 2012, 209–210, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Kondo, T. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 1998, 357–358. [Google Scholar] [CrossRef]
- Hinojosa-Reyes, M.; Hernández-Gordillo, A.; Zanella, R.; Rodríguez-González, V. Renewable hydrogen harvest process by hydrazine as scavenging electron donor using gold TiO2 photocatalysts. Catal. Today 2016, 266, 2–8. [Google Scholar] [CrossRef]
- Obregón, S.; Lee, S.W.; Rodríguez-González, V. Loading effects of silver nanoparticles on hydrogen photoproduction using a Cu-TiO2 photocatalyst. Mater. Lett. 2016, 173, 174–177. [Google Scholar] [CrossRef]
- Irie, H.; Miura, S.; Kamiya, K.; Hashimoto, K. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem. Phys. Lett. 2008, 457, 202–205. [Google Scholar] [CrossRef]
- Qiu, X.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609–1618. [Google Scholar] [CrossRef]
- Zedan, A.F.; Allam, N.K.; AlQaradawi, S.Y. A Study of Low-Temperature CO Oxidation over Mesoporous CuO-TiO2 Nanotube Catalysts. Catalysts 2017, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Kundakovic, L.; Stephanopoulos, M.F. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A 1998, 171, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Clavijo-Chaparro, S.L.; Hernández-Gordillo, A.; Camposeco-Solis, R.; Rodríguez-González, V. Water splitting behavior of copper-cerium oxide nanorods and nanocubes using hydrazine as a scavenging agent. J. Mol. Catal. A Chem. 2016, 423, 143–150. [Google Scholar] [CrossRef]
- Beutel, T.; Sárkány, J.; Lei, G.D.; Yan, J.Y.; Sachtler, W.M.H. Redox chemistry of Cu/ZSM-5. J. Phys. Chem. 1996, 100, 845–851. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Wu, L.; Zhao, Y.; Huang, C.; Ge, M.; Liu, Z. Controllable synthesis of supported Cu-M (M = Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. J. Mater. Chem. 2012, 22, 9117–9122. [Google Scholar] [CrossRef]
- Nagaveni, K.; Hegde, M.S.; Madras, G. Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe and Cu) synthesized by solution combustion method. J. Phys. Chem. B 2004, 108, 20204–20212. [Google Scholar] [CrossRef]
- Li, G.; Dimitrijevic, N.M.; Chen, L.; Rajh, T.; Gray, K.A. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J. Phys. Chem. C 2008, 112, 19040–19044. [Google Scholar] [CrossRef]
- Kim, J.Y.; Rodríguez, J.A.; Hanson, J.C.; Frenkel, A.I.; Lee, P.L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2008, 125, 10684–10692. [Google Scholar] [CrossRef]
- Lee, H.L.; Flynn, N.T. X-ray Photoelectron Spectroscopy. In Handbook of Applied Solid State Spectroscopy; Vij, D., Ed.; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Perry, D.L.; Taylor, J.A. X-ray photoelectron and Auger spectroscopic studies of Cu2S and CuS. J. Mater. Sci. Lett. 1986, 5, 384–386. [Google Scholar] [CrossRef]
- Borgohain, K.; Murase, N.; Mahamuni, S. Synthesis and properties of Cu2O quantum particles. J. Appl. Phys. 2002, 92, 1292–1297. [Google Scholar] [CrossRef]
- Ghijsen, J.; Tjeng, L.H.; van Elp, J.; Westerink, E.J.; Sawatzky, G.A.; Czyzyk, M.T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330. [Google Scholar] [CrossRef]
- Yan, L.; Yang, F.; Tao, C.; Luo, X.; Zhang, L. Highly efficient and stable Cu2O-TiO2 intermediate photocatalytic water splitting. Ceram. Int. 2020, 46, 9455–9463. [Google Scholar] [CrossRef]
- Li, G.; Huang, J.; Chen, J.; Deng, Z.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R. Highly Active Photocatalyst of Cu2O/TiO2 Octahedron for Hydrogen Generation. ACS Omega 2019, 4, 3392–3397. [Google Scholar] [CrossRef] [PubMed]
- Camposeco, R.; Castillo, S.; Navarrete, J.; Gómez, R. Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: Nanotubes, nanofibers, nanowires and nanoparticles. Catal. Today 2016, 266, 90–101. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejía-Centeno, I.; Navarrete, J.; Gómez, R. Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: Nanotubes, nanofibers and nanowires. Mater. Charact. 2014, 90, 113–120. [Google Scholar] [CrossRef]
- Park, H.; Vecitis, C.D.; Choi, W.; Weres, O.; Hoffmann, M.R. Solar-powered production of molecular hydrogen from water. J. Phys. Chem. C 2008, 112, 885–889. [Google Scholar] [CrossRef] [Green Version]
Crystallite Size (nm) a | Crystalline Phases | Copper Content (%) | Band Gap (eV) | Surface Area (m2/g) | ||
---|---|---|---|---|---|---|
Nominal | Actual b | |||||
0.0 Cu/Ti 500 | 17.7 | A | 0.0 | 0.0 | 3.4 | 65 |
1.0 Cu/Ti 500 | 17.5 | A, B | 1.0 | 0.95 | 3.3 | 59 |
2.5 Cu/Ti 500 | 20.0 | A, B | 2.5 | 2.30 | 3.2 | 40 |
5.0 Cu/Ti 500 | 16.2 | A, B | 5.0 | 4.60 | 2.3 | 35 |
1.0 Cu/Ti 400 | 8.2 | A, B | 1.0 | 0.95 | 3.3 | 115 |
1.0 Cu/Ti 450 | 10.9 | A, B | 1.0 | 0.95 | 3.3 | 85 |
1.0 Cu/Ti 500 | 17.5 | A, B | 1.0 | 0.95 | 3.3 | 59 |
1.0 Cu/Ti 550 | 24.5 | A, B, CuO, Cu2O | 1.0 | 0.95 | 3.2 | 41 |
1.0 Cu/Ti 600 | 39.6 | A, B, CuO, Cu2O | 1.0 | 0.95 | 3.2 | 14 |
Ti3+ | Ti4+ | Ti4+/Ti3+ | Cu1+ | Cu2+ | Cu1+/Cu2+ | |
---|---|---|---|---|---|---|
1.0 Cu/Ti 450 | 20 | 80 | 4.0 | |||
1.0 Cu/Ti 500 | 22 | 78 | 3.5 | 71 | 29 | 2.3 |
1.0 Cu/Ti 550 | 32 | 68 | 2.1 | 64 | 36 | 1.7 |
1.0 Cu/Ti 600 | 28 | 72 | 2.7 | 60 | 40 | 1.5 |
5.0 Cu/Ti 500 | 18 | 82 | 4.5 | 57 | 42 | 1.3 |
* Cu1+ | * Cu2+ | H2 µmol | |
---|---|---|---|
1.0 Cu/Ti 450 | 174.6 | ||
1.0 Cu/Ti 500 | 71 | 29 | 231.1 |
1.0 Cu/Ti 550 | 64 | 36 | 143.0 |
1.0 Cu/Ti 600 | 60 | 40 | 130.3 |
5.0 Cu/Ti 500 | 57 | 42 | 100.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa Reyes, M.; Camposeco, R.; Rodríguez González, V. Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures. Catalysts 2021, 11, 74. https://doi.org/10.3390/catal11010074
Hinojosa Reyes M, Camposeco R, Rodríguez González V. Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures. Catalysts. 2021; 11(1):74. https://doi.org/10.3390/catal11010074
Chicago/Turabian StyleHinojosa Reyes, Mariana, Roberto Camposeco, and Vicente Rodríguez González. 2021. "Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures" Catalysts 11, no. 1: 74. https://doi.org/10.3390/catal11010074
APA StyleHinojosa Reyes, M., Camposeco, R., & Rodríguez González, V. (2021). Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures. Catalysts, 11(1), 74. https://doi.org/10.3390/catal11010074