Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of the Catalysts
2.2. Catalytic Performances
2.3. Surface Properties of the Catalysts
2.4. TG Analysis
3. Materials and Methods
3.1. Catalysts Preparations
3.2. Catalysts Characterization
3.3. Activity Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, K.; Li, D.; Lin, M.; Xiang, M.; Wei, W.; Sun, Y. A Short Review of Heterogeneous Catalytic Process for Mixed Alcohols Synthesis via Syngas. Catal. Today 2009, 147, 133–138. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.-J.; Huang, W. Higher Alcohols Synthesis from Syngas over Lanthanum-promoted CuZnAl Catalyst. J. Energ. Chem. 2018, 27, 319–325. [Google Scholar] [CrossRef]
- Subramanian, N.D.; Balaji, G.; Kumar, C.S.S.R.; Spivey, J.J. Development of Cobalt–copper Nanoparticles as Catalysts for Higher Alcohol Synthesis from Syngas. Catal. Today 2009, 147, 100–106. [Google Scholar] [CrossRef]
- Yüksel, F.; Yüksel, B. The Use of Ethanol–gasoline Blend as a Fuel in an SI Engine. Renew. Energ. 2004, 29, 1181–1191. [Google Scholar] [CrossRef]
- Luk, H.T.; Mondelli, C.; Ferre, D.C.; Stewart, J.A.; Perez-Ramirez, J. Status and Prospects in Higher Alcohols Synthesis from Syngas. Chem. Soc. Rev. 2017, 46, 1358–1426. [Google Scholar] [CrossRef]
- Bao, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catal. 2019, 9, 3026–3053. [Google Scholar] [CrossRef]
- Liu, Y.; Göeltl, F.; Ro, I.; Ball, M.R.; Sener, C.; Aragão, I.B.; Zanchet, D.; Huber, G.W.; Mavrikakis, M.; Dumesic, J.A. Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn. ACS Catal. 2017, 7, 4550–4563. [Google Scholar] [CrossRef]
- Zhang, L.; Ball, M.R.; Liu, Y.; Kuech, T.F.; Huber, G.W.; Mavrikakis, M.; Hermans, I.; Dumesic, J.A. Synthesis Gas Conversion over Rh/Mo Catalysts Prepared by Atomic Layer Deposition. ACS Catal. 2019, 9, 1810–1819. [Google Scholar] [CrossRef]
- Schwartz, V.; Campos, A.; Egbebi, A.; Spivey, J.J.; Overbury, S.H. EXAFS and FT-IR Characterization of Mn and Li Promoted Titania-Supported Rh Catalysts for CO Hydrogenation. ACS Catal. 2011, 1, 1298–1306. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.; Shi, Z.; Guo, Q.; Xiao, X.; Mao, H.; Mao, D. The Effects of the Nature of TiO2 Supports on the Catalytic Performance of Rh–Mn/TiO2 Catalysts in the Synthesis of C2 Oxygenates from Syngas. Catal. Sci. Technol. 2019, 9, 3675–3685. [Google Scholar] [CrossRef]
- Morrill, M.R.; Thao, N.T.; Shou, H.; Davis, R.J.; Barton, D.G.; Ferrari, D.; Agrawal, P.K.; Jones, C.W. Origins of Unusual Alcohol Selectivities over Mixed MgAl Oxide-Supported K/MoS2 Catalysts for Higher Alcohol Synthesis from Syngas. ACS Catal. 2013, 3, 1665–1675. [Google Scholar] [CrossRef]
- Christensen, J.M.; Duchstein, L.D.L.; Wagner, J.B.; Jensen, P.A.; Temel, B.; Jensen, A.D. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts. Ind. Eng. Chem. Res. 2012, 51, 4161–4172. [Google Scholar] [CrossRef]
- Zhang, X.; Luan, X.; Dai, X.; Ren, Z.; Cui, M.; Zhao, H.; Nie, F.; Huang, X. Enhanced Higher Alcohol Synthesis from CO Hydrogenation on Zn-Modified MgAl-Mixed Oxide Supported KNiMoS-Based Catalysts. Ind. Eng. Chem. Res. 2020, 59, 1413–1421. [Google Scholar] [CrossRef]
- Tominaga, H.; Aoki, Y.; Nagai, M. Hydrogenation of CO on Molybdenum and Cobalt Molybdenum Carbides. Appl. Catal. A Gen. 2012, 423–424, 192–204. [Google Scholar] [CrossRef]
- Pei, Y.-P.; Liu, J.-X.; Zhao, Y.-H.; Ding, Y.-J.; Liu, T.; Dong, W.-D.; Zhu, H.-J.; Su, H.-Y.; Yan, L.; Li, J.-L.; et al. High Alcohols Synthesis via Fischer–Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catal. 2015, 5, 3620–3624. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, T.; Qi, X.; Yu, F.; An, Y.; Li, Z.; Dai, Y.; Zhong, L.; Wang, H.; Sun, Y. Direct Synthesis of Long-chain Alcohols from Syngas over CoMn Catalysts. Appl. Catal. A Gen. 2018, 549, 179–187. [Google Scholar] [CrossRef]
- Prieto, G.; Beijer, S.; Smith, M.L.; He, M.; Au, Y.; Wang, Z.; Bruce, D.A.; de Jong, K.P.; Spivey, J.J.; de Jongh, P.E. Design and Synthesis of Copper-cobalt Catalysts for the Selective Conversion of Synthesis Gas to Ethanol and Higher Alcohols. Angew Chem. Int. Ed. Eng. 2014, 53, 6397–6401. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhu, H.; Liu, T.; Zhao, Z.; Chen, X.; Dong, W.; Lu, W.; Luo, W.; Ding, Y. Higher Alcohols Synthesis via CO Hydrogenation on Fe-promoted Co/AC Catalysts. Catal. Today 2017, 281, 549–558. [Google Scholar] [CrossRef]
- Su, J.; Zhang, Z.; Fu, D.; Liu, D.; Xu, X.-C.; Shi, B.; Wang, X.; Si, R.; Jiang, Z.; Xu, J.; et al. Higher Alcohols Synthesis from Syngas over CoCu/SiO2 Catalysts: Dynamic Structure and the Role of Cu. J. Catal. 2016, 336, 94–106. [Google Scholar] [CrossRef]
- Sun, J.; Cai, Q.; Wan, Y.; Wan, S.; Wang, L.; Lin, J.; Mei, D.; Wang, Y. Promotional Effects of Cesium Promoter on Higher Alcohol Synthesis from Syngas over Cesium-Promoted Cu/ZnO/Al2O3 Catalysts. ACS Catal. 2016, 6, 5771–5785. [Google Scholar] [CrossRef]
- Chai, S.-H.; Schwartz, V.; Howe, J.Y.; Wang, X.; Kidder, M.; Overbury, S.H.; Dai, S.; Jiang, D.-e. Graphitic Mesoporous Carbon-supported Molybdenum Carbides for Catalytic Hydrogenation of Carbon Monoxide to Mixed Alcohols. Micropor. Mesopor. Mater. 2013, 170, 141–149. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Thompson, L.T. Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System. ACS Catal. 2015, 5, 1717–1725. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Thompson, L.T. Low Temperature CO2 Hydrogenation to Alcohols and Hydrocarbons over Mo2C Supported Metal Catalysts. J. Catal. 2016, 343, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Sabnis, K.D.; Cui, Y.; Akatay, M.C.; Shekhar, M.; Lee, W.-S.; Miller, J.T.; Delgass, W.N.; Ribeiro, F.H. Water–gas Shift Catalysis over Transition Metals Supported on Molybdenum Carbide. J. Catal. 2015, 331, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, N.M.; Schaidle, J.A.; Ezekoye, O.K.; Pan, X.; Linic, S.; Thompson, L.T. High Activity Carbide Supported Catalysts for Water Gas Shift. J. Am. Chem. Soc. 2011, 133, 2378–2381. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Ibrahim, J.J.; Fu, Y.; Kong, W.; Zhang, J.; Sun, Y. Low-temperature Hydrogen Production from Methanol Steam Reforming on Zn-modified Pt/MoC Catalysts. Appl. Catal. B Environ. 2020, 1–13. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, G.; Hao, X.; Zuo, Z.; Huang, W.; Phanthong, P.; Kusakabe, K.; Abudula, A. Highly-efficient Steam Reforming of Methanol over Copper Modified Molybdenum Carbide. RSC Adv. 2014, 4, 44175–44184. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, A.; Li, X.; Zhang, S.; Zhu, A.; Ma, Y.; Au, C. Ni-modified Mo2C Catalysts for Methane Dry Reforming. Appl. Catal. A Gen. 2012, 431, 164–170. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, Y.; Xu, M.; Yu, Q.; Xiao, D.; Yao, S.; Ma, D. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds. Acc. Chem. Res. 2019, 52, 3372–3383. [Google Scholar] [CrossRef]
- Xiang, M.; Li, D.; Li, W.; Zhong, B.; Sun, Y. Performances of Mixed Alcohols Synthesis over Potassium Promoted Molybdenum Carbides. Fuel 2006, 85, 2662–2665. [Google Scholar] [CrossRef]
- Luan, X.; Yong, J.; Dai, X.; Zhang, X.; Qiao, H.; Yang, Y.; Zhao, H.; Peng, W.; Huang, X. Tungsten-Doped Molybdenum Sulfide with Dominant Double-Layer Structure on Mixed MgAl Oxide for Higher Alcohol Synthesis in CO Hydrogenation. Ind. Eng. Chem. Res. 2018, 57, 10170–10179. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Zhang, T.; Sun, K.; Wang, L.; Xie, H.; Tan, Y. Effect of Potassium on the Regulation of C1 Intermediates in Isobutyl Alcohol Synthesis from Syngas over CuLaZrO2 Catalysts. Ind. Eng. Chem. Res. 2019, 58, 9343–9351. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, S.; Roberts, C.B. Mixed Alcohol Synthesis over a K Promoted Cu/ZnO/Al2O3 Catalyst in Supercritical Hexanes. Ind. Eng. Chem. Res. 2013, 52, 14514–14524. [Google Scholar] [CrossRef]
- Liu, C.; Virginie, M.; Griboval-Constant, A.; Khodakov, A. Impact of Potassium Content on the Structure of Molybdenum Nanophases in Alumina Supported Catalysts and Their Performance in Carbon Monoxide Hydrogenation. Appl. Catal. A Gen. 2015, 504, 565–575. [Google Scholar] [CrossRef]
- Ao, M.; Pham, G.H.; Sunarso, J.; Li, F.; Jin, Y.; Liu, S. Effects of Alkali Promoters on Tri-metallic Co-Ni-Cu-based Perovskite Catalyst for Higher Alcohol Synthesis from Syngas. Catal. Today 2019, 355, 26–34. [Google Scholar] [CrossRef]
- Shou, H.; Ferrari, D.; Barton, D.G.; Jones, C.W.; Davis, R.J. Influence of Passivation on the Reactivity of Unpromoted and Rb-Promoted Mo2C Nanoparticles for CO Hydrogenation. ACS Catal. 2012, 2, 1408–1416. [Google Scholar] [CrossRef]
- Marquart, W.; Morgan, D.J.; Hutchings, G.J.; Claeys, M.; Fischer, N. Oxygenate Formation over K/β-Mo2C Catalysts in the Fischer–Tropsch Synthesis. Catal. Sci. Technol. 2018, 8, 3806–3817. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.; Li, D.; Xiao, H.; Zhang, J.; Li, W.; Zhong, B.; Sun, Y. K/Ni/β-Mo2C: A Highly Active and Selective Catalyst for Higher Alcohols Synthesis from CO Hydrogenation. Catal. Today 2008, 131, 489–495. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, K.; Jiang, D.; Li, D.; Sun, Y. Sol–gel Derived Ni–Mo Bimetallic Carbide Catalysts and Their Performance for CO Hydrogenation. Catal. Today 2010, 158, 490–495. [Google Scholar] [CrossRef]
- Kiai, R.M.; Nematian, T.; Tavasoli, A.; Karimi, A. Effect of Elemental Molar Ratio on the Synthesis of Higher Alcohols over Co-promoted Alkali-modified Mo2C Catalysts Supported on CNTs. J. Energ. Chem. 2015, 24, 278–284. [Google Scholar] [CrossRef]
- Liakakou, E.T.; Heracleous, E. Transition Metal Promoted K/Mo2C as Efficient Catalysts for CO Hydrogenation to Higher Alcohols. Catal. Sci. Technol. 2016, 6, 1106–1119. [Google Scholar] [CrossRef]
- De Oliveira, C.; Salahub, D.R.; de Abreu, H.A.; Duarte, H.A. Native Defects in α-Mo2C: Insights from First-Principles Calculations. J. Phy. Chem. C 2014, 118, 25517–25524. [Google Scholar] [CrossRef]
- Liu, R.; Pang, M.; Chen, X.; Li, C.; Xu, C.; Liang, C. W2C Nanorods with Various Amounts of Vacancy Defects: Determination of Catalytic Active Sites in the Hydrodeoxygenation of Benzofuran. Catal. Sci. Technol. 2017, 7, 1333–1341. [Google Scholar] [CrossRef]
- Pang, J.; Sun, J.; Zheng, M.; Li, H.; Wang, Y.; Zhang, T. Transition Metal Carbide Catalysts for Biomass Conversion: A Review. Appl. Catal. B Environ. 2019, 254, 510–522. [Google Scholar] [CrossRef]
- Jiang, R.; Pi, L.; Deng, B.; Hu, L.; Liu, X.; Cui, J.; Mao, X.; Wang, D. Electric Field-Driven Interfacial Alloying for in Situ Fabrication of Nano-Mo2C on Carbon Fabric as Cathode toward Efficient Hydrogen Generation. ACS Appl. Mater. Interfaces 2019, 11, 38606–38615. [Google Scholar] [CrossRef]
- Vitale, G.; Frauwallner, M.L.; Scott, C.E.; Pereira-Almao, P. Preparation and Characterization of Low-temperature Nano-crystalline Cubic Molybdenum Carbides and Insights on their Structures. Appl. Catal. A Gen. 2011, 408, 178–186. [Google Scholar] [CrossRef]
- Ge, R.; Huo, J.; Sun, M.; Zhu, M.; Li, Y.; Chou, S.; Li, W. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion. Small 2019, 1903380, 1–25. [Google Scholar] [CrossRef]
- De la Peña O’Shea, V.A.; Álvarez-Galván, M.C.; Campos-Martín, J.M.; Fierro, J.L.G. Fischer–Tropsch Synthesis on mono- and Bimetallic Co and Fe Catalysts in Fixed-bed and Slurry Reactors. Appl. Catal. A Gen. 2007, 326, 65–73. [Google Scholar] [CrossRef]
- Krishna, R.; Sie, S.T. Design and Scale-up of the Fischer–Tropsch Bubble Column Slurry Reactor. Fuel Process. Technol. 2000, 64, 73–105. [Google Scholar] [CrossRef]
- Liu, J.; Hodes, G.; Yan, J.; Liu, S. Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chin. J. Catal. 2021, 42, 205–216. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Zhao, W.; Li, Q.; Wang, Y.; Xu, G. Upgrading Ash-Rich Activated Carbon from Distilled Spirit Lees. Ind. Eng. Chem. Res. 2012, 51, 6037–6043. [Google Scholar] [CrossRef]
- Rosas, M.J.; Bedia, J.; Rodrı´guez-Mirasol, J.; Cordero, T. Preparation of Hemp-Derived Activated Carbon Monoliths Adsorption of Water Vapor. Ind. Eng. Chem. Res. 2008, 47, 1288–1296. [Google Scholar] [CrossRef]
- Wu, Q.; Christensen, J.M.; Chiarello, G.L.; Duchstein, L.D.L.; Wagner, J.B.; Temel, B.; Grunwaldt, J.-D.; Jensen, A.D. Supported Molybdenum Carbide for Higher Alcohol Synthesis from Syngas. Catal. Today 2013, 215, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, M.; Geng, H.; Dong, H.; Wu, P.; Li, X.; Guan, G.; Wang, T. Synergistically Tuning Electronic Structure of Porous β-Mo2C Spheres by Co Doping and Mo-Vacancies Defect Engineering for Optimizing Hydrogen Evolution Reaction Activity. Adv. Funct. Mater. 2020, 30, 1–14. [Google Scholar] [CrossRef]
- Murugappan, K.; Anderson, E.M.; Teschner, D.; Jones, T.E.; Skorupska, K.; Román-Leshkov, Y. Operando NAP-XPS Unveils Differences in MoO3 and Mo2C During Hydrodeoxygenation. Nat. Catal. 2018, 1, 960–967. [Google Scholar] [CrossRef] [Green Version]
Catalysts | a Ni:Mo | bd (nm) | cSBET (m2 g−1) | d C/Mo |
---|---|---|---|---|
MC | - | 10.2 | 17.5 | 1.4 |
MC-Ni-1 | 1:9 | 19.2 | 2.6 | 0.75 |
MC-Ni-1.5 | 1.5:8.5 | 18.7 | 3.4 | 0.85 |
MC-Ni-2 | 2:8 | 24.7 | 2.2 | 0.96 |
Catalysts | aXCO (%) | brs (mmol·gcat−1∙h−1∙m−2∙g) | cS (%) | ROH Distribution (%) | eSTYROH (mg gcat−1 h−1) | |||
---|---|---|---|---|---|---|---|---|
MeOH | C2+OH | d HC | MeOH | C2+OH | ||||
MC | 4.4 | 0.067 | 10.7 | 31.1 | 58.2 | 25.6 | 74.4 | 7.5 |
MC-Ni-1 | 9.7 | 1.179 | 29.1 | 30.7 | 40.2 | 48.7 | 51.3 | 24.3 |
MC-Ni-1.5 | 7.4 | 0.707 | 35.8 | 26.2 | 38.0 | 57.7 | 42.3 | 25.0 |
MC-Ni-2 | 4.4 | 0.634 | 38.5 | 29.8 | 31.7 | 56.3 | 43.7 | 14.4 |
Catalysts | aXCO (%) | bS (%) | cSTYROH (mg∙gcat−1∙h−1) | dT, P | H2/CO | Reactor Type | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
MeOH | C2+OH | HC | |||||||
6.1%Ni/K/Mo2C | 3.7 | 7.8 | 34.8 | 57.4 | 24.5 | 250, 4.0 | 2 | fixed bed | [42] |
6.5%Cu/K/Mo2C | 7.3 | 6.7 | 24.2 | 69.1 | 35.4 | 280, 4.0 | 2 | fixed bed | [42] |
1.5%Rb/Mo2C/Al2O3 | 5.0 | 16.0 | 40.0 | 44.0 | - | 300, 3.0 | 1 | fixed bed | [37] |
K2CO3/Mo2C | 3.8 | 20.1 | 30.4 | 49.5 | 20.0 | 250, 10 | 1 | fixed bed | [54] |
1%Rh/Mo2C/SiO2 | 1.5 | 60.0 | 20.0 | 20.0 | - | 250, 5.8 | 1 | fixed bed | [8] |
MC-Ni-1.5 | 7.4 | 35.8 | 26.2 | 38.0 | 25.0 | 180, 5.0 | 2 | slurry bed | This work |
Catalysts | Mo 3d | ||||
---|---|---|---|---|---|
Mo0 | Mo2+ | Mo4+ | Mo5+ | Mo6+ | |
MC | 0 | 42.7 | 21.7 | 8.8 | 26.8 |
MC-Ni-1 | 13.4 | 43.6 | 23.9 | 10.9 | 8.2 |
MC-Ni-1.5 | 4.6 | 50.2 | 28.3 | 11.9 | 5.0 |
MC-Ni-2 | 2.8 | 55.6 | 23.3 | 9.0 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Li, X.; Tian, Y.; Ding, T.; Yang, G.; Ma, Q.; Tsubaki, N.; Li, X. Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol. Catalysts 2021, 11, 230. https://doi.org/10.3390/catal11020230
Hao Z, Li X, Tian Y, Ding T, Yang G, Ma Q, Tsubaki N, Li X. Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol. Catalysts. 2021; 11(2):230. https://doi.org/10.3390/catal11020230
Chicago/Turabian StyleHao, Zhenjiong, Xiaoshen Li, Ye Tian, Tong Ding, Guohui Yang, Qingxiang Ma, Noritatsu Tsubaki, and Xingang Li. 2021. "Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol" Catalysts 11, no. 2: 230. https://doi.org/10.3390/catal11020230
APA StyleHao, Z., Li, X., Tian, Y., Ding, T., Yang, G., Ma, Q., Tsubaki, N., & Li, X. (2021). Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol. Catalysts, 11(2), 230. https://doi.org/10.3390/catal11020230