Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Remarks
3.2. General Procedure of Regioselective Tosylation
3.3. Spectral Data of Synthesized Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boons, G.-J.; Hale, K.J. Organic Synthesis with Carbohydrates; Sheffield Academic Press: Sheffield, UK, 2000. [Google Scholar]
- Hughes, N.A.; Speakman, P.R.H. Benzoate displacements on 3-O-toluene-p-sulphonyl-d-glucose derivatives; a new synthesis of d-allose. J. Chem. Soc. 1965, 2236–2239. [Google Scholar] [CrossRef]
- Ahluwahlia, R.; Angyal, S.J.; Randall, M.H. Synthesis of the methyl d-allopyranosides and of d-allose from 1,2:5,6-di-O-isopropylidene-3-O-p-tolylsulfonyl-α-d-glucofuranose. Carbohydr. Res. 1967, 4, 478–485. [Google Scholar] [CrossRef]
- Siewert, G.; Westphal, O. Substitution of secondary tosyl ester groups by iodine. Synthesis of 4-deoxy- and 4,6-dideoxy-d-xylo-hexose. Justus Liebigs Ann. Chem. 1969, 720, 161–170. [Google Scholar] [CrossRef]
- Koto, S.; Kawakatsu, N.; Zen, S. Synthesis of 3-amino-3-deoxy-d-allose and related substances. Bull. Chem. Soc. Jpn. 1973, 46, 876–880. [Google Scholar] [CrossRef]
- Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Synthesis of pseudooligosaccharidic glycosidase inhibitors. Part 1. Synthesis of adiposin-1 and related compounds. Carbohydr. Res. 1985, 141, 29–40. [Google Scholar] [CrossRef]
- Kong, F.; Su, B. Formation of 2,3-unsaturated pyranoid derivatives from a d-mannopyranose p-toluenesulfonate. Carbohydr. Res. 1985, 142, 152–157. [Google Scholar] [CrossRef]
- Molino, B.F.; Fraser-Reid, B. Pyranosidic homologation. VII. Controlled formation of dipyranoside derivatives through carbon 6 and oxygen 4. Can. J. Chem. 1987, 65, 2834–2842. [Google Scholar] [CrossRef]
- Czernecki, S.; Valery, J.M. A convenient synthesis of methyl 2,3-di-O-benzyl-4-deoxy-α-d-xylo-hexodialdo-1,5-pyranoside and its stereospecific ethynylation. J. Carbohydr. Chem. 1989, 8, 793–798. [Google Scholar] [CrossRef]
- Varela, O.; Cicero, D.; De Lederkremer, R.M. A convenient synthesis of 4-thio-d-galactofuranose. J. Org. Chem. 1989, 54, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Capek, K.; Cadova, E.; Sedmera, P. 2,3′-Anhydrosucrose. Carbohydr. Res. 1990, 205, 161–171. [Google Scholar]
- Tsuda, Y.; Nishimura, M.; Ito, Y. Utilization of sugars in organic synthesis 23. Lithium alluminium hydride reduction of glycopyranoside monosulfonates. Formation of branched furanosides. Chem. Pharm. Bull. 1991, 39, 1983–1989. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Kong, F.; Lu, D.; Li, G. Synthesis, crystalline structure, conformational analysis, and azidolysis of methyl 2,3-anhydro-α-d-manno- and -allo-pyranoside p-bromobenzyl ethers. Carbohydr. Res. 1992, 235, 163–178. [Google Scholar] [CrossRef]
- Kawana, M.; Tsujimoto, M.; Takahashi, S. One-pot p-toluenesulfonylation of adenosine and methyl glycosides with a substoichiometric amount of organotin mediators. J. Carbohydr. Chem. 2000, 19, 67–78. [Google Scholar] [CrossRef]
- Deshpande, S.G.; Pathak, T. Synthesis and synthetic applications of 1-(3-O-tosyl-β-d-glucopyranosyl)-thymines: Toward new classes of hexopyranosyl pyrimidines. Tetrahedron Lett. 2004, 45, 2255–2258. [Google Scholar] [CrossRef]
- Deshpande, S.G.; Pathak, T. A general and efficient route to 3′-deoxy-3′-N-, S-, and C-substituted altropyranosyl thymines from 2′,3′-O-anhydro-mannopyranosylthymine. Tetrahedron 2007, 63, 602–608. [Google Scholar] [CrossRef]
- Khan, K.M.; Perveen, S.; Al-Qawasmeh, R.A.S.; Shekhani, M.S.; Shah, S.T.A.; Voelter, W. A method for the syntheses of eno-pyranosides. Lett. Org. Chem. 2009, 6, 191–196. [Google Scholar] [CrossRef]
- Xia, L.; Lowary, T.L. Regioselective polymethylation of α-(1 → 4)-linked mannopyranose oligosaccharides. J. Org. Chem. 2013, 78, 2863–2880. [Google Scholar] [CrossRef]
- Hevey, R.; Chen, X.; Ling, C.-C. Role of the 4,6-O-acetal in the regio- and stereoselective conversion of 2,3-di-O-sulfonyl-β-d-galactopyranosides to d-idopyranosides. Carbohydr. Res. 2013, 376, 37–48. [Google Scholar] [CrossRef]
- Tsuda, Y.; Nishimura, M.; Kobayashi, T.; Sato, Y.; Kanemitsu, K. Utilization of sugars in organic synthesis. XXIV. Regioselective monotosylation of non-protected and partially protected glycosides by the dibutyltin oxide method. Chem. Pharm. Bull. 1991, 39, 2883–2887. [Google Scholar] [CrossRef]
- Martinelli, M.J.; Nayyar, N.K.; Moher, E.D.; Dhokte, U.P.; Pawlak, J.M.; Vaidyanathan, R. Dibutyltin oxide catalyzed selective sulfonylation of α-chelatable primary alcohols. Org. Lett. 1999, 1, 447–450. [Google Scholar] [CrossRef]
- Martinelli, M.J.; Vaidyanathan, R.; Pawlak, J.M.; Nayyar, N.K.; Dhokte, U.P.; Doecke, C.W.; Zollars, L.M.H.; Moher, E.D.; Van Khau, V.; Kosmrlj, B. Catalytic Regioselective Sulfonylation of a-Chelatable Alcohols: Scope and Mechanistic Insight. J. Am. Chem. Soc. 2002, 124, 3578–3585. [Google Scholar] [CrossRef] [PubMed]
- Donthulachitti, C.; Kothakapu, S.R.; Shekunti, R.K.; Neella, C.K. [DMAPTs]+Cl−: A Promising Versatile Regioselective Tosyl Transfer Reagent. ChemistrySelect 2017, 2, 5321–5328. [Google Scholar] [CrossRef]
- Muramatsu, W. Chemo- and Regioselective Monosulfonylation of Nonprotected Carbohydrates Catalyzed by Organotin Dichloride under Mild Conditions. J. Org. Chem. 2012, 77, 8083–8091. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Williamson, C.L.; Chan, L.; Taylor, M.S. Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 8260–8267. [Google Scholar] [CrossRef]
- Kuwano, S.; Hosaka, Y.; Ara, T. Chiral Benzazaborole-Catalyzed Regioselective Sulfonylation of Unprotected Carbohydrate Derivatives. Chem. Eur. J. 2019, 25, 12920–12923. [Google Scholar] [CrossRef]
- Kusano, S.; Miyamoto, S.; Matsuoka, A.; Yamada, Y.; Ishikawa, R.; Hayashida, O. Benzoxaborole Catalyst for Site-Selective Modification of Polyols. Eur. J. Org. Chem. 2020, 1598–1602. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, J.-J.; Liu, Y.; Dong, H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J. Org. Chem. 2020, 85, 3307–3319. [Google Scholar] [CrossRef]
- Traboni, S.; Bedini, E.; Vessella, G.; Iadonisi, A. Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020, 10, 1142. [Google Scholar] [CrossRef]
- Giordano, M.; Iadonisi, A. A practical approach to regioselective O-benzylation of primary positions of polyols. Tetrahedron Lett. 2013, 54, 1550–1552. [Google Scholar] [CrossRef]
- Giordano, M.; Iadonisi, A. Tin-mediated regioselective benzylation and allylation of polyols: Applicability of a catalytic approach under solvent-free conditions. J. Org. Chem. 2014, 79, 213–222. [Google Scholar] [CrossRef]
- Sethi, K.P.; Kartha, K.P.R. Stannylene acetal-mediated solvent-free mechanochemical regioselective alkylation of galactosides and lactosides. Trends Carbohydr. Res. 2016, 8, 29–32. [Google Scholar]
- Gathirwa, J.W.; Maki, T. Benzylation of hydroxy groups with tertiary amine as a base. Tetrahedron 2012, 68, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Traboni, S.; Bedini, E.; Iadonisi, A. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations. Beilstein J. Org. Chem. 2016, 12, 2748–2756. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.R.; Karth, K.P.R. Application of ball billing technology to carbohydrate reactions: I. Regioselective primary hydroxyl protection of hexosides and nucleoside by planetary ball milling. J. Carbohydr. Chem. 2008, 27, 279–293. [Google Scholar] [CrossRef]
- Traboni, S.; Bedini, E.; Iadonisi, A. Solvent-free one-pot diversified protection of saccharide polyols via regioselective tritylation. ChemistrySelect 2017, 2, 4906–4911. [Google Scholar] [CrossRef]
- Traboni, S.; Bedini, E.; Giordano, M.; Iadonisi, A. Three solvent-free catalytic approaches to the acetal functionalization of carbohydrates and their applicability to one-pot generation of orthogonally protected building blocks. Adv. Synth. Catal. 2015, 357, 3562–3572. [Google Scholar] [CrossRef]
- Traboni, S.; Bedini, E.; Giordano, M.; Iadonisi, A. One-pot synthesis of orthogonally protected sugars through sequential base-promoted/acid-catalyzed steps: A solvent-free approach with self-generation of a catalytic species. Tetrahedron Lett. 2019, 60, 1777–1780. [Google Scholar] [CrossRef]
- Traboni, S.; Vessella, G.; Bedini, E.; Iadonisi, A. Solvent-free, under air selective synthesis of a-glycosides adopting glycosyl chlorides as donors. Org. Biomol. Chem. 2020, 18, 5157–5163. [Google Scholar] [CrossRef]
- Patil, P.R.; Kartha, K.P.R. Solvent-free synthesis of thioglycosides by ball milling. Green Chem. 2009, 11, 953–956. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, N.; Kartha, K.P.R. In(III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr. Res. 2014, 397, 18–26. [Google Scholar] [CrossRef]
- Kumar, V.; Taxak, N.; Jangir, R.; Bharatam, P.V.; Kartha, K.P.R. In(III) triflate-mediated solvent-free synthesis and activation of thioglycosides by ball milling and structural analysis of long chain alkyl thioglycosides by TEM and quantum chemical methods. J. Org. Chem. 2014, 79, 3427–3439. [Google Scholar] [CrossRef] [PubMed]
- Traboni, S.; Liccardo, F.; Bedini, E.; Giordano, M.; Iadonisi, A. Solvent-free synthesis of glycosyl chlorides based on the triphenyl phosphine/hexachloroacetone system. Tetrahedron Lett. 2017, 58, 1762–1764. [Google Scholar] [CrossRef]
- Traboni, S.; Bedini, E.; Iadonisi, A. Solvent-free conversion of alcohols to alkyl iodides and one-pot elaborations thereof. ChemistrySelect 2018, 3, 1616–1622. [Google Scholar] [CrossRef]
- Bauder, C. A convenient synthesis of orthogonally protected 2-deoxystreptamine (2-DOS) as an aminocyclitol scaffold for the development of novel aminoglycoside antibiotic derivatives against bacterial resistance. Org. Biomol. Chem. 2008, 6, 2952–2960. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Dong, H.; Lu, Y.; Pei, Y.; Pei, Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett. 2017, 58, 4039–4042. [Google Scholar] [CrossRef]
Entry | Polyol Sugar | Equiv. TsCl | Temperature | Product and Yield |
---|---|---|---|---|
1 | 1 | 1.5 | 85 °C | 3 28% b |
2 | 1 | 1.2 | 75 °C | 3 36% |
3 a | 1 | 1.5 | 75 °C | 3 41% |
4 | 1 | 1.5 | 75 °C | 3 46% c |
5 | 1 | 2.0 | 75 °C | 3 42% b |
6 | 2 | 1.5 | 75 °C | 4 62% |
Entry | Polyol Sugar | Time (min) | Product and Yield |
---|---|---|---|
1 | 5 | 70 | 13 91% |
2 | 6 | 90 | 14 88% |
3 | 7 | 60 | 15 82% |
4 | 8 | 45 | 16 45% |
5 1 | 8 | 45 | 16 71% |
6 | 90 | ||
7 | 9 10 | 80 | 17 51% 18 58% |
8 | |||
11 | 90 | 19 70% | |
9 | 90 | ||
12 | 20 74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traboni, S.; Bedini, E.; Landolfi, A.; Vessella, G.; Iadonisi, A. Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions. Catalysts 2021, 11, 202. https://doi.org/10.3390/catal11020202
Traboni S, Bedini E, Landolfi A, Vessella G, Iadonisi A. Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions. Catalysts. 2021; 11(2):202. https://doi.org/10.3390/catal11020202
Chicago/Turabian StyleTraboni, Serena, Emiliano Bedini, Alfredo Landolfi, Giulia Vessella, and Alfonso Iadonisi. 2021. "Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions" Catalysts 11, no. 2: 202. https://doi.org/10.3390/catal11020202
APA StyleTraboni, S., Bedini, E., Landolfi, A., Vessella, G., & Iadonisi, A. (2021). Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions. Catalysts, 11(2), 202. https://doi.org/10.3390/catal11020202