Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Catalyst
2.2. Catalytic Test
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalysts Characterization
3.4. Adsorption Tests
3.5. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, L.S.; Pereira, D.; Sousa, É.; Otero, M.; Esteves, V.I.; Calisto, V. Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review. Sci. Total Environ. 2020, 718, 137272. [Google Scholar] [CrossRef]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Process Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Fonseca Couto, C.; Lange, L.C.; Santos Amaral, M.C. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process Eng. 2018, 26, 156–175. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. J. Environ. Manag. 2020, 253, 109741. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Resistance in the environment. J. Antimicrob. Chemother. 2004, 54, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żur, J.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Marchlewicz, A.; Guzik, U. Paracetamol—Toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. Chemosphere 2018, 206, 192–202. [Google Scholar] [CrossRef]
- Audino, F.; Santamaria, J.M.T.; Del Valle Mendoza, L.J.; Graells, M.; Pérez-Moya, M. Removal of paracetamol using effective advanced oxidation processes. Int. J. Environ. Res. Public Health 2019, 16, 505. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Niu, J.; Yin, L.; Wang, W.; Bao, Y.; Chen, J.; Duan, Y. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on Superoxide radicals. J. Environ. Sci. 2011, 23, 1911–1918. [Google Scholar] [CrossRef]
- Quesada-Penate, I.; Julcour-Lebigue, C.; Jauregui-Haza, U.J.; Wilhelm, A.-M.; Delmas, H. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption—Catalytic wet air oxidation on activated carbons. J. Hazard. Mater. 2012, 221–222. [Google Scholar] [CrossRef] [Green Version]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.J.; Bedia, J. Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light. Chem. Eng. J. 2020, 392, 124867. [Google Scholar] [CrossRef]
- Gómez-Avilés, A.; Peñas-Garzón, M.; Bedia, J.; Dionysiou, D.D.; Rodríguez, J.J.; Belver, C. Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Appl. Catal. B Environ. 2019, 253, 253–262. [Google Scholar] [CrossRef]
- Rueda Márquez, J.; Levchuk, I.; Sillanpää, M. Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review. Catalysts 2018, 8, 673. [Google Scholar] [CrossRef] [Green Version]
- Arredondo Valdez, H.C.; García Jiménez, G.; Gutiérrez Granados, S.; Ponce de León, C. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 2012, 89, 1195–1201. [Google Scholar] [CrossRef]
- Hernández, R.; Olvera-Rodríguez, I.; Guzmán, C.; Medel, A.; Escobar-Alarcón, L.; Brillas, E.; Sirés, I.; Esquivel, K. Microwave-assisted sol-gel synthesis of an Au-TiO2 photoanode for the advanced oxidation of paracetamol as model pharmaceutical pollutant. Electrochem. Commun. 2018, 96, 42–46. [Google Scholar] [CrossRef]
- Yun, W.C.; Lin, K.Y.A.; Tong, W.C.; Lin, Y.F.; Du, Y. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337. [Google Scholar] [CrossRef]
- Pires, J.; Borges, S.; Carvalho, A.; Pereira, C.; Pereira, A.M.; Fernandes, C.; Araújo, J.P.; Freire, C. Magnetically recyclable mesoporous iron oxide-silica materials for the degradation of acetaminophen in water under mild conditions. Polyhedron 2016, 106, 125–131. [Google Scholar] [CrossRef]
- Mao, H.; Ji, C.; Liu, M.; Cao, Z.; Sun, D.; Xing, Z.; Chen, X.; Zhang, Y.; Song, X.M. Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol. Appl. Surf. Sci. 2018, 434, 522–533. [Google Scholar] [CrossRef]
- Adityosulindro, S.; Julcour, C.; Barthe, L. Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater. J. Environ. Chem. Eng. 2018, 6, 5920–5928. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Díaz, M.R.; Castillejos-López, E.; Cerpa-Naranjo, A.; Rojas-Cervantes, M.L. On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2. Microporous Mesoporous Mater. 2017, 237, 282–293. [Google Scholar] [CrossRef]
- Hurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R.M.; Natividad, R. Paracetamol mineralization by Photo Fenton process catalyzed by a Cu/Fe-PILC under circumneutral pH conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. [Google Scholar] [CrossRef]
- Peng, A.; Huang, M.; Chen, Z.; Gu, C. Oxidative coupling of acetaminophen mediated by Fe3 +-saturated montmorillonite. Sci. Total Environ. 2017, 595, 673–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, N.; Larachi, F. Iron-containing silicalites for phenol catalytic wet peroxidation. Appl. Catal. B Environ. 2003, 46, 293–305. [Google Scholar] [CrossRef]
- Gokulakrishnan, N.; Pandurangan, A.; Sinha, P.K. Catalytic wet peroxide oxidation technique for the removal of decontaminating agents ethylenediaminetetraacetic acid and oxalic acid from aqueous solution using efficient fenton type Fe-MCM-41 mesoporous materials. Ind. Eng. Chem. Res. 2009, 48, 1556–1561. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, X.; Zhang, H. Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Sep. Purif. Technol. 2016, 171, 52–61. [Google Scholar] [CrossRef]
- Hakiki, A.; Boukoussa, B.; Habib Zahmani, H.; Hamacha, R.; Hadj Abdelkader, N.e.H.; Bekkar, F.; Bettahar, F.; Nunes-Beltrao, A.P.; Hacini, S.; Bengueddach, A.; et al. Synthesis and characterization of mesoporous silica SBA-15 functionalized by mono-, di-, and tri-amine and its catalytic behavior towards Michael addition. Mater. Chem. Phys. 2018, 212, 415–425. [Google Scholar] [CrossRef]
- Boukoussa, B.; Hakiki, A.; Nunes-Beltrao, A.P.; Hamacha, R.; Azzouz, A. Assessment of the intrinsic interactions of nanocomposite polyaniline/SBA-15 with carbon dioxide: Correlation between the hydrophilic character and surface basicity. J. CO2 Util. 2018, 26, 171–178. [Google Scholar] [CrossRef]
- Boukoussa, B.; Hakiki, A.; Moulai, S.; Chikh, K.; Kherroub, D.E.; Bouhadjar, L.; Guedal, D.; Messaoudi, K.; Mokhtar, F.; Hamacha, R. Adsorption behaviors of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. J. Mater. Sci. 2018, 53, 7372–7386. [Google Scholar] [CrossRef]
- Boukoussa, B.; Kibou, Z.; Abid, Z.; Ouargli, R.; Choukchou-Braham, N.; Villemin, D.; Bengueddach, A.; Hamacha, R. Key factor affecting the basicity of mesoporous silicas MCM-41: Effect of surfactant extraction time and Si/Al ratio. Chem. Pap. 2018, 72, 289–299. [Google Scholar] [CrossRef]
- Boukoussa, B.; Zeghada, S.; Ababsa, G.B.; Hamacha, R.; Derdour, A.; Bengueddach, A.; Mongin, F. Catalytic behavior of surfactant-containing-MCM-41 mesoporousmaterials for cycloaddition of 4-nitrophenyl azide. Appl. Catal. A Gen. 2015, 489, 131–139. [Google Scholar] [CrossRef]
- Iglesias, J.; Melero, J.A.; Sánchez-Sánchez, M. Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous Mesoporous Mater. 2010, 132, 112–120. [Google Scholar] [CrossRef]
- Asghari, S.; Haghighi, M.; Taghavinezhad, P. Plasma-enhanced dispersion of Cr2O3 over ceria-doped MCM-41 nanostructured catalyst used in CO2 oxidative dehydrogenation of ethane to ethylene. Microporous Mesoporous Mater. 2019, 279, 165–177. [Google Scholar] [CrossRef]
- Mohamed, A.S.; AbuKhadra, M.R.; Abdallah, E.A.; El-Sherbeeny, A.M.; Mahmoud, R.K. The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light. J. Photochem. Photobiol. A Chem. 2020, 392, 112434. [Google Scholar] [CrossRef]
- Nidheesh, P.V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Adv. 2015, 5, 40552–40577. [Google Scholar] [CrossRef]
- Sádaba, I.; López Granados, M.; Riisager, A.; Taarning, E. Deactivation of solid catalysts in liquid media: The case of leaching of active sites in biomass conversion reactions. Green Chem. 2015, 17, 4133–4145. [Google Scholar] [CrossRef] [Green Version]
- Meynen, V.; Cool, P.; Vansant, E.F. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 2009, 125, 170–223. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Kim, J.M.; Ryoo, R. Characterization of highly ordered MCM-41 silicas using X-ray diffraction and nitrogen adsorption. Langmuir 1999, 15, 5279–5284. [Google Scholar] [CrossRef]
- Abrokwah, R.Y.; Deshmane, V.G.; Kuila, D. Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J. Mol. Catal. A Chem. 2016, 425, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Campos, C. New perspectives on microbiological water control for wastewater reuse. Desalination 2008, 218, 34–42. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, Y.; Wang, J.; Zhou, W.; Zhang, C.; Liu, S. A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion. Microporous Mesoporous Mater. 2006, 88, 38–47. [Google Scholar] [CrossRef]
- Balasubramanian, C.; Joseph, B.; Gupta, P.; Saini, N.L.; Mukherjee, S.; Di Gioacchino, D.; Marcelli, D. X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing. J. Electron Spectrosc. Relat. Phenom. 2014, 196, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Ursachi, I.; Stancu, A.; Vasile, A. Magnetic α-Fe2O3/MCM-41 nanocomposites: Preparation, characterization, and catalytic activity for methylene blue degradation. J. Colloid Interface Sci. 2012, 377, 184–190. [Google Scholar] [CrossRef]
- Numan, M.; Kim, T.; Jo, C.; Park, S.-E. Ethane Dehydrogenation with CO2 as a soft oxidant over a Cr-TUD-1 catalyst. J. CO2 Util. 2020, 39, 101184. [Google Scholar] [CrossRef]
- Al-Awadi, A.S.; El-Toni, A.M.; Al-Zahrani, S.M.; Abasaeed, A.E.; Khan, A. Synthesis, Characterization and Catalytic Evaluation of Chromium Oxide Deposited on Titania–Silica Mesoporous Nanocomposite for the Ethane Dehydrogenation with CO2. Crystals 2020, 10, 322. [Google Scholar] [CrossRef]
- Mahendiran, C.; Sangeetha, P.; Vijayan, P.; Sardhar Basha, S.J.; Shanthi, K. Vapour phase oxidation of tetralin over Cr and Fe substituted MCM-41 molecular sieves. J. Mol. Catal. A Chem. 2007, 275, 84–90. [Google Scholar] [CrossRef]
- Hao, T.; Yang, C.; Rao, X.; Wang, J.; Niu, C.; Su, X. Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI). Appl. Surf. Sci. 2014, 292, 174–180. [Google Scholar] [CrossRef]
- Cuesta Zapata, P.M.; Gonzo, E.E.; Parentis, M.L.; Bonini, N.A. Acidity evolution on highly dispersed chromium supported on mesostructured silica: The effect of hydrothermal treatment and calcination temperature. Microporous Mesoporous Mater. 2020, 294, 109895. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sudarshan, K.; Sen, D.; Pujari, P.K. Microenvironment of mesopores of MCM-41 supported CuO catalyst: An investigation using positronium probe. J. Solid State Chem. 2019, 274, 10–17. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Borcuch, A.; Michalik, M.; Rutkowska, M.; Gil, B.; Sojka, Z.; Indyka, P.; Chmielarz, L. MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous Mesoporous Mater. 2017, 240, 9–21. [Google Scholar] [CrossRef]
- Machado, P.M.A.; Lube, L.M.; Tiradentes, M.D.E.; Fernandes, C.; Gomes, C.A.; Stumbo, A.M.; San Gil, R.A.S.; Visentin, L.C.; Sanchez, D.R.; Frescura, V.L.A.; et al. Synthesis, characterization and activity of homogeneous and heterogeneous (SiO2, NaY, MCM-41) iron(III) catalysts on cyclohexane and cyclohexene oxidation. Appl. Catal. A Gen. 2015, 507, 119–129. [Google Scholar] [CrossRef]
- Sekkiou, H.; Boukoussa, B.; Ghezini, R.; Khenchoul, Z.; Ouali, A.; Hamacha, R.; Bengueddach, A. Enhanced hydrogen storage capacity of copper containing mesoporous silicas prepared using different methods. Mater. Res. Express 2016, 3, 085501. [Google Scholar] [CrossRef]
- Huo, C.; Ouyang, J.; Yang, H. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Sci. Rep. 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sang, S.; Meng, S.; Zhang, Y.; Qi, Y.; Liu, Z. Direct synthesis of Zn-ZSM-5 with novel morphology. Mater. Lett. 2007, 61, 1675–1678. [Google Scholar] [CrossRef]
- Alarcón, E.A.; Villa, A.L.; de Correa, C.M. Characterization of Sn- and Zn-loaded MCM-41 catalysts for nopol synthesis. Microporous Mesoporous Mater. 2009, 122, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.G.; Kim, T.W.; Hwang, S.J.; Hwang, S.H.; Yang, J.H.; Choy, J.H. Heterostructured nanohybrid of zinc oxide-montmorillonite clay. J. Phys. Chem. B 2006, 110, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadi, A.S.; El-Toni, A.M.; Alhoshan, M.; Khan, A.; Labis, J.P.; Al-Fatesh, A.; Abasaeed, A.E.; Al-Zahrani, S.M. Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceram. Int. 2019, 45, 1125–1134. [Google Scholar] [CrossRef]
- Savidha, R.; Pandurangan, A.; Palanichamy, M.; Murugesan, V. A comparative study on the catalytic activity of Zn and Fe containing Al-MCM-41 molecular sieves on t-butylation of phenol. J. Mol. Catal. A Chem. 2004, 211, 165–177. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Shishido, T.; Takehira, K. Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. J. Catal. 2002, 209, 186–196. [Google Scholar] [CrossRef]
- Balouria, V.; Kumar, A.; Singh, A.; Samanta, S.; Debnath, A.K.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Gupta, S.K.; Yakhmi, J.V. Temperature dependent H2S and Cl2 sensing selectivity of Cr2O3 thin films. Sens. Actuators B Chem. 2011, 157, 466–472. [Google Scholar] [CrossRef]
- Wright, K.; Barron, A. Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes. J. Carbon Res. 2017, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Q.; Xiao, Z.; Chen, X.; Shi, C.; Tao, S.; Huang, Y.; Liang, C. In situ synthesis of Au-Pd bimetallic nanoparticles on amine-functionalized SiO2 for the aqueous-phase hydrodechlorination of chlorobenzene. RSC Adv. 2014, 4, 48254–48259. [Google Scholar] [CrossRef]
- Chen, L.F.; Guo, P.J.; Qiao, M.H.; Yan, S.R.; Li, H.X.; Shen, W.; Xu, H.L.; Fan, K.N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2008, 257, 172–180. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, Z.; Fang, J.; Wang, Z.; Zuo, S. MCM-41 supported nano-sized CuO-CeO2 for catalytic combustion of chlorobenzene. J. Rare Earths 2020. [Google Scholar] [CrossRef]
- Bozzini, B.; Griskonis, E.; Fanigliulo, A.; Sulcius, A. Electrodeposition of Zn-Mn alloys in the presence of thiocarbamide. Surf. Coat. Technol. 2002, 154, 294–303. [Google Scholar] [CrossRef]
- Yang, L.L.; Zhao, Q.X.; Willander, M.; Liu, X.J.; Fahlman, M.; Yang, J.H. Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2010, 256, 3592–3597. [Google Scholar] [CrossRef] [Green Version]
- Sett, D.; Basak, D. Tuning the luminescence and UV photosensing properties of ZnO nanorods by strategic aqueous chemical growth. Mater. Res. Express 2015, 2, 105008. [Google Scholar] [CrossRef]
- Jin, M.; Yang, R.; Zhao, M.; Li, G.; Hu, C. Application of Fe/activated carbon catalysts in the hydroxylation of phenol to dihydroxybenzenes. Ind. Eng. Chem. Res. 2014, 53, 2932–2939. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Nie, Y.; Li, N.; Hu, C. Enhanced inhibition of bromate formation in catalytic ozonation of organic pollutants over Fe-Al LDH/Al2O3. Sep. Purif. Technol. 2015, 151, 256–261. [Google Scholar] [CrossRef]
- Cuello, N.I.; Elías, V.R.; Rodriguez Torres, C.E.; Crivello, M.E.; Oliva, M.I.; Eimer, G.A. Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior. Microporous Mesoporous Mater. 2015, 203, 106–115. [Google Scholar] [CrossRef]
- Decolatti, H.P.; Gioria, E.G.; Ibarlín, S.N.; Navascués, N.; Irusta, S.; Miró, E.E.; Gutierrez, L.B. Exchanged lanthanum in InHMOR and its impact on the catalytic performance of InHMOR. Spectroscopic, volumetric and microscopic studies. Microporous Mesoporous Mater. 2016, 222, 9–22. [Google Scholar] [CrossRef]
- Zhang, J.; Wong, H.; Kakushima, K.; Iwai, H. XPS study on the effects of thermal annealing on CeO2/La2O3 stacked gate dielectrics. Thin Solid Films 2016, 600, 30–35. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Wei, Y.; Liu, X.; Yu, F.; Ji, J. Effect of La-Fe/Si-MCM-41 catalysts and CaO additive on catalytic cracking of soybean oil for biofuel with low aromatics. J. Anal. Appl. Pyrolysis 2019, 143, 104693. [Google Scholar] [CrossRef]
- Akpotu, S.O.; Moodley, B. Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system. J. Environ. Manag. 2018, 209, 205–215. [Google Scholar] [CrossRef]
- Kong, S.H.; Watts, R.J.; Choi, J.H. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 1998, 37, 1473–1482. [Google Scholar] [CrossRef]
- Huang, H.H.; Lu, M.C.; Chen, J.N. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res. 2001, 35, 2291–2299. [Google Scholar] [CrossRef]
- Pliego, G.; Zazo, J.A.; Garcia-Muñoz, P.; Munoz, M.; Casas, J.A.; Rodriguez, J.J. Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2611–2692. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, L.C.A.; Murad, E. Iron oxide catalysts: Fenton and Fentonlike reactions—A review. Clay Miner. 2012, 47, 285–302. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Zazo, J.A.; Casas, J.A.; Molina, C.B.; Quintanilla, A.; Rodriguez, J.J. Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water. Environ. Sci. Technol. 2007, 41, 7164–7170. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Vargas, H.; Rouch, J.C.; Coetsier, C.; Cretin, M.; Causserand, C. Dynamic cross-flow electro-Fenton process coupled to anodic oxidation for wastewater treatment: Application to the degradation of acetaminophen. Sep. Purif. Technol. 2018, 203, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Le, T.X.H.; Van Nguyen, T.; Amadou Yacouba, Z.; Zoungrana, L.; Avril, F.; Nguyen, D.L.; Petit, E.; Mendret, J.; Bonniol, V.; Bechelany, M.; et al. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media. Chemosphere 2017, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Orimolade, B.O.; Zwane, B.N.; Koiki, B.A.; Rivallin, M.; Bechelany, M.; Mabuba, N.; Lesage, G.; Cretin, M.; Arotiba, O.A. Coupling cathodic electro-fenton with anodic photo-electrochemical oxidation: A feasibility study on the mineralization of paracetamol. J. Environ. Chem. Eng. 2020, 8, 104394. [Google Scholar] [CrossRef]
- Boukoussa, B.; Hamacha, R.; Morsli, A.; Bengueddach, A. Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab. J. Chem. 2017, 10, S2160–S2169. [Google Scholar] [CrossRef] [Green Version]
- Brezoiu, A.M.; Deaconu, M.; Nicu, I.; Vasile, E.; Mitran, R.A.; Matei, C.; Berger, D. Heteroatom modified MCM-41-silica carriers for Lomefloxacin delivery systems. Microporous Mesoporous Mater. 2019, 275, 214–222. [Google Scholar] [CrossRef]
- Eisenberg, G.M. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328. [Google Scholar] [CrossRef]
Metal a (%) | d100 (nm) | a0 b (nm) | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size c (nm) | |
---|---|---|---|---|---|---|
MCM-41 | // | 4.085 | 4.716 | 1100 | 1.031 | 3.670 |
Zn/MCM-41 | 0.97 | 4.524 | 5.224 | 650 | 0.643 | 4.038 |
Fe/MCM-41 | 4.36 | 4.570 | 5.277 | 640 | 0.738 | 4.416 |
Cu/MCM-41 | 0.94 | 4.109 | 4.745 | 950 | 0.727 | 3.570 |
Cr/MCM-41 | 1.91 | 4.555 | 5.259 | 780 | 0.694 | 3.856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachemaoui, M.; Molina, C.B.; Belver, C.; Bedia, J.; Mokhtar, A.; Hamacha, R.; Boukoussa, B. Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen. Catalysts 2021, 11, 219. https://doi.org/10.3390/catal11020219
Hachemaoui M, Molina CB, Belver C, Bedia J, Mokhtar A, Hamacha R, Boukoussa B. Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen. Catalysts. 2021; 11(2):219. https://doi.org/10.3390/catal11020219
Chicago/Turabian StyleHachemaoui, Mohammed, Carmen B. Molina, Carolina Belver, Jorge Bedia, Adel Mokhtar, Rachida Hamacha, and Bouhadjar Boukoussa. 2021. "Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen" Catalysts 11, no. 2: 219. https://doi.org/10.3390/catal11020219
APA StyleHachemaoui, M., Molina, C. B., Belver, C., Bedia, J., Mokhtar, A., Hamacha, R., & Boukoussa, B. (2021). Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen. Catalysts, 11(2), 219. https://doi.org/10.3390/catal11020219