Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Results
2.2. Catalyst Characterization
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Bhadury, P.S.; Riisager, A.; Yang, S. One-pot transformation of polysaccharides via multi-catalytic processes. Catal. Sci. Technol. 2014, 4, 4138–4168. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16, 516–547. [Google Scholar] [CrossRef] [Green Version]
- Roman-Leshkov, Y.; Barret, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Van Putten, R.-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; De Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. [Google Scholar] [CrossRef]
- Toshinari, M.; Hirokazu, K.; Takenobu, K.; Hirohide, M. Method for Producing Furan-2,5-Dicarboxylic Acid. U.S. Patent No. 2007/0232815A1, 4 October 2007. [Google Scholar]
- Miura, T.; Kakinuma, H.; Kawano, T.; Matshisa, H. Method for Producing Furan-2,5-Dicarboxylic Acid. U.S. Patent No. 7411078B2, 12 August 2008. [Google Scholar]
- Chen, C.; Li, X.; Wang, L.; Liang, T.; Wang, L.; Zhang, Y.; Zhang, J. Highly Porous Nitrogen and Phosphorus-Codoped Graphene: An Outstanding Support for Pd Catalysts to Oxidize 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. ACS Sustain. Chem. Eng. 2017, 5, 1300–11306. [Google Scholar] [CrossRef]
- Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M.-M.; Langer, P.; Steinfeldt, N. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Appl. Catal. A 2014, 478, 107–116. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, J.; Du, Z.; Zong, B.; Liu, H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts. Sci. China Chem. 2017, 60, 950–957. [Google Scholar] [CrossRef]
- Megías-Sayago, C.; Lolli, A.; Ivanova, S.; Albonetti, S.; Cavani, F.; Odriozola, J.A. Au/Al2O3—Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid. Catal. Today 2019, 333, 169–175. [Google Scholar] [CrossRef]
- Schade, O.R.; Kalz, K.F.; Neukum, D.; Kleist, W.; Grunwaldt, J.-D. Supported gold- and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to 2,5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid. Green Chem. 2018, 20, 3530–3541. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.E.; Houk, L.R.; Tamargo, E.C.; Datye, A.K.; Davis, R.J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today 2011, 160, 55–60. [Google Scholar] [CrossRef]
- Lolli, A.; Albonetti, S.; Utili, L.; Amadori, R.; Ospitali, F.; Lucarelli, C.; Cavani, F. Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Appl. Catal. A 2015, 504, 408–419. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, W.; Li, S.; Xie, J.; Li, J.; Zhou, Y.; Wang, J. Hydrophilic mesoporous poly(ionic liquid)-supported Au–Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions. Green Chem. 2017, 19, 3820–3830. [Google Scholar] [CrossRef]
- Villa, A.; Schiavoni, M.; Campisi, S.; Veith, G.M.; Prati, L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem 2013, 6, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Campisi, S.; Capelli, S.; Motta, D.; Trujillo, F.J.S.; Davies, T.E.; Prati, L.; Dimitratos, N.; Villa, A. Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation. Carbon 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Zope, B.N.; Hibbitts, D.D.; Neurock, M.; Davis, R.J. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010, 330, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Pakrieva, E.; Kolobova, E.; Mamontov, G.; Bogdanchikova, N.; Farias, M.H.; Pascual, L.; Cortés Corberán, V.; Martinez Gonzalez, S.; Carabineiro, S.A.C.; Pestryakov, A. Green oxidation of n-octanol on supported nanogold catalysts: Formation of gold active sites under combined effect of gold content, additive nature and redox pretreatment. ChemCatChem 2019, 11, 1615–1624. [Google Scholar] [CrossRef]
- Pakrieva, E.; Kolobova, E.; Kotolevich, Y.; Pascual, L.; Carabineiro, S.A.C.; Kharlanov, A.N.; Pichugina, D.; Nikitina, N.; German, D.; Zepeda Partida, T.A.; et al. Effect of gold electronic state on the catalytic performance of nano gold catalysts in n-octanol oxidation. Nanomaterials 2020, 10, 880. [Google Scholar] [CrossRef]
- Pakrieva, E.; Kolobova, E.; German, D.; Stucchi, M.; Villa, A.; Prati, L.; Carabineiro, S.A.; Bogdanchikova, N.; Cortés Corberán, V.; Pestryakov, A. Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes 2020, 8, 1016. [Google Scholar] [CrossRef]
- Kolobova, E.N.; Pakrieva, E.G.; Carabineiro, S.; Bogdanchikova, N.; Kharlanov, A.; Kazantsev, S.O.; Hemming, J.; Mäki-Arvela, P.; Pestryakov, A.N.; Murzin, D. Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts. Green Chem. 2019, 21, 3370–3382. [Google Scholar] [CrossRef] [Green Version]
- Kolobova, E.; Mäki-Arvela, P.; Grigoreva, A.; Pakrieva, E.; Carabineiro, S.A.C.; Peltonen, J.; Kazantsev, S.; Bogdanchikova, N.; Pestryakov, A.; Murzin, D.Y. Catalytic oxidative transformation of betulin to its valuable oxo-derivatives over gold supported catalysts: Effect of support nature. Catal. Today 2020. [Google Scholar] [CrossRef]
- Kolobova, E.; Kotolevich, Y.; Pakrieva, E.; Mamontov, G.; Farias, M.H.; Cortés Corberán, V.; Bogdanchikova, N.; Hemming, J.; Smeds, A.; Mäki-Arvela, P.; et al. Modified Ag/TiO2 systems: Promising catalysts for liquid-phase oxidation of alcohols. Fuel 2018, 234, 110–119. [Google Scholar] [CrossRef]
- Albonetti, S.; Lolli, A.; Morandi, V.; Migliori, A.; Lucarelli, C.; Cavani, F. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Appl. Catal. B Environ. 2015, 163, 520–530. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Zhu, B.; Zhou, Z.; El-Hout, S.I.; Yang, J.; Zhang, J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. J. Energy Chem. 2021, 54, 528–554. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F.; Sepúlveda-Escribano, A. Carbon as Catalyst support. In Carbon Materials for Catalysis; Serp, P., Figueiredo, J.L., Eds.; John Wiley & Sons: New York, NY, USA, 2009; pp. 131–155. [Google Scholar]
- Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A 1998, 173, 259–271. [Google Scholar] [CrossRef]
- Van Santen, R.A.; Van Leeuwen, P.W.N.M.; Moulijn, J.A.; Averill, B.A. Chapter 9: Preparation of catalyst supports, zeolites and mesoporous materials. Chapter 10: Preparation of Supported Catalysts. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1999; Volume 123, pp. 433–485. [Google Scholar]
- Surovikin, V.F.; Surovikin, Y.V.; Tsekhanovich, M.S. New fields in the technology for manufacturing carbon-carbon materials. Application of carbon-carbon materials. Russ. J. Gen. Chem. 2007, 77, 2301–2310. [Google Scholar] [CrossRef]
- Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S.; Tsyrulnikov, P.G.; Shlyapin, D.A.; Schegolev, V.V.; Astrova, D.A.; Laskin, B.M. Catalysts Ru CeO2/Sibunit for catalytic wet air oxidation of aniline and phenol. Top. Catal. 2005, 33, 69–76. [Google Scholar] [CrossRef]
- Madsen, A.T.; RozmysBowicz, B.; Mäki-Arvela, P.; Simakova, I.L.; Eränen, K.; Murzin, D.Y.; Fehrmann, R. Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit. Top. Catal. 2013, 56, 714–724. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Deng, K.J. Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catal. 2015, 5, 6529–6544. [Google Scholar] [CrossRef]
- Gorbanev, Y.Y.; Klitgaard, S.K.; Woodley, J.M.; Christensen, C.H.; Riisager, A. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature. ChemSusChem 2009, 2, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Taran, O.P.; Descorme, C.; Polyanskaya, E.M.; Ayusheyev, A.B.; Besson, M.; Parmon, V.N. Catalysts based on carbon material «Sibunit» for the deep oxidation of organic toxicants in water solutions. Aerobic oxidation of phenol in the presence of oxidized carbon and Ru/C catalysts. Katal. Promyshlennosti 2013, 1, 40–50. (In Russian) [Google Scholar]
- Selen, V.; Güler, Ö.; Özer, D.; Evin, E. Synthesized multi-walled carbon nanotubes as a potential adsorbent for the removal of methylene blue dye: Kinetics, isotherms, and thermodynamics. Desalination Water Treat. 2015, 57, 1–13. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Boronin, A.I.; SIavinskaya, E.M.; Danilova, I.G.; Gulyaev, R.V.; Amosov, Y.; Kuznetsov, P.A.; Polukhina, I.A.; Koscheev, S.V.; Zaikovskii, V.I.; Noskov, A.S. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 2009, 144, 201–211. [Google Scholar] [CrossRef]
- Mirkelamoglu, B.; Karakas, G. The role of alkali-metal promotion on CO oxidation over PdO/SnO2 catalysts. Appl. Catal. A Gen. 2006, 299, 84–94. [Google Scholar] [CrossRef]
- Mucalo, M.R.; Cooney, R.P.; Metson, J.B. Platinum and palladium hydrosols: Characterisation by X-ray photoelectron spectroscopy and transmission electron microscopy. Colloids Surf. 1991, 60, 175–197. [Google Scholar] [CrossRef]
- Kibis, L.S.; Titkov, A.I.; Stadnichenko, A.I.; Koscheev, S.V.; Boronin, A.I. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl. Surf. Sci. 2009, 255, 9248–9254. [Google Scholar] [CrossRef]
- Díez, N.; Moyseowicz, A.; Grylegicz, S.; Grzyb, B.; Gryglewicz, G. Enhanced reduction of graphene oxide by high- pressure hydrothermal treatment. RSC Adv. 2015, 5, 81831–81837. [Google Scholar] [CrossRef]
- Ivanova, A.S.; Korneeva, E.V.; SIavinskaya, E.M.; Zyuzin, D.A.; Moroz, E.M.; Danilova, I.G.; Gulyaev, R.V.; Boronin, A.I.; Stonkus, O.A.; Zaikovskii, V.I. Role of the support in the formation of the properties of a Pd/Al2O3 catalyst for the low-temperature oxidation of carbon monoxide. Kinet. Catal. 2014, 55, 748–762. [Google Scholar] [CrossRef]
- Wertheim, G.K. Core-Electron Binding Energies in Free and Supported Metal Clusters. Z. Phys. B Condens. Matter 1987, 66, 53–63. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, C.; Wang, S.; Yuan, Z.; Wang, S. Catalytic activity of Pd/Al2O3 toward the combustion of methane. Catal. Commun. 2008, 9, 2583–2587. [Google Scholar] [CrossRef]
- Zhou, S.; Hao, G.; Zhou, X.; Jiang, W.; Wang, T.; Zhang, N.; Yu, L. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem. Eng. J. 2016, 302, 155–162. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Sui, Z.-J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y.-C.; Yuan, W.-K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45, 785–796. [Google Scholar] [CrossRef]
- Zhu, J.; Xiong, Z.; Zheng, J.; Luo, Z.; Zhu, G.; Xiao, C.; Meng, Z.; Li, Y. Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction. J. Mater. Sci. Technol. 2019, 35, 2543–2551. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhang, L.; Li, D.-W.; Karpuzov, D.; Long, Y.-T. Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode. Int. J. Electrochem. Sci. 2011, 6, 819–829. [Google Scholar]
- Ye, W.; Li, X.; Zhu, H.; Wang, X.; Wang, S.; Wang, H.; Sun, R. Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties. Chem. Eng. J. 2016, 299, 45–55. [Google Scholar] [CrossRef]
- Jones, C.; Sammann, E. Effect of low power plasmas on carbon fibre surfaces. Carbon 1990, 28, 509–514. [Google Scholar] [CrossRef]
- Mangun, C.L.; Benak, K.R.; Economy, J.; Foster, K.L. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 2001, 39, 1809–1820. [Google Scholar] [CrossRef]
- Jansen, R.J.J.; Van Bekkum, H. XPS of nitrogen-containing by thermal treatment with ammonia or hydrogen cyanide and functional groups on activated carbon. Carbon 1995, 33, 1021–1027. [Google Scholar] [CrossRef]
- Fraga, M.A.; Jordão, E.; Mendes, M.J.; Freitas, M.M.A.; Faria, J.L.; Figueiredo, J.L. Properties of carbon-supported platinum catalysts: Role of carbon surface sites. J. Catal. 2002, 209, 355–364. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R. The role of surface chemistry in catalysis with carbons. Catal. Today 2010, 150, 2–7. [Google Scholar] [CrossRef]
- Maldonado, S.; Morin, S.; Stevenson, K.J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429–1437. [Google Scholar] [CrossRef]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 2010, 89, 143–151. [Google Scholar] [CrossRef]
- Donoeva, B.; Masoud, N.; Petra, E.; Jongh, P.E. Carbon Support Surface Effects in the Gold-Catalyzed Oxidation of 5-Hydroxymethylfurfural. ACS Catal. 2017, 7, 4581–4591. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.T.; Chi, N.V.; Ishiguro, N.; Young, A.P.; Tsung, C.K.; Wu, K.C.W. Engineering a homogeneous alloy-oxide interface derived from metalorganic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Appl. Catal. B 2020, 270, 118805. [Google Scholar] [CrossRef]
- Wang, B.; Yu, L.; Zhang, J.; Pu, Y.; Zhang, H.; Li, W. Phosphorus-doped carbon supports enhance gold-based catalysts for acetylene hydrochlorination. RSC Adv. 2014, 4, 15877–15885. [Google Scholar] [CrossRef]
- Schade, O.; Dolcet, P.; Nefedov, A.; Huang, X.; Saraçi, E.; Wöll, C.; Grunwaldt, J. The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts 2020, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Kolobova, E.; Kotolevich, Y.; Pakrieva, E.G.; Mamontov, G.; Farias, M.H.; Bogdanchikova, N.; Pestryakov, A. Causes of activation and deactivation of modified nanogold catalysts during prolonged storage and redox treatments. Molecules 2016, 21, 486. [Google Scholar] [CrossRef] [Green Version]
- Lahousse, C.; Cors, N.; Ruaux, V.; Grange, P.; Cellier, C. Preparation of Pd on Carbon Black by Deposition—Precipitation: Study of the Effect of the Support Functionalisation. Stud. Surf. Sci. Catal. 2006, 162, 601–608. [Google Scholar] [CrossRef]
- Campisi, S.; Ferri, D.; Villa, A.; Wang, W.; Wang, D.; Kröcher, O.; Prati, L. Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites. J. Phys. Chem. C 2016, 120, 14027–14033. [Google Scholar] [CrossRef]
- Slizhov, Y.G.; Matveeva, T.N.; Minakova, T.S. Acid-base properties of the surface of chromatographic sorbents modified by metal acetylacetonates. Russ. J. Phys. Chem. A 2012, 86, 463–467. [Google Scholar] [CrossRef]
Entry | Catalyst | Conversion, % After 2 h | Selectivity, % | Carbon Balance, % | |
---|---|---|---|---|---|
HFCA | FDCA | ||||
1 | No catalyst | 0 | 0 | 0 | 100 |
2 | No catalyst + NaOH | 30 b | 100 | 0 | 31 |
3 | Au/TiO2 | 97 | 94 | 6 | 95 |
4 | Au/Fe2O3/TiO2 | 98 | 93 | 7 | 95 |
5 | Au/La2O3/TiO2 | 99 | 89 | 11 | 95 |
6 | Au/MgO/TiO2 | 99 | 87 | 13 | 95 |
7 | Au/CeO2/TiO2 | 99 | 84 | 16 | 96 |
8 | Au/AlOOH-C | 99 | 90 | 10 | 95 |
9 | Au/Al2O3-V | 100 | 88 | 12 | 95 |
10 | Au/AlOOH-S | 100 | 80 | 20 | 95 |
11 | Ag/CeO2/TiO2 | 36 | 100 | 0 | 30 |
12 | Pd/AlOOH-S | 97 | 50 | 50 | 100 |
13 | Ag/Cp | 98 | 98 | 2 | 69 |
14 | Au/Cp | 100 | 79 | 21 | 95 |
15 | Pd/Cp | 99 | 45 | 55 | 97 |
16 | PdAu/Cp | 99 | 40 (28) c | 60 (72) | 100 (98) |
17 | PdAu/Cp-HNO3 | 99 | 35 (25) | 65 (75) | 96 (96) |
18 | PdAu/Cp-NH4OH | 99 | 30 (18) | 70 (82) | 98 (95) |
Entry | Catalyst | Conversion, % After 15 min | Selectivity, % | Yield, % | Carbon Balance, % | ||
---|---|---|---|---|---|---|---|
HFCA | FDCA | HFCA | FDCA | ||||
1 | PdAu/Cp | 83 | 69 | 31 | 57 | 26 | 100 |
2 | PdAu/Cp-HNO3 | 80 | 57 | 43 | 46 | 34 | 100 |
3 | PdAu/Cp-NH4OH | 93 | 38 | 62 | 31 | 52 | 95 |
Entry | Sample | BET Surface Area, m2g−1 | Pore Volume, cm3/g | Pore Size, nm |
---|---|---|---|---|
1 | Cp | 281 | 0.48 | 6.1 |
2 | Cp-HNO3 | 329 | 0.62 | 6.7 |
3 | Cp-NH4OH | 318 | 0.58 | 6.4 |
4 | PdAu/Cp | 327 | 0.60 | 6.4 |
5 | PdAu/Cp-HNO3 | 313 | 0.58 | 6.5 |
6 | PdAu/Cp-NH4OH | 331 | 0.62 | 6.5 |
Element Content | PdAu/Cp | PdAu/Cp-HNO3 | PdAu/Cp-NH4OH |
---|---|---|---|
Pd, wt.% | 0.73 | 0.57 | 0.56 |
Au, wt.% | 0.32 | 0.19 | 0.20 |
Catalyst | Pd(0, 2+ or 4+) Relative Content, % | Au(0 or 1+) Relative Content, % | |||
---|---|---|---|---|---|
Pd0 (335.9–336.1 eV) | Pd2+ (337.7–337.8 eV) | Pd4+ (338.7 eV) | Au0 (84.1–84.2 eV) | Au1+ (85.2–85.4 eV) | |
PdAu/Cp | 84 | 9 | 7 | 93 | 7 |
PdAu/Cp-HNO3 | 83 | 10 | 7 | 91 | 9 |
PdAu/Cp-NH4OH | 83 | 12 | 5 | 88 | 12 |
Element | PdAu/Cp | PdAu/Cp-HNO3 | PdAu/Cp-NH4OH |
---|---|---|---|
C1s | 95.3 | 94.3 | 94.3 |
N1s | 0.06 | 0.14 | 0.26 |
O1s | 2.9 | 4.0 | 3.9 |
Pd3d | 1.3 | 1.2 | 1.2 |
Au4f | 0.4 | 0.3 | 0.3 |
Catalyst | Oxygen Relative Content, at.% | |||
---|---|---|---|---|
C=O (531.5–531.6 eV) | C–O (532.5–532.7 eV) | C–OH (533.7–533.9 eV) | O in H2O or COOH (535.0–535.1 eV) | |
PdAu/Cp | 16 | 50 | 28 | 6 |
PdAu/Cp-HNO3 | 18 | 59 | 17 | 6 |
PdAu/Cp-NH4OH | 11 | 53 | 28 | 8 |
Catalyst | Carbon Relative Content, % | |||
---|---|---|---|---|
C–C (284.8 eV) | C–OH (285.5–285.7 eV) | C=O (286.8–287.0 eV) | O–C=O (288.5–288.7 eV) | |
PdAu/Cp | 72 | 21 | 6 | 1 |
PdAu/Cp-HNO3 | 78 | 18 | 4 | 0 |
PdAu/Cp-NH4OH | 74 | 22 | 4 | 0 |
Catalyst | Nitrogen Relative Content, % | ||
---|---|---|---|
Pyridinic N (397.8–398.8 eV) | Aromatic Amines (400.3–400.5 eV) | Quaternary N (401–402.6 eV) | |
PdAu/Cp-HNO3 | 22 | 55 | 23 |
PdAu/Cp-NH4OH | 18 | 76 | 6 |
Indicator | pKa | SAMPLE | |||||
---|---|---|---|---|---|---|---|
Cp | PdAu/Cp | Cp-HNO3 | PdAu/Cp-HNO3 | Cp-NH4OH | PdAu2/Cp-NH4OH | ||
LEWIS BASE | |||||||
2-Nitroaniline | −0.29 | 13.7 | 13.4 | 14.3 | 14.3 | 14.4 | 13.5 |
BRØNSTED ACID | |||||||
2,4,6-Trinitrophenol | 0.71 | 7.0 | 6.9 | 6.9 | 7.0 | 6.9 | 6.9 |
Brilliant green | 1.30 | 3.5 | 3.5 | 2.9 | 3.3 | 3.0 | 3.3 |
3-Nitroaniline | 2.50 | 6.7 | 7.0 | 3.3 | 6.9 | 6.8 | 6.3 |
Methyl orange | 3.46 | 6.6 | 7.1 | 0 | 7.2 | 0 | 7.4 |
Methyl Red | 5.00 | 6.8 | 6.2 | 2.6 | 6.5 | 7.1 | 6.4 |
Bromocresol purple | 6.40 | 2.2 | 0.3 | 0 | 0.3 | 2.0 | 0.4 |
Σ | 32.8 | 31.0 | 16.7 | 31.2 | 25.8 | 30.7 | |
BRØNSTED BASE | |||||||
Catechol | 9.45 | 14.9 | 14.2 | 1.2 | 9.9 | 13.0 | 14.1 |
Nile blue | 10.50 | 3.2 | 3.6 | 3.3 | 3.4 | 3.1 | 3.5 |
Tropaeolin OO | 12.00 | 8.3 | 8.9 | 10.9 | 7.9 | 7.6 | 8.7 |
Σ | 26.4 | 26.7 | 15.4 | 21.2 | 23.7 | 26.3 | |
LEWIS ACID | |||||||
2,4-Dinitrotoluene | 17.20 | 9.0 | 8.3 | 8.7 | 8.1 | 8.8 | 8.8 |
TOTAL | |||||||
Σ | 81.9 | 79.4 | 55.1 | 74.8 | 72.7 | 79.3 |
Entry | Catalyst | N Content, at.% | Relative Content, % | FDCA Yield after 2h, % | |
---|---|---|---|---|---|
Pd2+ | Au+ | ||||
1 | PdAu/Cp | 0.06 | 9 | 7 | 59 |
2 | PdAu/Cp-HNO3 | 0.14 | 10 | 9 | 62 |
3 | PdAu/Cp-NH4OH | 0.26 | 12 | 12 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, D.; Pakrieva, E.; Kolobova, E.; Carabineiro, S.A.C.; Stucchi, M.; Villa, A.; Prati, L.; Bogdanchikova, N.; Cortés Corberán, V.; Pestryakov, A. Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts 2021, 11, 115. https://doi.org/10.3390/catal11010115
German D, Pakrieva E, Kolobova E, Carabineiro SAC, Stucchi M, Villa A, Prati L, Bogdanchikova N, Cortés Corberán V, Pestryakov A. Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts. 2021; 11(1):115. https://doi.org/10.3390/catal11010115
Chicago/Turabian StyleGerman, Dmitrii, Ekaterina Pakrieva, Ekaterina Kolobova, Sónia A. C. Carabineiro, Marta Stucchi, Alberto Villa, Laura Prati, Nina Bogdanchikova, Vicente Cortés Corberán, and Alexey Pestryakov. 2021. "Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support" Catalysts 11, no. 1: 115. https://doi.org/10.3390/catal11010115
APA StyleGerman, D., Pakrieva, E., Kolobova, E., Carabineiro, S. A. C., Stucchi, M., Villa, A., Prati, L., Bogdanchikova, N., Cortés Corberán, V., & Pestryakov, A. (2021). Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts, 11(1), 115. https://doi.org/10.3390/catal11010115