Magnetite, Hematite and Zero-Valent Iron as Co-Catalysts in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment
Abstract
:1. Introduction
2. Results
2.1. Raw Wastewater
2.2. Kinetics Matching
- First-order reaction with respect to the TOC value:TOC = TOC0 × e−kt
- Second-order reaction with respect to the TOC value:TOC = (kt + 1/TOC0)−1
- Modified first-order reaction with respect to the TOC value:TOC = (TOC0 − b) × e−kt + b
- Modified second-order reaction with respect to the TOC value:TOC = (kt + (TOC0 − b)−1)−1 + b
2.3. Treatment Processes
2.4. HS-SPME–GC–MS Analysis
3. Discussion
4. Materials and Methods
4.1. Wastewater
4.2. Treatment Process
4.3. Analytical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wpływ Światowej Pandemii Koronowirusa na Branżę Kosmetyczną. Biuro Strategii i Analiz Międzynarodowych, Pekao BP. July 2020. Available online: https://wspieramyeksport.pl/api/public/files/1948/Kosmetyczna_lipiec_2020.pdf (accessed on 25 September 2020).
- Ma, G.; Chen, J. Nitrogen and phosphorus pollutants in cosmetics wastewater and its treatment process of a certain brand. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012051. [Google Scholar] [CrossRef]
- Bello, L.A.; Omoboye, A.J.; Abiola, T.O.; Oyetade, J.A.; Udorah, D.O.; Ayeola, E.R. Treatment technologies for wastewater from cosmetic industry—A review. Int. J. Chem. Biol. Sci. 2018, 4, 69–80. [Google Scholar]
- De Melo, E.D.; Mounteer, A.H.; de Souza Leão, L.H.; Bahia, R.C.B.; Campos, I.M.F. Toxicity identification evaluation of cosmetics industry wastewater. J. Hazard. Mater. 2013, 244–245, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Removal of personal care products (PCPs) in wastewater and sludge treatment and their occurrence in receiving soils. Water Res. 2019, 150, 129–139. [Google Scholar] [CrossRef]
- Juliano, C.; Magrini, G.A. Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review. Cosmetics 2017, 4, 11. [Google Scholar] [CrossRef]
- Amneklev, J.; Augustsson, A.; Sorme, L.; Bergback, B. Bismuth and silver in cosmetic products a source of environmental and resource concern? J. Ind. Ecol. 2015, 20, 99–106. [Google Scholar] [CrossRef]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Kalcíkova, G.; Alic, B.; Skalar, T.; Bundschuh, M.; Gotvajn, Z.A. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 2017, 188, 25–31. [Google Scholar] [CrossRef]
- Vita, N.A.; Brohem, C.A.; Canavez, A.D.P.M.; Oliveira, C.F.S.; Kruger, O.; Lorencini, M.; Carvalho, C.M. Parameters for assessing the aquatic environmental impact of cosmetic products. Toxicol. Lett. 2018, 287, 70–82. [Google Scholar] [CrossRef]
- Hopkins, Z.R.; Blaney, L. An aggregate analysis of personal care products in the environment: Identifying the distribution of environmentally-relevant concentrations. Environ. Int. 2016, 92–93, 301–316. [Google Scholar] [CrossRef]
- El-Gohary, F.; Tawfik, A.; Mahmoud, U. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination 2010, 252, 106–112. [Google Scholar] [CrossRef]
- Michel, M.M.; Tytkowska, M.; Reczek, L.; Trach, Y.; Siwiec, T. Technological conditions for the coagulation of wastewater from cosmetic industry. Ecol. Eng. 2019, 20, 78–85. [Google Scholar] [CrossRef]
- Michel, M.M.; Siwiec, T.; Tytkowska, M.; Reczek, L. Analysis of flotation unit operation in coagulation of wastewater from a cosmetic factory. Przem. Chem. 2015, 11, 2000–2005. (In Polish) [Google Scholar]
- Perdigon-Melon, J.; Carbajo, J.; Petre, A.; Rosal, R.; García-Calvo, E. Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. J. Hazard. Mater. 2010, 181, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.C.; Nunes, M.; Gando-Ferreira, L.M.; Quinta-Ferreira, R.M. Nanofiltration and Fenton’s process over iron shavings for surfactants removal. Environ. Technol. 2014, 35, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Bautista, P.; Casas, J.A.; Zazo, J.A.; Rodriguez, J.J.; Mohedano, A.F. Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater. Water Sci. Technol. 2014, 70, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Martins de Andrade, P.; Dufrayer, C.R.; de Brito, N.N. Treatment of real cosmetic effluent resulting from the manufacture of hair conditioners by reduction degradation, adsorption and the fenton reaction. Ozone Sci. Eng. 2019, 41, 221–230. [Google Scholar] [CrossRef]
- Ebrahiem, E.E.; Al-Maghrabi, M.N.; Mobarki, A.R. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 2017, 10, S1674–S1679. [Google Scholar] [CrossRef]
- Friha, I.; Feki, F.; Karray, F.; Sayadi, S. A pilot study for cosmetic wastewater using a submerged flat sheet membrane bioreactor. Procedia Eng. 2012, 44, 819–820. [Google Scholar] [CrossRef] [Green Version]
- Monsalvo, V.M.; Lopez, J.; Mohedano, A.F.; Rodriguez, J.J. Treatment of cosmetic wastewater by a full-scale membrane bioreactor. Environ. Sci. Pollut. Res. 2014, 21, 12662–12670. [Google Scholar] [CrossRef]
- Zhang, C.; Ning, K.; Guo, Y.; Chen, J.; Liang, C.; Zhang, X.; Wang, R.; Guo, L. Cosmetic wastewater treatment by a combined anaerobic/aerobic (ABR + UBAF) biological system. Desal. Water Treat. 2015, 53, 1606–1612. [Google Scholar] [CrossRef]
- Puyol, D.; Monsalvo, V.M.; Mohedano, A.F.; Sanz, J.L.; Rodriguez, J.J. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. J. Hazard. Mater. 2011, 185, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Muszyński, A.; Marcinowski, P.; Maksymiec, J.; Beskowska, K.; Kalwarczyk, E.; Bogacki, J. Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge. J. Hazard. Mater. 2019, 378, 120732. [Google Scholar] [CrossRef] [PubMed]
- Chávez, A.M.; Gimeno, O.; Rey, A.; Pliego, G.; Oropesa, A.L.; Álvarez, P.M.; Beltrán, F.J. Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs. Chem. Eng. J. 2019, 361, 89–98. [Google Scholar] [CrossRef]
- Banerjee, P.; Dey, T.; Sarkar, S.; Swarnakar, S.; Mukhopadhyay, A.; Ghosh, S. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis). Chemosphere 2016, 146, 133–144. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Huang, T.; Guan, X. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Res. 2016, 100, 277–295. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, L.C.A.; Murad, E. Iron oxide catalysts: Fenton and Fenton-like reactions a review. Clay Miner. 2012, 47, 285–302. [Google Scholar] [CrossRef]
- He, H.; Zhong, Y.; Liang, X.; Tan, W.; Zhu, J.; Wang, C.Y. Natural Magnetite: An efficient catalyst for the degradation of organic contaminant. Sci. Rep. 2015, 5, 10139. [Google Scholar] [CrossRef] [Green Version]
- Hadjltaief, H.B.; Sdiri, A.; Gálvez, M.E.; Zidi, H.; Da Costa, P.; Zina, M.B. Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process. ChemEngineering 2018, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Miller, J. Statystyka I Chemometria W Chemii Analitycznej; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2016. [Google Scholar]
- Marcinowski, P.; Bury, D.; Krupa, M.; Ścieżyńska, D.; Prabhu, P.; Bogacki, J. Magnetite and hematite in advanced oxidation processes application for cosmetic wastewater treatment. Processes 2020, 8, 1343. [Google Scholar] [CrossRef]
- Vorontsov, A.V. Advancing Fenton and photo-Fenton water treatment through the catalyst design. J. Hazard. Mater. 2019, 372, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Araujo, F.V.F.; Yokoyama, L.; Teixeira, L.A.C.; Campos, J.C. Heterogenous Fenton Process using the mineral hematite for the discolouration of a reactive dye solution. Braz. J. Chem. Eng. 2011, 28, 605–616. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
TOC | mg/L | 306.3 |
COD | mg/L | 904 |
BOD5 | mg/L | 345 |
TSS | mg/L | 7 |
pH | - | 8.7 |
Conductivity | mS/cm | 13.8 |
Surfactants | mg/L | 7 |
TKN | mg/L | <0.1 |
No. | Retention Time (s) | Peak Area | Compound Name |
---|---|---|---|
1 | 842.56 | 263936015 | 2,2,4,6,6-pentamethylheptane |
2 | 914.76 | 76933033 | 2-ethyl-1-hexanol |
3 | 922.12 | 55446786 | 4-isopropenyl-1-methyl-1-cyclohexene |
4 | 969.37 | 40480391 | decamethyltetrasiloxane |
5 | 995.26 | 135240755 | 6-ethyl-2-methyl-6-hepten-2-ol |
6 | 1042.25 | 407718598 | 3,7-dimethyl-3-octanol |
7 | 1049.08 | 376591195 | 3,7-dimethyl-1,6-octadien-3-ol |
8 | 1126.13 | 376591195 | decamethylcyclopentasiloxane |
9 | 1191.81 | 87920970 | 5-methyl-2-(1-methylethyl)-cyclohexanol |
10 | 1220.03 | 87920970 | 3,7-dimethyl-1,6-octadien-3-ol |
11 | 128073 | 342408048 | dodecamethylpentasiloxane |
12 | 1344.91 | 201821493 | 2,6-dimethyloctane |
13 | 13.92.76 | 84107649 | tridecane |
14 | 1424.61 | 293329202 | dodecamethylcyclohexasiloxane |
15 | 1441.31 | 523263467 | 2,2,4,4,6,8,8-heptamethylnonane |
16 | 1473.59 | 439161977 | undecylcyclohexane |
17 | 1667.25 | 592268444 | 2-dodecanol |
18 | 1791.80 | 913690562 | hexadecamethylheptasiloxane |
19 | 1842.23 | 471919073 | hexadecane |
20 | 1933.23 | 175348881 | di-n-octyl ether (1,1′-oxybisoctane) |
21 | 1938.56 | 193030178 | cyclopentaneacetic acid, 3-oxo-2-pentyl-,methyl ester |
22 | 1968.92 | 152991091 | 7a-isopropenyl-4,5-dimethy octahydro-1H-inden-4-yl)methanol |
23 | 1978.11 | 93958573 | unidentified compound |
24 | 2035.27 | 1390556189 | 2-butylooctanol |
25 | 2067.00 | 474433634 | 2,4-dimethyl-1-heptanol |
26 | 2074.26 | 161503287 | isobutyl nonyl carbonate |
27 | 2091.65 | 569595240 | 2-methyl-1-decanol |
28 | 2115.29 | 467909425 | oxalic acid, cyclohexylmethyl tridecyl ester |
29 | 2150.05 | 226358082 | unidentified compound |
30 | 2206.07 | 980264063 | 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta(g)-2-benzopyran |
31 | 2210.77 | 678685873 | 1-hexadecanol |
32 | 2307.06 | 327313756 | ether, di-n-octyl-(1,1′-oxybis-octane), |
33 | 2374.06 | 79843231 | 1-methylethyl hexadecanoate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogacki, J.; Marcinowski, P.; Bury, D.; Krupa, M.; Ścieżyńska, D.; Prabhu, P. Magnetite, Hematite and Zero-Valent Iron as Co-Catalysts in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment. Catalysts 2021, 11, 9. https://doi.org/10.3390/catal11010009
Bogacki J, Marcinowski P, Bury D, Krupa M, Ścieżyńska D, Prabhu P. Magnetite, Hematite and Zero-Valent Iron as Co-Catalysts in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment. Catalysts. 2021; 11(1):9. https://doi.org/10.3390/catal11010009
Chicago/Turabian StyleBogacki, Jan, Piotr Marcinowski, Dominika Bury, Monika Krupa, Dominika Ścieżyńska, and Prasanth Prabhu. 2021. "Magnetite, Hematite and Zero-Valent Iron as Co-Catalysts in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment" Catalysts 11, no. 1: 9. https://doi.org/10.3390/catal11010009
APA StyleBogacki, J., Marcinowski, P., Bury, D., Krupa, M., Ścieżyńska, D., & Prabhu, P. (2021). Magnetite, Hematite and Zero-Valent Iron as Co-Catalysts in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment. Catalysts, 11(1), 9. https://doi.org/10.3390/catal11010009