Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aesthetics: Color Variation
2.2. Mineralogy
2.3. SEM Inspection of Lab-Scale Formulated Lime Renders
2.4. Mercury Intrusion Porosimetry of the Lime Renders
2.5. BET Surface Area Analysis Results
2.6. Adhesion Test Results
2.7. Photocatalytic NOx Degradation under UV Light
2.8. Photocatalytic Formaldehyde Degradation under Visible Light
3. Experimental
3.1. Materials and Sample Preparation
3.2. Characterization
3.3. Evaluation of Photocatalytic Activity
3.3.1. NOx Degradation Test
3.3.2. Formaldehyde Degradation Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EC. Directive 2010/31/EU of the European Parliament and of the Council of 19 May, 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- Nazaroff, W.W. Exploring the consequences of climate change for indoor air quality. Environ. Res. Lett. 2013, 8, 015022. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.W.F.; Kim, J.T. Low-carbon housings and indoor air quality. Indoor Built Environ. 2012, 21, 5–15. [Google Scholar] [CrossRef]
- Ball, R.J.; Pesce, G.L.; Bowen, A.C.R.; Allen, G.C. Characterisation of lime/metakaolin paste using Impedance Spectroscopy. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 517, pp. 487–494. [Google Scholar] [CrossRef]
- Ansell, M.P.; Ball, R.J.; Lawrence, M.; Maskell, D.; Shea, A.; Walker, P. Green composites for the built environment. In Green Composites; Woodhead Publishing: Cambridge, UK, 2017; pp. 123–148. [Google Scholar]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.M.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Crump, D.R.; Squire, R.W.; Yu, C.W.F. Sources and concentrations of formaldehyde and other volatile organic compounds in the indoor air of four newly built unoccupied test houses. Indoor Built Environ. 1997, 6, 45–55. [Google Scholar] [CrossRef]
- Kolarik, B.; Gunnarsen, L.; Logadottir, A.; Funch, L.W. Concentrations of formaldehyde in new Danish residential buildings in relation to WHO recommendations and CEN requirements. Indoor Built Environ. 2012, 21, 552–561. [Google Scholar] [CrossRef]
- Da Silva, C.F.; Stefanowski, B.; Maskell, D.; Ormondroyd, G.A.; Ansell, M.P.; Dengel, A.C.; Ball, R.J. Improvement of indoor air quality by MDF panels containing walnut shells. Build. Environ. 2017, 123, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Albadra, D.; Kuchai, N.; Acevedo-De-los-Ríos, A.; Rondinel-Oviedo, D.; Coley, D.; da Silva, C.F.; Rana, C.; Mower, K.; Dengel, A.; Maskell, D.; et al. Measurement and analysis of air quality in temporary shelters on three continents. Build. Environ. 2020, 185, 107259. [Google Scholar] [CrossRef]
- Burge, P.S. Sick building syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.K.; Rahaman, P.F. A study on the potential applications of rice husk derivatives as useful adsorptive material. Inorg. Pollut. Wastewater Methods Anal. Remov. Treat. 2017, 16, 149–186. [Google Scholar]
- Carneiro, J.F.; Trevelin, L.C.; Lima, A.S.; Meloni, G.N.; Bertotti, M.; Hammer, P.; Bertazzoli, R.; Lanza, M.R. Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis 2017, 8, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Ren, H.; Koshy, P.; Chen, W.F.; Qi, S.; Sorrell, C.C. Photocatalytic materials and technologies for air purification. J. Hazard. Mater. 2017, 325, 340–366. [Google Scholar] [CrossRef]
- Da Silva, C.F.F.P.; Rana, C.; Maskell, D.; Dengel, A.; Ansell, M.P.; Ball, R.J. Influence of eco-materials on indoor air quality. Green Mater. 2016, 4, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Nuño, M.; Pesce, G.L.; Bowen, C.R.; Xenophontos, P.; Ball, R.J. Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings. Build. Environ. 2015, 92, 734–742. [Google Scholar] [CrossRef]
- Nuño, M.; Ball, R.J.; Bowen, C.R. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry. J. Mass Spectrom. 2014, 49, 716–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuño, M.; Ball, R.J.; Bowen, C.R.; Kurchania, R.; Sharma, G.D. Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. J. Mater. Sci. 2015, 50, 4822–4835. [Google Scholar] [CrossRef] [Green Version]
- Nuño, M.; Ball, R.J.; Bowen, C.R. Photocatalytic properties of commercially available TiO2 powders for pollution control. In Semiconductor Photocatalysis-Materials, Mechanisms and Applications; IntechOpen: London, UK, 2016. [Google Scholar]
- Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632–2636. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ao, C.H.; Lee, S.C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 2005, 60, 103–109. [Google Scholar] [CrossRef]
- Paz, Y.; Luo, Z.; Rabenberg, L.; Heller, A. Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 1995, 10, 2842–2848. [Google Scholar] [CrossRef]
- Paz, Y. Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl. Catal. B Environ. 2010, 99, 448–460. [Google Scholar] [CrossRef]
- Zhong, L.; Brancho, J.J.; Batterman, S.; Bartlett, B.M.; Godwin, C. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Appl. Catal. B Environ. 2017, 216, 122–132. [Google Scholar] [CrossRef]
- Zhong, L.; Haghighat, F. Photocatalytic air cleaners and materials technologies–Abilities and limitations. Build. Environ. 2015, 91, 191–203. [Google Scholar] [CrossRef]
- Almquist, C.B.; Biswas, P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catal. 2002, 212, 145–156. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef] [PubMed]
- Şen, Z. Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cheng, X.; Yu, X.; Xing, Z.; Wan, J. Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particle under simulated sunlight irradiation. Energy Procedia 2012, 16, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Giampiccolo, A.; Tobaldi, D.M.; Leonardi, S.G.; Murdoch, B.J.; Seabra, M.P.; Ansell, M.P.; Neri, G.; Ball, R.J. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B Environ. 2019, 243, 183–194. [Google Scholar] [CrossRef]
- Nuño, M.; Adamaki, V.; Tobaldi, D.M.; Hortigüela Gallo, M.J.; Otero-Irurueta, G.; Bowen, C.R.; Ball, R.J. Solid-gas phase photo-catalytic behaviour of rutile and TiO n (1 < n < 2) sub-oxide phases for self-cleaning applications. Materials 2019, 12, 170. [Google Scholar]
- Herrmann, J.M. Detrimental cationic doping of titania in photocatalysis: Why chromium Cr3+-doping is a catastrophe for photocatalysis, both under UV-and visible irradiations. New J. Chem. 2012, 36, 883–890. [Google Scholar] [CrossRef]
- Subramanian, V.; Wolf, E.E.; Kamat, P.V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950. [Google Scholar] [CrossRef] [PubMed]
- Tobaldi, D.M.; Hortigüela Gallo, M.J.; Otero-Irurueta, G.; Singh, M.K.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A. Purely visible-light-induced photochromism in Ag–TiO2 nanoheterostructures. Langmuir 2017, 33, 4890–4902. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Fendler, J.H.; Roy, D. Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1, 6-hexanedithiol. J. Phys. Chem. B 2001, 105, 11159–11168. [Google Scholar] [CrossRef]
- Long, R.; English, N.J. New Insights into the Band-Gap Narrowing of (N, P)-Codoped TiO2 from Hybrid Density Functional Theory Calculations. ChemPhysChem 2011, 12, 2604–2608. [Google Scholar] [CrossRef] [PubMed]
- Tobaldi, D.M.; Seabra, M.P.; Otero-Irurueta, G.; De Miguel, Y.R.; Ball, R.J.; Singh, M.K.; Pullar, R.C.; Labrincha, J.A. Quantitative XRD characterisation and gas-phase photocatalytic activity testing for visible-light (indoor applications) of KRONOClean 7000®. RSC Adv. 2015, 5, 102911–102918. [Google Scholar] [CrossRef] [Green Version]
- Giampiccolo, A.; Ball, R.; Ansell, M.; Maskell, D. Synthesis of Co-doped TiO2 nanostructures for novel photo-catalytic coatings. In Proceedings of the Energy forum on Advanced Building Skins, Bressanone, Italy, 28–29 October 2014; Available online: https://researchportal.bath.ac.uk/en/publications/synthesis-of-co-doped-tio2-nanostructures-for-novel-photo-catalyt (accessed on 22 December 2020).
- Giampiccolo, A.; Ansell, M.P.; Tobaldi, D.M.; Ball, R.J. Synthesis of Co–TiO2 nanostructured photocatalytic coatings for MDF substrates. Green Mater. 2016, 4, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.A.K.; Reddy, P.V.L.; Kwon, E.; Kim, K.H.; Akter, T.; Kalagara, S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 2016, 91, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Afshar, S.; Zabihi, O.; Naebe, M. Enhanced photocatalytic activities of TiO2–SiO2 nanohybrids immobilized on cement-based materials for dye degradation. Res. Chem. Intermed. 2016, 42, 2963–2978. [Google Scholar] [CrossRef]
- Calia, A.; Lettieri, M.; Masieri, M. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Build. Environ. 2016, 110, 1–10. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Tucci, A.; Camera-Roda, G.; Baldi, G.; Esposito, L. Photocatalytic activity for exposed building materials. J. Eur. Ceram. Soc. 2008, 28, 2645–2652. [Google Scholar] [CrossRef]
- Bergamonti, L.; Bondioli, F.; Alfieri, I.; Lorenzi, A.; Mattarozzi, M.; Predieri, G.; Lottici, P.P. Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Appl. Phys. A 2016, 122, 124. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Kamaruddin, S.; Stephan, D. Sol–gel Mediated Coating and Characterization of Photocatalytic Sand and Fumed Silica for Environmental Remediation. Water Air Soil Pollut. 2014, 225, 1948. [Google Scholar] [CrossRef]
- Sugrañez, R.; Cruz-Yusta, M.; Mármol, I.; Martín, F.; Morales, J.; Sánchez, L. Use of industrial waste for the manufacturing of sustainable building materials. ChemSusChem 2012, 5, 694–699. [Google Scholar] [CrossRef]
- Folli, A.; Pade, C.; Hansen, T.B.; De Marco, T.; Macphee, D.E. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cem. Concr. Res. 2012, 42, 539–548. [Google Scholar] [CrossRef]
- Maggos, T.; Plassais, A.; Bartzis, J.G.; Vasilakos, C.; Moussiopoulos, N.; Bonafous, L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ. Monit. Assess. 2008, 136, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, M.V.; Ormellese, M.; Pedeferri, M. Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem. Concr. Res. 2008, 38, 1349–1353. [Google Scholar] [CrossRef]
- Park, S.M.; Chekli, L.; Kim, J.B.; Shahid, M.; Shon, H.K.; Kim, P.S.; Lee, W.S.; Lee, W.E.; Kim, J.H. NOx removal of mortar mixed with titania produced from Ti-salt flocculated sludge. J. Ind. Eng. Chem. 2014, 20, 3851–3856. [Google Scholar] [CrossRef]
- Vieira, J.; Senff, L.; Gonçalves, H.; Silva, L.; Ferreira, V.M.; Labrincha, J.A. Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build. 2014, 70, 224–236. [Google Scholar] [CrossRef]
- Lucas, S.S.; Ferreira, V.M.; De Aguiar, J.A.L.B. Incorporation of titanium dioxide nanoparticles in mortars—Influence of microstructure in the hardened state properties and photocatalytic activity. Cem. Concr. Res. 2013, 43, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Vulic, T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic-Neducin, R.; Ranogajec, J. Improvement of cement-based mortars by application of photocatalytic active Ti–Zn–Al nanocomposites. Cem. Concr. Compos. 2013, 36, 121–127. [Google Scholar] [CrossRef]
- Tasbihi, M.; Bendyna, J.K.; Notten, P.H.L. A short review on photocatalytic degradation of formaldehyde. J. Nanosci. Nanotechnol. 2015, 15, 6386–6396. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Fujishima, A.; Sawunyama, P.; Hashimoto, K. Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ. Sci. Technol. 1998, 32, 3831–3833. [Google Scholar] [CrossRef]
- Ince, C.; Derogar, S.; Gurkaya, K.; Ball, R.J. Properties, durability and cost efficiency of cement and hydrated lime mortars reusing copper mine tailings of Lefke-Xeros in Cyprus. Constr. Build. Mater. 2020, 268, 121070. [Google Scholar] [CrossRef]
- Palomar, I.; Barluenga, G.; Ball, R.J.; Lawrence, M. Laboratory characterization of brick walls rendered with a pervious lime-cement mortar. J. Build. Eng. 2019, 23, 241–249. [Google Scholar] [CrossRef]
- Westgate, P.; Ball, R.J.; Paine, K. Olivine as a reactive aggregate in lime mortars. Constr. Build. Mater. 2019, 195, 115–126. [Google Scholar] [CrossRef]
- Westgate, P.; Paine, K.; Ball, R.J. Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres. Constr. Build. Mater. 2018, 158, 472–480. [Google Scholar] [CrossRef] [Green Version]
- El-Turki, A.; Ball, R.J.; Holmes, S.; Allen, W.J.; Allen, G.C. Environmental cycling and laboratory testing to evaluate the significance of moisture control for lime mortars. Constr. Build. Mater. 2010, 24, 1392–1397. [Google Scholar] [CrossRef]
- Ball, R.J.; El-Turki, A.; Allen, W.J.; Nicholson, J.A.; Allen, G.C. Deformation of NHL3.5 and CL90/PC hybrid mortars. Proc. Inst. Civ. Eng. Constr. Mater. 2009, 162, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Margalha, M.G.; Silva, A.S.; Veiga, M.D.R.; Brito, J.D.; Ball, R.J.; Allen, G.C. Microstructural changes of lime putty during aging. J. Mater. Civ. Eng. 2013, 25, 1524–1532. [Google Scholar] [CrossRef]
- Serrapede, M.; Pesce, G.L.; Ball, R.J.; Denuault, G. Nanostructured Pd hydride microelectrodes: In situ monitoring of pH variations in a porous medium. Anal. Chem. 2014, 86, 5758–5765. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.; Pesce, G.L.; Ball, R.J.; Molinari, M.; Parker, S.C. An experimental and computational study to resolve the composition of dolomitic lime. RSC Adv. 2016, 6, 16066–16072. [Google Scholar] [CrossRef] [Green Version]
- Pesce, G.L.; Fletcher, I.W.; Grant, J.; Molinari, M.; Parker, S.C.; Ball, R.J. Carbonation of Hydrous Materials at the Molecular Level: A Time of Flight-Secondary Ion Mass Spectrometry, Raman and Density Functional Theory Study. Cryst. Growth Des. 2017, 17, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- El-Turki, A.; Carter, M.A.; Wilson, M.A.; Ball, R.J.; Allen, G.C. A microbalance study of the effects of hydraulicity and sand grain size on carbonation of lime and cement. Constr. Build. Mater. 2009, 23, 1423–1428. [Google Scholar] [CrossRef]
- Sharma, G.; Bala, R. Digital Color Imaging Handbook; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Despotou, E.; Shtiza, A.; Schlegel, T.; Verhelst, F. Literature study on the rate and mechanism of carbonation of lime in mortars/Literaturstudie über Mechanismus und Grad der Karbonatisierung von Kalkhydrat im Mörtel. Mauerwerk 2016, 20, 124–137. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- BCB. Enduit mince chaux aérienne pour dressement et finition intérieurs, 80 teintes. Tradic. Décor 2016, 09, 1–3. [Google Scholar]
- BSI. EN 196-1: 2016, Methods of Testing Cement, Determination of strength. Br. Stand. Inst. 2016. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030291447 (accessed on 24 February 2021).
- International Organization for Standardization. Determination of the Specific Surface Area of Solids by Gas Adsorption: BET Method. In Technical Committees ISO/TC 24 Particle Characterization Including Sieving. SC 4, Part. Charact, Geneva, Switzerland; 2010; Available online: https://www.iso.org/committee/47166.html (accessed on 24 February 2021).
- ČSN, E.N. 1015-12: 2000 Methods of test for mortar for masonry-Part 12: Determination of adhesive strength of hardened rendering and plastering mortars on substrates. In Test Methods; BSI: London, UK; ISBN 0 580 34890 3. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030015539 (accessed on 22 December 2020).
- International Organization for Standardization. ISO 22197-1: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for air-purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide; No. 22197–1; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- International Organization for Standardization. ISO 18560:1 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials by Test Chamber Method under Indoor Lighting Environment—Part 1: Removal of Formaldehyde; ISO: Geneva, Switzerland, 2014. [Google Scholar]
Sample | L* | a* | b* | ΔE* | Noticeable Difference |
---|---|---|---|---|---|
ETD | 90.07 | 0.14 | 4.37 | 0 | n/a |
ETDK2 | 91.16 | 0.11 | 4.17 | 1.11 | No |
ETDK3 | 91.51 | 0.18 | 4.03 | 1.48 | No |
ETDK5 | 90.81 | 0.26 | 4.46 | 0.76 | No |
Sample | Porosity (%) | Skeletal (g/cm3) | Bulk (g/cm3) | Average Pore Ø (µm) |
---|---|---|---|---|
ETD | 29 | 2.5 | 1.8 | 1.0 |
ETDK2 | 30 | 2.5 | 1.7 | 0.9 |
ETDK3 | 30 | 2.5 | 1.7 | 0.9 |
ETDK5 | 33 | 2.5 | 1.7 | 0.8 |
Sample | Test Point | Test Surface | Load (N) | Resistance (MPa) | Fracture Zone | ||
---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm2) | |||||
ETD | 1 | 48 | 46 | 2208 | 231 | 0.10 | 100% PF80 substrate |
2 | 51 | 46 | 2346 | 258 | 0.11 | ||
3 | 50 | 46 | 2300 | 270 | 0.12 | ||
4 | 49 | 53 | 2597 | 307 | 0.12 | ||
Average | 207 | 0.11 | |||||
ETDK2 | 1 | 47 | 50 | 2350 | 307 | 0.13 | 100% PF80 substrate. |
2 | 49 | 46 | 2254 | 248 | 0.11 | 70% PF80 substrate–30% coating limit. | |
3 | 48 | 47 | 2256 | 294 | 0.13 | 90% PF80 substrate–10% coating limit. | |
4 | 50 | 45 | 2250 | 269 | 0.12 | 80% PF80 substrate–20% coating limit. | |
Average | 280 | 0.12 | |||||
ETDK3 | 1 | 50 | 50 | 2500 | 307 | 0.12 | 100% PF80 substrate |
2 | 49 | 44 | 2156 | 301 | 0.14 | ||
3 | 50 | 50 | 2500 | 434 | 0.17 | ||
4 | 48 | 48 | 2304 | 454 | 0.20 | ||
Average | 374 | 0.16 | |||||
ETDK5 | 1 | 48 | 47 | 2256 | 348 | 0.15 | 100% PF80 substrate |
2 | 51 | 45 | 2295 | 343 | 0.15 | ||
3 | 50 | 49 | 2450 | 366 | 0.15 | ||
4 | 50 | 46 | 2300 | 308 | 0.13 | ||
Average | 341 | 0.15 |
Sample | NO Reduction (%) | NOx Reduction (%) |
---|---|---|
ETD | 7.1 | 5.4 |
ETDK2 | 7.7 | 5.4 |
ETDK3 | 11.2 | 10.6 |
ETDK5 | 13.1 | 12.3 |
Sample | CRes(Phase 1) Own Emission without Light (ppb) | CRes(Phase 2) Own Emission with Light (ppb) | CRes(Phase 3) Own Emission with Light + Addition of Formaldehyde (ppb) | CRes(Phase 4) Own Emission without Light + Addition of Formaldehyde (ppb) |
---|---|---|---|---|
ETDK2 | 1 | 10 | 75 | 73 |
ETDK3 | 1 | 11 | 75 | 73 |
ETDK5 | 1 | 11 | 75 | 72 |
Sample | CRedL (Equation (7)) (ppb) Cin = 90 | Reduction by Photocatalysis (%) | Standard Deviation (%) | CRedA (Equation (9)) (ppb) Cin = 90 | Reduction by Adsorption (%) | Standard Deviation (%) |
---|---|---|---|---|---|---|
ETD | 6 | 6.7 | 2.7 | 16 | 17.8 | 2.4 |
ETDK2 | 9 | 10.0 | 2.5 | 18 | 20.0 | 2.5 |
ETDK3 | 10 | 11.1 | 3.5 | 18 | 20.0 | 2.9 |
ETDK5 | 9 | 10.0 | 2.5 | 19 | 21.1 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez Gómez, J.A.; Giampiccolo, A.; Tobaldi, D.M.; Mair, S.; da Silva, C.F.; Barrasa, M.C.; Maskell, D.; Ansell, M.P.; Kurchania, R.; Mayer, F.; et al. Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement. Catalysts 2021, 11, 296. https://doi.org/10.3390/catal11030296
Ibáñez Gómez JA, Giampiccolo A, Tobaldi DM, Mair S, da Silva CF, Barrasa MC, Maskell D, Ansell MP, Kurchania R, Mayer F, et al. Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement. Catalysts. 2021; 11(3):296. https://doi.org/10.3390/catal11030296
Chicago/Turabian StyleIbáñez Gómez, José Antonio, Andrea Giampiccolo, David Maria Tobaldi, Sabine Mair, Carla Forbela da Silva, Maria Casado Barrasa, Daniel Maskell, Martin Philip Ansell, Rajnish Kurchania, Florian Mayer, and et al. 2021. "Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement" Catalysts 11, no. 3: 296. https://doi.org/10.3390/catal11030296
APA StyleIbáñez Gómez, J. A., Giampiccolo, A., Tobaldi, D. M., Mair, S., da Silva, C. F., Barrasa, M. C., Maskell, D., Ansell, M. P., Kurchania, R., Mayer, F., Labrincha, J. A., de Miguel, Y. R., & Ball, R. J. (2021). Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement. Catalysts, 11(3), 296. https://doi.org/10.3390/catal11030296