Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement
Abstract
:1. Introduction
2. Origin for the SnO2-TiO2 Coupling Effect
3. Atom-Level Heterojunction Effect
4. Atom-Level Homojunction Effect
4.1. SnO2-TiO2 Homojunction Systems
4.2. Other Homojunction Systems
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Wang, L.; Yang, H.-G.; Cheng, H.-M.; Lu, G.-Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Roy, S.C.; Varghese, O.K.; Paulose, M.; Grimes, C.A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Chen, X.; Liub, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861. [Google Scholar] [CrossRef]
- Tada, H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Adv. 2019, 1, 4238–4245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Fujishima, M.; Kobayashi, H. Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 2011, 40, 4232–4243. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Y.; Xiao, W. Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 2013, 1, 10727–10735. [Google Scholar] [CrossRef]
- Brady, M.D.; Sampaio, R.N.; Wang, D.; Meyer, T.J.; Gerald, J. Dye-sensitized hydrobromic acid splitting for hydrogen solar fuel production. J. Am. Chem. Soc. 2017, 139, 15612–15615. [Google Scholar] [CrossRef]
- Cristobal, N.; Ameta, S.C.; Haghi, A.K. Photodegradation of 2-nitrophenol, an endocrine disruptor, using TiO2 nanospheres/SnO2 quantum dots. In Green Chemistry and Biodiversity; Bhatt, J., Jat, K.K., Rai, A.K., Ameta, R., Ameta, S.C., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 1–8. [Google Scholar]
- Stefan, M.; Leostean, C.; Pana, O.; Popa, A.; Toloman, D.; Macavei, S.; Perhaita, I.; Barbu-Tudoran, L.; Silipas, D. Interface tailoring of SnO2-TiO2 photocatalysts modified with anionic/cationic surfactants. J. Mater. Sci. 2020, 55, 3279–3298. [Google Scholar] [CrossRef]
- Upadhaya, D.; Purkayastha, D.D.; Krishna, M.G. Dependence of calcination temperature on wettability and photocatalytic performance of SnO2-TiO2 composite thin films. Mater. Chem. Phys. 2020, 241, 122333. [Google Scholar]
- Kusior, A.; Zych, L.; Zakrzewska, K.; Radecka, M. Photocatalytic activity of TiO2/SnO2 nanostructures with controlled dimensionality/complexity. Appl. Surf. Sci. 2019, 471, 973–985. [Google Scholar] [CrossRef]
- Joudi, F.; Naceur, J.B.; Ouertani, R.; Chtourou, R. A novel strategy to produce compact and adherent thin films of SnO2/TiO2 composites suitable for water splitting and pollutant degradation. J. Mater. Sci. 2019, 30, 167–179. [Google Scholar] [CrossRef]
- Awa, K.; Akashi, R.; Akita, A.; Naya, S.; Kobayashi, H.; Tada, H. Highly efficient and selective oxidation of eathanol to acetaldehyde by a hybrid photocatalyst consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction. ChemPhysChem 2019, 20, 2155–2161. [Google Scholar] [CrossRef]
- Suzuki, H.; Awa, K.; Naya, S.; Tada, H. Heat treatment effect of a hybrid consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction on the photocatalytic activity. Catal. Commun. 2020, 147, 106148. [Google Scholar] [CrossRef]
- Pan, L.; Wang, S.; Xie, J.; Wang, L.; Zhang, X.; Zou, J.-J. Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 2016, 28, 296–303. [Google Scholar] [CrossRef]
- Lv, C.; Chen, G.; Zhou, X.; Zhang, C.; Wang, Z.; Zhao, B.; Li, D. Oxygen-induced Bi5+-self-doped Bi4V2O11 with a p-n homojunction toward promoting the photocatalytic performance. ACS Appl. Mater. Interfaces 2017, 9, 23748–23755. [Google Scholar] [CrossRef]
- Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-Z.; Li, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; et al. Homojunction of oxygen and titanium vacancies and its interfacial n-p effect. Adv. Mater. 2018, 30, 1802173. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, H.; Zhao, X.; Gao, B.; Fan, W. Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Appl. Catal. A 2015, 505, 447–455. [Google Scholar] [CrossRef]
- Wang, X.; Ni, Q.; Zeng, D.; Liao, G.; Xie, C. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene. Appl. Surf. Sci. 2016, 389, 165–172. [Google Scholar] [CrossRef]
- Lyu, J.; Gao, J.; Zhang, M.; Fu, Q.; Sun, L.; Hu, S. Construction of homojunction-adsorption layer on anatase TiO2 to improve photocatalytic mineralization of volatile organic compounds. Appl. Catal. B 2017, 202, 664–670. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Mao, M.; Lan, L.; Lao, X.; Zhao, X. Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Appl. Surf. Sci. 2019, 490, 283–292. [Google Scholar] [CrossRef]
- Roy, N.; Sohn, Y.K.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540. [Google Scholar] [CrossRef]
- Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K.; Tohge, N.; Ito, S. A patterned-TiO2/SnO2 bilayer type photocatalyst. J. Phys. Chem. B 2000, 104, 4585–4587. [Google Scholar] [CrossRef]
- Ghicov, A.; Tsuchiya, H.; Hahn, R.; Macak, J.M.; Munoz, A.G.; Schmuki, P. TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem. Commun. 2006, 8, 528–532. [Google Scholar] [CrossRef]
- Feng, X.; Zhu, K.; Frank, A.J.; Grimes, C.A.; Mallouk, T.E. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew. Chem. Int. Ed. 2012, 51, 2727–2730. [Google Scholar] [CrossRef]
- Nakajima, K. Mechanism of Epitaxial Growth; Nakajima, K., Ed.; Kyoritsu Syuppan: Tokyo, Japan, 2002. [Google Scholar]
- Akita, A.; Tada, H. Synthesis of 1D-anisotropic particles consisting of TiO2 nanorod and SnO2 with heteroepitaxial junction and the self-assembling to 3D-microsphere. Langmuir 2019, 35, 17096–17102. [Google Scholar] [CrossRef]
- Pan, J.; Shen, H.; Werner, U.; Prades, J.D.; Hernandez-Ramirez, F.; Soldera, F.; Mucklich, F.; Mathur, S. Heteroepitaxy of SnO2 nanowire arrays on TiO2 single crystals: Growth patterns and tomographic studies. J. Phys. Chem. C 2011, 115, 15191–15197. [Google Scholar] [CrossRef]
- Jira, R. Acetaldehyde from ethylene—A retrospective on the discovery of the Wacker process. Angew. Chem. Int. Ed. 2009, 48, 9034–9037. [Google Scholar] [CrossRef]
- Takei, T.; Iguchi, N.; Haruta, M. Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal. Surv. Asia 2011, 15, 80–88. [Google Scholar] [CrossRef]
- Zhang, J.; Nosaka, Y. Photocatalytic oxidation mechanism of methanol and the other reactants in irradiated TiO2 aqueous suspension investigated by OH radical detection. Appl. Catal. B Environ. 2015, 166–167, 32–36. [Google Scholar] [CrossRef]
- Harunsani, M.H.; Oropeza, F.E.; Palgrave, R.G.; Egdell, R.G. Electronic and structural properties of SnxTi1-xO2 (0.0 ≤ x ≤ 0.1) solid solutions. Chem. Mater. 2010, 22, 1551–1558. [Google Scholar] [CrossRef]
- Coutts, J.L.; Levine, L.H.; Richards, J.T.; Mazyck, D.W. The effect of photon source on heterogeneous photocatalytic oxidation of ethanol by a silica-titania composite. J. Photochem. Photobiol. A Chem. 2011, 225, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Masih, D.; Yoshitake, H.; Izumi, Y. Photooxidation of ethanol on mesoporous vanadium-titanium oxide catalysts and the relation to vanadium(IV) and (V) sites. Appl. Catal. A 2007, 325, 276–282. [Google Scholar] [CrossRef]
- Takeuchi, M.; Deguchi, J.; Sakai, S.; Anpo, M. Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders. Appl. Catal. B 2010, 96, 218–223. [Google Scholar] [CrossRef]
- Jiang, Y.; Amal, R. Selective synthesis of TiO2-based nanoparticles with highly active surface sites for gas-phase photocatalytic oxidation. Appl. Catal. B 2013, 138–139, 260–267. [Google Scholar] [CrossRef]
- Yang, L.; Fu, W.; Fu, H.; Sun, J. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. [Google Scholar]
- Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Lian, Y.; Wang, X.; Li, C. photoluminescence characteristics of TIO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 2007, 111, 693–699. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Yang, Y.; Wu, P. Band gap engineering of SnO2 by epitaxial strain: Experimental and theoretical investigations. J. Phys. Chem. C 2014, 118, 6448–6453. [Google Scholar] [CrossRef]
- Grätzel, M.; Rotzinger, F.P. The influences of the crystal lattice structure on the conduction band energy of oxides of titanium(IV). Chem. Phys. Lett. 1985, 118, 474–477. [Google Scholar] [CrossRef]
- Kim, W.; Tachikawa, T.; Moon, G.H.; Majima, T.; Choi, W. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 14036–14041. [Google Scholar] [CrossRef] [PubMed]
- Nikawa, T.; Naya, S.; Kimura, T.; Tada, H. Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermocatalysis of gold nanoparticle-loaded titanium(IV) oxide. J. Catal. 2015, 326, 9–14. [Google Scholar] [CrossRef]
- Awa, K.; Naya, S.; Fujishima, M.; Tada, T. A three-component plasmonic photocatalyst consisting of gold nanoparticle and TiO2-SnO2 nanohybrid with heteroepitaxial junction: Hydrogen peroxide synthesis. J. Phys. Chem. C 2020, 124, 7797–7802. [Google Scholar] [CrossRef]
- Fakharian-Qomi, M.J.; Sadeghzadeh-Attar, A. Template based synthesis of plasmonic Ag-modified TiO2/SnO2 nanotubes with enhanced photostability for efficient visible-light photocatalytic H2 evolution and RhB degradation. ChemistrySelect 2020, 5, 6001–6010. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Bu, X.; Wu, Q.; Hang, Z.; Dong, Z.; Wu, X. Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci. Rep. 2018, 8, 10532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tada, H.; Naya, S.-I. Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement. Catalysts 2021, 11, 205. https://doi.org/10.3390/catal11020205
Tada H, Naya S-I. Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement. Catalysts. 2021; 11(2):205. https://doi.org/10.3390/catal11020205
Chicago/Turabian StyleTada, Hiroaki, and Shin-Ichi Naya. 2021. "Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement" Catalysts 11, no. 2: 205. https://doi.org/10.3390/catal11020205
APA StyleTada, H., & Naya, S. -I. (2021). Atomic Level Interface Control of SnO2-TiO2 Nanohybrids for the Photocatalytic Activity Enhancement. Catalysts, 11(2), 205. https://doi.org/10.3390/catal11020205