Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. XRD Analysis
2.2. TGA Analysis
2.3. SEM Analysis
2.4. TEM Analysis
2.5. XPS Analysis
3. Discussion
3.1. Catalytic Activity
3.1.1. Effect of Aging Time
3.1.2. Optimization of Calcination Temperature
3.1.3. Optimization of Flow Rate
3.1.4. Extended Catalytic Activity Evaluation
4. Materials and Methods
4.1. Synthesis of CuxZnyO Mixed Metal Oxide Nanoparticles
4.2. Characterization of Nanoparticles
4.3. Catalytic Activity of CuxZnyO Mixed Metal Oxide Nanoparticles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Partenheimer, W. Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catal. Today 1995, 23, 69–158. [Google Scholar] [CrossRef]
- Romero, A.; Irigoyen, B.; Larrondo, S.; Jacobo, S.; Amadeo, N. Effect of Fe doped over V–Sb oxide catalyst in toluene selective oxidation. Catal. Today 2008, 133–135, 775–779. [Google Scholar] [CrossRef]
- Deori, K.; Kalita, C.; Deka, S. (100) surface-exposed CeO2nanocubes as an efficient heterogeneous catalyst in the tandem oxidation of benzyl alcohol, para-chlorobenzyl alcohol and toluene to the corresponding aldehydes selectively. J. Mater. Chem. A 2015, 3, 6909–6920. [Google Scholar] [CrossRef]
- Mal, D.D.; Khilari, S.; Pradhan, D. Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: A noble metal-free approach. Green Chem. 2018, 20, 2279–2289. [Google Scholar] [CrossRef]
- Mao, Y.; Bakac, A. Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular Oxygen. J. Phys. Chem. 1996, 100, 4219–4223. [Google Scholar] [CrossRef]
- Satrio, J.A.; Doraiswamy, L. Production of benzaldehyde: A case study in a possible industrial application of phase-transfer catalysis. Chem. Eng. J. 2001, 82, 43–56. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Yang, J.; Fu, T.; Xue, N.; Peng, L.; Guo, X.; Ding, W. A sintering-resistant Pd/SiO2 catalyst by reverse-loading nano iron oxide for aerobic oxidation of benzyl alcohol. RSC Adv. 2015, 5, 4766–4769. [Google Scholar] [CrossRef]
- Savara, A.; Chan-Thaw, C.E.; Rossetti, I.; Villa, A.; Prati, L. Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem 2014, 6, 3464–3473. [Google Scholar] [CrossRef]
- Veisi, H.; Nikseresht, A.; Mohammadi, S.; Hemmati, S. Facile in-situ synthesis and deposition of monodisperse palladium nanoparticles on polydopa-mine-functionalized silica gel as a heterogeneous and recyclable nanocatalyst for aerobic oxidation of alcohols. Chin. J. Catal. 2018, 39, 1044–1050. [Google Scholar] [CrossRef]
- Li, W.; Ye, H.; Liu, G.; Ji, H.; Zhou, Y.; Han, K. The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene. Chin. J. Catal. 2018, 39, 946–954. [Google Scholar] [CrossRef]
- Assal, M.E.; Kuniyil, M.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Tremel, W.; Tahir, M.N.; Adil, S.F. Synthesis and Comparative Catalytic Study of Zirconia-MnCO3 or -Mn2O3 for the Oxidation of Benzylic Alcohols. ChemistryOpen 2017, 6, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Khan, S.M.A.; Tremel, W.; Nawaz Tahir, M.; Adil, S.F. A highly reduced graphene oxide/ZrOx–MnCO3 or–Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Adv. 2017, 7, 55336–55349. [Google Scholar] [CrossRef] [Green Version]
- Adil, S.F.; Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Al Otaibi, N.M.; Khan, M.; Sharif, M.; Alam, M.M.; Al-Warthan, A.; Ali Mohammed, J.; et al. A Facile Synthesis of ZrOx-MnCO3/Graphene Oxide (GRO) Nanocomposites for the Oxidation of Alcohols using Molecular Oxygen under Base Free Conditions. Catalysts 2019, 9, 759. [Google Scholar] [CrossRef] [Green Version]
- Kuniyil, M.; Kumar, J.V.S.; Adil, S.F.; Assal, M.E.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Khan, A.; Bilal, M.; et al. Eco-Friendly and Solvent-Less Mechanochemical Synthesis of ZrO2–MnCO3/N-Doped Graphene Nanocomposites: A Highly Efficacious Catalyst for Base-Free Aerobic Oxidation of Various Types of Alcohols. Catalysts 2020, 10, 1136. [Google Scholar] [CrossRef]
- Wagner, C. The Mechanism of the Decomposition of Nitrous Oxide on Zinc Oxide as Catalyst. J. Chem. Phys. 1950, 18, 69. [Google Scholar] [CrossRef]
- Menezes, P.W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M. Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. J. Mater. Chem. A 2016, 4, 10014–10022. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Long, J.R.; Fabrizi de Biani, F.; Gatteschi, D.; Stavropoulos, P. Synthesis, reactivity, and catalytic behavior of iron/zinc-containing species involved in oxidation of hydro-carbons under Gif-type conditions. J. Am. Chem. Soc. 1997, 119, 7030–7047. [Google Scholar] [CrossRef]
- Priyanka; Srivastava, V.C. Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide. Ind. Eng. Chem. Res. 2013, 52, 17790–17799. [Google Scholar] [CrossRef]
- Adil, S.F.; Assal, M.E.; Kuniyil, M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Labis, J.P.; Siddiqui, M.R.H. Synthesis and Comparative Catalytic Study of Zinc Oxide (ZnOx) Nanoparticles Promoted MnCO3, MnO2 and Mn2O3 for Selective Oxidation of Benzylic Alcohols Using Molecular Oxygen. Mater. Express 2017, 7, 79–92. [Google Scholar] [CrossRef]
- Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Khan, M.; Alzahrani, A.Y.; Al-Warthan, A.; Siddiqui, M.R.H.; Adil, S.F. Mixed Zinc/Manganese on Highly Reduced Graphene Oxide: A Highly Active Nanocomposite Catalyst for Aerial Oxidation of Benzylic Alcohols. Catalysts 2017, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Adil, S.F.; Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Hashmi, A.; Khan, M.; Khan, A.; Tahir, M.N.; Al-Warthan, A.; Siddiqui, M.R.H. Efficient aerial oxidation of different types of alcohols using ZnO nanoparticle–MnCO3 -graphene oxide composites. Appl. Organomet. Chem. 2020, 34. [Google Scholar] [CrossRef]
- Kuniyil, M.; Shanmukha Kumar, J.V.; Adil, S.F.; Assal, M.E.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H. Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an effi-cient heterogeneous catalyst. Arab. J. Chem. 2021, 14, 102982. [Google Scholar] [CrossRef]
- Li, Y.; Gan, L.; Si, R. Effect of tungsten oxide on ceria nanorods to support copper species as CO oxidation catalysts. J. Rare Earths 2021, 39, 43–50. [Google Scholar] [CrossRef]
- Lee, H.J.; Yang, J.H.; You, J.H.; Yoon, B.Y. Sea-urchin-like mesoporous copper-manganese oxide catalysts: Influence of copper on benzene oxidation. J. Ind. Eng. Chem. 2020, 89, 156–165. [Google Scholar] [CrossRef]
- Mishra, S.; Bal, R.; Dey, R. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol. Mol. Catal. 2021, 499, 111310. [Google Scholar] [CrossRef]
- Adil, S.F.; Alabbad, S.; Kuniyil, M.; Khan, M.; Alwarthan, A.; Mohri, N.; Tremel, W.; Nawaz Tahir, M.; Rafiq, M.; Siddiqui, H. Vanadia Supported on Nickel Manganese Oxide Nanocatalysts for the Catalytic Oxidation of Aromatic Al-cohols. Nanoscale Res. Lett. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Kishore, D.; Kuniyil, M.; Khan, M.; Alwarthan, A.; Prasad, K.; Labis, J.P.; Adil, S.F. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization. Arab. J. Chem. 2015, 8, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Khan, M.; Kuniyil, M.; Adil, S.F.; Al-Warthan, A.; Alkhathlan, H.Z.; Tremel, W.; Nawaz Tahir, M.; Siddiqui, M.R.H. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Trans. 2014, 43, 9026–9031. [Google Scholar] [CrossRef]
- Khan, M.; Albalawia, G.H.; Shaik, M.R.; Khan, M.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Siddiquia, M.R.H. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. J. Saudi Chem. Soc. 2017, 21, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Bowker, M.; Hadden, R.A.; Houghton, H.; Hyland, J.N.K.; Waugh, K.C. ChemInform Abstract: The Mechanism of Methanol Synthesis on Copper/Zinc Oxide/Alumina Catalysts. ChemInform 1988, 19, 263–273. [Google Scholar] [CrossRef]
- Taylor, S.H.; Hutchings, G.J.; Mirzaei, A.A. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chem. Commun. 1999, 1999, 1373–1374. [Google Scholar] [CrossRef]
- Whittle, D.M.; Mirzaei, A.A.; Hargreaves, J.S.J.; Joyner, R.W.; Kiely, C.J.; Taylor, S.H.; Hutchings, G.J. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Phys. Chem. Chem. Phys. 2002, 4, 5915–5920. [Google Scholar] [CrossRef]
- Huang, T.-J.; Chren, S.-L. Kinetics of partial oxidation of methanol over a copper-zinc catalyst. Appl. Catal. 1988, 40, 43–52. [Google Scholar] [CrossRef]
- Chaudhuri, P.; Hess, M.; Müller, J.; Hildenbrand, K.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Aerobic Oxidation of Primary Alcohols (Including Methanol) by Copper (II)− and Zinc (II)−Phenoxyl Radical Catalysts. J. Am. Chem. Soc. 1999, 121, 9599–9610. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ghose, R. Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceram. Int. 2014, 40, 10919–10926. [Google Scholar] [CrossRef]
- Al-Zaqri, N.; Alsalme, A.; Adil, S.F.; Alsaleh, A.; Alshammari, S.G.; Alresayes, S.I.; Alotaibi, R.; Al-Kinany, M.; Siddiqui, M.R.H. Comparative catalytic evaluation of nickel and cobalt substituted phosphomolybdic acid catalyst supported on silica for hydrodesulfurization of thiophene. J. Saudi Chem. Soc. 2017, 21, 965–973. [Google Scholar] [CrossRef]
- Boddapati, S.N.M.; Tamminana, R.; Gollapudi, R.K.; Nurbasha, S.; Assal, M.E.; Alduhaish, O.; Siddiqui, M.R.H.; Bollikolla, H.B.; Adil, S.F. Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles. Molecules 2020, 25, 1788. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Kuniyil, M.; Shaik, M.R.; Khan, M.; Adil, S.F.; Al-Warthan, A.; Alkhathlan, H.Z.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts 2017, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Alam, M.; Adil, S.F.; Ansari, A.A.; Assal, M.E.; Ramay, S.M.; Ahmed, M.; Alam, M.M.; Siddiqui, M.R.H. Synthesis, characterization, and selective benzyl alcohol aerobic oxidation over Ni-loaded BaFeO3 meso-porous catalyst. J. King Saud Univ. Sci. 2020, 32, 2059–2068. [Google Scholar] [CrossRef]
- Assal, M.E.; Kuniyil, M.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Adil, S.F. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3–MnO2, and–Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols. J. Chem. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Shaik, M.R.; Adil, S.F.; Kuniyil, M.; Ashraf, M.; Frerichs, H.; Sarif, M.A.; Siddiqui, M.R.H.; Al–Warthan, A.; Labis, J.P.; et al. Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Alduhaish, O.; Adil, S.F.; Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Manqari, K.M.; Sekou, D.; Khan, M.; Khan, A.; Dewidar, A.Z. Synthesis and Characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols. Processes 2020, 8, 910. [Google Scholar] [CrossRef]
- Shuai, M.; Liao, L.; Lu, H.B.; Zhang, L.; Li, J.C.; Fu, D.J. Room-temperature ferromagnetism in Cu+ implanted ZnO nanowires. J. Phys. D Appl. Phys. 2008, 41, 135010. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Liu, W. Full-Spectrum Photocatalytic Activity of ZnO/CuO/ZnFe2O4 Nanocomposite as a PhotoFen-ton-Like Catalyst. Catalysts 2018, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Fan, D.; Shen, W. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. 2013, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Kim, I.; Kang, J.Y.; Yan, N.; Jeong, H.; Park, J.K.; Park, J.H.; Jung, J.C. Effect of the aging time of the precipitate on the activity of Cu/ZnO catalysts for alcohol-assisted low temper-ature methanol synthesis. J. Mol. Catal. A Chem. 2016, 418, 168–174. [Google Scholar] [CrossRef]
- Okunaka, S.; Tokudome, H.; Hitomi, Y. Selective oxidation of toluene to benzaldehyde over Pd/BiVO4 particles under blue to green light irradiation. J. Catal. 2020, 391, 480–484. [Google Scholar] [CrossRef]
- Deng, C.; Xu, M.; Dong, Z.; Li, L.; Yang, J.; Guo, X.; Peng, L.; Xue, N.; Zhu, Y.; Ding, W. Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexa-decylphosphate acid terminated mixed-oxide nanoparticles. Chin. J. Catal. 2020, 41, 341–349. [Google Scholar] [CrossRef]
- Shi, G.; Xu, S.; Bao, Y.; Xu, J.; Liang, Y. Selective aerobic oxidation of toluene to benzaldehyde on immobilized CoOx on SiO2 catalyst in the presence of N-hydroxyphthalimide and hexafluoropropan-2-ol. Catal. Commun. 2019, 123, 73–78. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Si, C.; Li, M.; Han, Q.; Wang, Z.; Zhao, J. Special-selective C–H oxidation of toluene to benzaldehyde by a hybrid polyoxometalate photocatalyst including a rare [P6W48Fe6O180]30– anion. J. Catal. 2020, 392, 244–253. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Xu, Y.; Zuo, J.; Qin, Z. Highly efficient V-Mo-Fe-O catalysts for selective oxidation of toluene to benzaldehyde. Catal. Commun. 2016, 86, 72–76. [Google Scholar] [CrossRef]
Calcination Temperature (°C) | Mass (%) | ||||
---|---|---|---|---|---|
Elemental | Compound | ||||
Cu | Zn | O | CuO | ZnO | |
350 | 49.08 | 30.98 | 19.94 | 61.43 | 38.57 |
450 | 51.50 | 28.54 | 19.95 | 64.47 | 35.53 |
550 | 50.28 | 29.78 | 19.95 | 62.93 | 37.07 |
Sl. No. | Catalyst | Temp (°C) | Time | Conversion (%) | Selectivity (%) | Conversion/g/h | Ref. |
---|---|---|---|---|---|---|---|
1 | CuxZnyO | 250 | 4 h | 60 | >99 | 60/0.3/4 | herein |
2 | Pd(0.1%)/BiVO4 | 25 | 15 h | 85 | >90 | 85/0.01/15 | [47] |
3 | HDPA-(Fe2O3-NiO)/Al2O3 | 180 | 4 h | 83 | >99 | 83/0.06/4 | [48] |
4 | CoOx/SiO2 | 25 | 4 h | 91 | 68 | 91/0.005/4 | [49] |
5 | K6(H2O)8H24(C26H16N4O4)8[P6W48Fe6O180]·6H2O (FeW–DPNDI) | 25 | 24 h | 62.5 | >90 | 62.5/.016/24 | [50] |
6 | V-Mo-Fe-O | 80 | 0.5 h | 40.3 | >84 | 40.3/0.2/0.5 | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, K.H.; Alsalme, A.; Aloumi, A.B.A.; Siddiqui, M.R.H. Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles. Catalysts 2021, 11, 354. https://doi.org/10.3390/catal11030354
Alharbi KH, Alsalme A, Aloumi ABA, Siddiqui MRH. Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles. Catalysts. 2021; 11(3):354. https://doi.org/10.3390/catal11030354
Chicago/Turabian StyleAlharbi, Khadijah H., Ali Alsalme, Ahmed Bader A. Aloumi, and Mohammed Rafiq H. Siddiqui. 2021. "Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles" Catalysts 11, no. 3: 354. https://doi.org/10.3390/catal11030354
APA StyleAlharbi, K. H., Alsalme, A., Aloumi, A. B. A., & Siddiqui, M. R. H. (2021). Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles. Catalysts, 11(3), 354. https://doi.org/10.3390/catal11030354