An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union
Abstract
:1. Introduction
2. Fundamentals of SCR Operation and Future Applications
2.1. Basic Principles
2.2. General Architecture of Lean-Burn ATS
2.2.1. Diesel Oxidation Catalyst (DOC)
2.2.2. Ammonia Supply
2.2.3. Ammonia Slip Catalyst (ASC)
- The occurrence of transients causing rapid increases in exhaust temperature;
- Progressive reduction of the NH3 storage capability of SCR catalyst due to ageing;
- Overdosing of urea, normally done in modern units to achieve the high conversions required by legislation;
- Suboptimal design or operation of the DEF dosing system leading to solid deposits that can then, upon temperature increase, release NH3 in an uncontrolled way.
2.3. Catalysts and Supports for SCR
2.4. Low-Temperature Challenges
2.4.1. Advanced Configurations
2.4.2. Active Heating Strategies
2.4.3. SCR on Filters
2.4.4. Passive NOX Adsorbers
2.5. Modelling and Control
3. Evolution of deNOx Regulation and Control Systems
3.1. Light Duty
3.1.1. Emission Standards (Euro 1 to Euro 6d)
3.1.2. Worldwide Harmonised Light-Vehicles Test Procedure (WLTP)
3.1.3. Real-Driving Emissions (RDE) Test Procedure
3.1.4. Market Surveillance and In-Service Conformity
3.1.5. Post-Euro 6
3.2. Heavy Duty
3.2.1. Emission Standards (Euro I to Euro VI-E)
3.2.2. Test Cycles and Procedures
3.2.3. In-Service Conformity and Market Surveillance
3.2.4. Post-Euro VI
4. Results and Effects of Regulation Adoption
4.1. NOx Emission Trends
4.2. Trends in the Chemical Composition of Vehicles’ Exhaust
N2O and NH3
5. Summary and Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- EEA Website. Available online: http://www.eea.europa.eu/themes/air (accessed on 15 March 2021).
- EEA. Air Quality in Europe—2019 Report; EEA Report No 10/2019; European Environment Agency. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 15 March 2021).
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Off. J. Eur. Union 2008, 152, 1–44. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 15 March 2021).
- Suarez-Bertoa, R.; Pechout, M.; Vojtíšek, M.; Astorga, C. Regulated and Non-Regulated Emissions from Euro 6 Diesel, Gasoline and CNG Vehicles under Real-World Driving Conditions. Atmosphere 2020, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 1–20. [Google Scholar] [CrossRef]
- Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Adv. Curr. Pr. Mobil. 2020, 2, 2479–2507. [Google Scholar]
- Tikku, P. Indian Real Driving Emissions (RDE). In Proceedings of the Emission Control Technologies Conference, Pune, India, 15 November 2019. [Google Scholar]
- Cichanowicz, J.E.; Muzio, L.J. Twenty-five years of SCR evolution: Implications for US application and operation. In Proceedings of the EPRI-DOE-EPA Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium, Chicago, IL, USA, 20–23 August 2001. [Google Scholar]
- Forzatti, P.; Lietti, L.; Tronconi, E. Nitrogen Oxides Removal—Industrial. In Encyclopedia of Catalysis; Horváth, I., Ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Commission Regulation (EU) 2018/1832 of 5 November 2018 Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the Purpose of Improving the Emission Type Approval Tests and Procedures for Light Passenger and Commercial Vehicles, Including Those for in-Service Conformity and Real-Driving Emissions and Introducing Devices for Monitoring the Consumption of Fuel and Electric Energy (Text with EEA Relevance) C/2018/6984. Off. J. Eur. Union 2018, 301, 1–314. Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32018R1832 (accessed on 15 March 2021).
- Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on Type-Approval of Motor Vehicles and Engines with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and on Access to Vehicle Repair and Maintenance Information and Amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and Repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC (Text with EEA Relevance). Off. J. Eur. Union 2009, 188, 1–13. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32009R0595 (accessed on 15 March 2021).
- Birkhold, F.; Meingast, U.; Wassermann, P.; Deutschmann, O. Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx systems. Appl. Catal. B Environ. 2007, 70, 119–127. [Google Scholar] [CrossRef]
- Negri, C.; Selleri, T.; Borfecchia, E.; Martini, A.; Lomachenko, K.A.; Janssens, T.V.; Cutini, M.; Bordiga, S.; Berlier, G. Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH3-Mediated Selective Catalytic Reduction. J. Am. Chem. Soc. 2020, 142, 15884–15896. [Google Scholar] [CrossRef]
- Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C.H. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis. J. Am. Chem. Soc. 2017, 139, 4935–4942. [Google Scholar] [CrossRef]
- Paolucci, C.; Khurana, I.; Parekh, A.A.; Li, S.; Shih, A.J.; Li, H.; Di Iorio, J.R.; Albarracin-Caballero, J.D.; Yezerets, A.; Miller, J.T.; et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 2017, 357, 898–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forzatti, P.; Nova, I.; Tronconi, E. New “enhanced NH3-SCR” reaction for NOx emission control. Ind. Eng. Chem. Res. 2010, 49, 10386–10391. [Google Scholar] [CrossRef]
- Russell, A.; Epling, W.S. Diesel Oxidation Catalysts. Catal. Rev. 2011, 53, 337–423. [Google Scholar] [CrossRef]
- Haass, F.; Fuess, H. Structural Characterization of Automotive Catalysts. Adv. Eng. Mater. 2005, 7, 899–913. [Google Scholar] [CrossRef]
- Farrauto, R.J. New Applications of Monolithic Supported Catalysts. React. Kin. Catal. Lett. 1997, 60, 233–241. [Google Scholar] [CrossRef]
- Twigg, M.V. Rôles of catalytic oxidation in control of vehicle exhaust emissions. Catal. Today 2006, 117, 407–418. [Google Scholar] [CrossRef]
- Kim, C.H.; Schmid, M.; Schmieg, S.J.; Tan, J.; Li, W. The Effect of Pt-Pd Ratio on Oxidation Catalysts Under Simulated Diesel Exhaust. SAE Tech. Pap. 2011, 01, 1134. [Google Scholar]
- Skoglundh, M.; Löwendahl, L.; Otterated, J.-E. Combinations of platinum and palladium on alumina supports as oxidation catalysts. Appl. Catal. 1991, 77, 9–20. [Google Scholar] [CrossRef]
- Jen, H.-W.; Girard, J.W.; Cavataio, G.; Jagner, M.J. Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts. SAE Int. J. Fuels Lubr. 2008, 1, 1553–1559. [Google Scholar] [CrossRef]
- Hruby, E.; Huang, S.; Duddukuri, R.; Dou, D. NOx Performance Degradation of Aftertreatment Architectures Containing DOC with SCR on Filter or Uncatalyzed DPF Downstream of DEF Injection. SAE Tech. Pap. 2019, 01, 0740. [Google Scholar]
- Toops, T.J.; Nguyen, K.; Foster, A.L.; Bunting, B.G.; Ottinger, N.A.; Pihl, J.A.; Hagaman, E.W.; Jiao, J. Deactivation of accelerated engine-aged and field-aged Fe–zeolite SCR catalysts. Catal. Today 2010, 151, 257–265. [Google Scholar] [CrossRef]
- Glover, L.; Douglas, R.; McCullough, G.; Keenan, M.; Revereault, P.; McAtee, C. Performance Characterization of a Range of Diesel Oxidation Catalysts: Effect of Pt:Pd Ratio on Light Off Behavior and Nitrogen Species Formation. SAE Tech. Pap. 2011, 24, 0193. [Google Scholar]
- Held, W.; König, A.; Richter, T.; Puppe, L. Catalytic NOx Reduction in Net Oxidizing Exhaust Gas. SAE Trans. 1990, 209–216. [Google Scholar]
- Burch, R.; Coleman, M.D. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Appl. Catal. B Environ. 1999, 23, 115–121. [Google Scholar] [CrossRef]
- Machida, M.; Ikeda, S.; Kurogi, D.; Kijima, T. Low temperature catalytic NOx–H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Appl. Catal. B Environ. 2001, 35, 107–116. [Google Scholar] [CrossRef]
- ECHA Website. Available online: https://echa.europa.eu/ (accessed on 15 March 2021).
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, UK, 1984. [Google Scholar]
- Jacob, E. Process and Device for Selective Catalytic NOx Reduction in Exhaust Gases Containing Oxygen. European Patent EP0612777B1, 27 August 1997. [Google Scholar]
- ISO. ISO Standard 22241—ISO 22231-1:2019 Diesel Engines—NOx Reduction Agent AUS 32—Part 1: Quality Requirements; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Weisweiler, W.; Buchholz, F. Fester Harnstoff als Ammoniakquelle für die katalysierte Stickstoffoxid-Minderung in Dieselabgasen nach dem SCR-Verfahren. Chem. Ing. Tech. 2001, 73, 882–887. [Google Scholar] [CrossRef]
- Peitz, D.; Bernhard, A.; Kröcher, O. Ammonia Storage and Release in SCR Systems for Mobile Applications. In Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts. Fundamental and Applied Catalysis; Nova, I., Tronconi, E., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Solla, A.; Westerholm, M.; Söderström, C.; Tormonen, K.; Härmä, T.; Nissinen, T.; Kukkonen, J. Effect of Ammonium Formate and Mixtures of Urea and Ammonium Formate on Low Temperature Activity of SCR Systems. SAE Trans. 2005, 661–668. [Google Scholar] [CrossRef]
- Koebel, M.; Elsener, M. Oxidation of Diesel-Generated Volatile Organic Compounds in the Selective Catalytic Reduction Process. Ind. Eng. Chem. Res. 1998, 37, 3864–3868. [Google Scholar] [CrossRef]
- Lacin, F.; Kotrba, A.; Hayworth, G.; Sullivan, H.; Tatur, M.; Jacques, J.; Tomazic, D.; Cho, H. SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant. SAE Tech. Pap. 2011, 01, 2207. [Google Scholar]
- Wilson, J.G.; Hargrave, G. Analysis of a Novel Method for Low-Temperature Ammonia Production Using DEF for Mobile Selective Catalytic Reduction Systems. SAE Tech. Pap. 2018, 01, 0333. [Google Scholar]
- Elmøe, T.D.; Sørensen, R.Z.; Quaade, U.; Christensen, C.H.; Nørskov, J.K.; Johannessen, T. A high-density ammonia storage/delivery system based on Mg (NH3) 6Cl2 for SCR–DeNOx in vehicles. Chem. Eng. Sci. 2006, 61, 2618–2625. [Google Scholar] [CrossRef]
- Gerhart, C.; Schulz, B.; Krocher, O.; Peitz, D.; Jacob, E. Selective Catalytic Reduction of Nitrogen Oxide—Part 1: Formates as Ammonia Storage Compounds. MTZ Worldw. 2012, 73, 60–66. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E.; Schmeißer, V.; Bandl-Konrad, B.; Zimmermann, L. Experimental and modeling study of a dual-layer (SCR+PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 1. Kinetics for the PGM component and analysis of SCR/PGM interactions. Appl. Catal. B Environ. 2013, 142, 861–876. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E.; Schmeißer, V.; Bandl-Konrad, B.; Zimmermann, L. Experimental and modeling study of a dual-layer (SCR+ PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 2. Validation of PGM kinetics and modeling of the dual-layer ASC monolith. Appl. Catal. B Environ. 2013, 142, 337–343. [Google Scholar] [CrossRef]
- Kamasamudram, K.; Henry, C.; Currier, N.; Yezerets, A. N₂O Formation and Mitigation in Diesel Aftertreatment Systems. SAE Int. J. Engines 2012, 5, 688–698. [Google Scholar] [CrossRef]
- Johnson, T.V. Review of selective catalytic reduction (SCR) and related technologies for mobile applications. In Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts. Fundamental and Applied Catalysis; Nova, I., Tronconi, E., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Dhillon, P.S.; Harold, M.P.; Wang, D.; Kumar, A.; Joshi, S.Y. Enhanced transport in washcoated monoliths: Application to selective lean NOx reduction and ammonia oxidation. Chem. Eng. J. 2019, 377, 119734. [Google Scholar] [CrossRef]
- Dhillon, P.S.; Harold, M.P.; Wang, D.; Kumar, A.; Joshi, S.Y. Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. React. Chem. Eng. 2019, 4, 1103–1115. [Google Scholar] [CrossRef]
- Kamasamudram, K.; Yezerets, A.; Chen, X.; Currier, N.; Castagnola, M.; Chen, H.-Y. New Insights into Reaction Mechanism of Selective Catalytic Ammonia Oxidation Technology for Diesel Aftertreatment Applications. SAE Int. J. Engines 2011, 4, 1810–1821. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E. A simplified approach to modeling of dual-layer ammonia slip catalysts. Chem. Eng. Sci. 2012, 75, 75–83. [Google Scholar] [CrossRef]
- Li, S.; Lang, J.; Zhou, Y.; Liang, X.; Chen, D.; Wei, P. Trends in ammonia emissions from light-duty gasoline vehicles in China, 1999–2017. Sci. Total Environ. 2020, 700, 134359. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated Ammonia Emissions from Road Vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef]
- Geisselmann, A.; De Toni, A. Improvements in Low Temperature deNOx of HDD Systems. In Proceedings of the SAE HDD Symposium, Gothenburg, Sweden, 16–17 October 2018. [Google Scholar]
- Selleri, T.; Nova, I.; Tronconi, E.; Schmeisser, V.; Seher, S. The impact of light and heavy hydrocarbons on the NH3-SCR activity of commercial Cu- and Fe-zeolite catalysts. Catal. Today 2019, 320, 100–111. [Google Scholar] [CrossRef]
- Newman, A. High-Performance Heavy-Duty Catalysts for Global Challenges beyond 2020. In Proceedings of the SAE HDD Symposium, Gothenburg, Sweden, 16–17 October 2018. [Google Scholar]
- Kim, P.S.; Kim, Y.J.; Kim, C. Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control. SAE Tech. Pap. 2019, 01, 0743. [Google Scholar]
- Pauly, T. Catalyst Directions for Low NOx Emissions. In Proceedings of the CLEERS 2018 Workshop, Ann Arbor, MI, USA, 18–20 September 2018. [Google Scholar]
- Singh, N. 2021/2024 OEM’s Approach to meet stringent NOx and GHG Emissions using Aftertreatment Systems. In Proceedings of the 10th Integer Emissions Summit USA 2017, Pittsburgh, PA, USA, 7–8 November 2017. [Google Scholar]
- Liu, Z.G.; Ottinger, N.A.; Cremeens, C.M. Vanadium and tungsten release from V-based selective catalytic reduction Diesel aftertreatment. Atmos. Environ. 2015, 104, 154–161. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, W.; Cui, S.; Street, J.; Luo, Y. Sulfur Resistance of Ce-Mn/TiO2 Catalysts for Low-Temperature NH3-SCR. R. Soc. Open Sci. 2018, 5, 171846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappe, K.G.; Goffe, R.; Webb, C.; Gao, F.; Wang, Y. Development and Optimization of Multi-Functional SCRDPF after treatment for Heavy-Duty NOx and Soot Emission Reduction. In Proceedings of the 2020 DOE Annual Merit Review, Held Online. 1–4 June 2020. [Google Scholar]
- Strots, V.; Razaei, R. Technology approaches for meeting future emission requirements for commercial vehicles. In Proceedings of the SAE HDD Symposyum, Gothenburg, Sweden, 16–17 October 2018. [Google Scholar]
- Adelman, B.; Singh, N.; Charintranond, P.; Manis, J. Achieving Ultra-Low NOx Tailpipe Emissions with a High Efficiency Engine. SAE Tech. Pap. 2020, 01, 1403. [Google Scholar]
- Auld, A.; Ward, A.; Mustafa, K.; Hansen, B. Assessment of Light Duty Diesel After-Treatment Technology Targeting Beyond Euro 6d Emissions Levels. SAE Int. J. Engines 2017, 10, 1795–1807. [Google Scholar] [CrossRef]
- Dahodwala, M.; Joshi, S.; Koehler, E.W.; Franke, M.; Tomazic, D. Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines. SAE Int. J. Engines 2018, 11, 1109–1122. [Google Scholar] [CrossRef]
- Stephenson, P. Key Considerations for Feasible Low NOx Aftertreatment. In Proceedings of the ERC Symposium, Boston, MA, USA, 16–18 October 2019. [Google Scholar]
- Luján, J.M.; Bermúdez, V.; Piqueras, P.; García-Afonso, Ó. Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged Diesel engine. Part 1: Steady-state operation. Energy 2015, 80, 599–613. [Google Scholar] [CrossRef]
- Bermudez, V.; Luján, J.M.; Piqueras, P.; Campos, D. Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty Diesel engine. Energy 2015, 66, 509–522. [Google Scholar] [CrossRef]
- Serrano, J.R.; Guardiola, C.; Piqueras, P.; Angiolini, E. Analysis of the Aftertreatment Sizing for Pre-Turbo DPF and DOC Exhaust Line Configurations. SAE Tech. Pap. 2014, 01, 1498. [Google Scholar]
- Lu, X.; Ding, C.; Ramesh, A.K.; Shaver, G.M.; Holloway, E.; McCarthy, J., Jr.; Ruth, M.; Koeberlein, E.; Nielsen, D. Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions. Front. Mech. Eng. 2015, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vos, K.R.; Shaver, G.M.; Joshi, M.C.; McCarthy, J., Jr. Implementing variable valve actuation on a Diesel engine at high-speed idle operation for improved aftertreatment warm-up. Int. J. Eng. Res. 2020, 21, 1134–1146. [Google Scholar] [CrossRef]
- Farrel, L.; Frazier, T.; Younkins, M.; Fuerst, J. Diesel Dynamic Skip Fire (dDSFTM): Simulatneous CO2 and NOx Reduction. In Proceedings of the 41st Vienna Motorsymposium, Vienna, Austria, 22–24 April 2020. [Google Scholar]
- Rao, S.; Sarlashkar, J.; Rengarajan, S.; Sharp, C.; Neely, G. A Controls Overview on Achieving Ultra-Low NOx. SAE Tech. Pap. 2020, 01, 1404. [Google Scholar]
- Neely, G.D.; Sharp, C.; Rao, S. CARB Low NOx Stage 3 Program—Modified Engine Calibration and Hardware Evaluations. SAE Tech. Pap. 2020, 01, 0318. [Google Scholar]
- Okada, Y.; Hirabayashi, H.; Sato, S.; Inoue, H. Study on Improvement of NOx Reduction Performance at Low Temperature Using Urea Reforming Technology in Urea SCR System. SAE Tech. Pap. 2019, 01, 0317. [Google Scholar]
- Kowatari, T.; Hamada, Y.; Amou, K.; Hamada, I.; Funabashi, H.; Takakura, T.; Nakagome, K. A Study of a New Aftertreatment System (1): A New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR. SAE Trans. 2006, 244–251. [Google Scholar]
- Sharp, C.; Webb, C.C.; Neely, G.; Carter, M.; Yoon, S.; Henry, C. Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System—Thermal Management Strategies. SAE Int. J. Engines 2017, 10, 1697–1712. [Google Scholar] [CrossRef]
- Giechaskiel, B. Particle Number Emissions of a Diesel Vehicle during and between Regeneration Events. Catalysts 2020, 10, 587. [Google Scholar] [CrossRef]
- Castoldi, L. An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NOx and Soot. Materials 2020, 13, 3551. [Google Scholar] [CrossRef]
- Schrade, F.; Brammer, M.; Schaeffner, J.; Langeheinecke, K.; Kraemer, L. Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System. SAE Int. J. Engines 2012, 5, 958–974. [Google Scholar] [CrossRef]
- Marchitti, F.; Nova, I.; Tronconi, E. Experimental study of the interaction between soot combustion and NH3-SCR reactivity over a Cu–Zeolite SDPF catalyst. Catal. Today 2016, 267, 110–118. [Google Scholar] [CrossRef]
- De Jesús, Y.M.; Chigada, P.I.; Watling, T.C.; Arulraj, K.; Thorén, A.; Greenham, N.; Markatou, P.; López, Y.M. NOx and PM Reduction from Diesel Exhaust Using Vanadia SCRF®. SAE Int. J. Engines 2016, 9, 1247–1257. [Google Scholar] [CrossRef]
- Watling, T.C.; Ravenscroft, M.R.; Avery, G. Development, validation and application of a model for an SCR catalyst coated Diesel particulate filter. Catal. Today 2012, 188, 32–41. [Google Scholar] [CrossRef]
- Rappé, K.G. Integrated Selective Catalytic Reduction-Diesel Particulate Filter Aftertreatment: Insights into Pressure Drop, NOx Conversion, and Passive Soot Oxidation Behavior. Ind. Eng. Chem. Res. 2014, 53, 17547–17557. [Google Scholar] [CrossRef]
- Park, S.-Y.; Narayanaswamy, K.; Schmieg, S.J.; Rutland, C.J. A Model Development for Evaluating Soot-NOxInteractions in a Blended 2-Way Diesel Particulate Filter/Selective Catalytic Reduction. Ind. Eng. Chem. Res. 2012, 51, 15582–15592. [Google Scholar] [CrossRef]
- Purfürst, M.; Naumov, S.; Langeheinecke, K.; Gläser, R. Influence of soot on ammonia adsorption and catalytic DeNOx-properties of Diesel particulate filters coated with SCR-catalysts. Chem. Eng. Sci. 2017, 168, 423–436. [Google Scholar] [CrossRef]
- Tronconi, E.; Nova, I.; Marchitti, F.; Koltsakis, G.; Karamitros, D.; Maletic, B.; Markert, N.; Chatterjee, D.; Hehle, M. Interaction of NOx Reduction and Soot Oxidation in a DPF with Cu-Zeolite SCR coating. Emiss. Control Sci. Technol. 2015, 1, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Chigada, P.I.; Ahmadinejad, M.; Newman, A.D.; Ng, A.I.P.; Torbati, R.; Watling, T.C. Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®. SAE Tech. Pap. 2018, 01, 0962. [Google Scholar]
- Mihai, O.; Stenfeldt, M.; Olsson, L. The effect of changing the gas composition on soot oxidation over DPF and SCR-coated filters. Catal. Today 2018, 306, 243–250. [Google Scholar] [CrossRef]
- Martinovic, F.; Andana, T.; Deorsola, F.A.; Bensaid, S.; Pirone, R. On-Filter Integration of Soot Oxidation and Selective Catalytic Reduction of NOx with NH3 by Selective Two Component Catalysts. Catal. Lett. 2020, 150, 573–585. [Google Scholar] [CrossRef]
- Martinovic, F.; Andana, T.; Piumetti, M.; Armandi, M.; Bonelli, B.; Deorsola, F.A.; Bensaid, S.; Pirone, R. Simultaneous improvement of ammonia mediated NOx SCR and soot oxidation for enhanced SCR-on-Filter application. Appl. Catal. A Gen. 2020, 596, 117538–117547. [Google Scholar] [CrossRef]
- Aryan, D.; Price, K.; Pauly, T. Four Season Field Aging for SCR on DPF (SDPF) on a Light Heavy Duty Application. SAE Tech. Pap. 2016, 01, 0929. [Google Scholar]
- Sapio, F.; Millo, F.; Fino, D.; Monteverde, A.; Sartoretti, E.; Bianco, A.; Postrioti, L.; Tarabocchia, A.; Buitoni, G.; Brizi, G. SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Chundru, V.R.; Parker, G.G.; Johnson, J.H. The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF. SAE Int. J. Fuels Lubr. 2019, 12, 121–141. [Google Scholar] [CrossRef]
- Kang, W.; Choi, B.; Jung, S.; Park, S. PM and NOx reduction characteristics of LNT/DPF+SCR/DPF hybrid system. Energy 2018, 143, 439–447. [Google Scholar] [CrossRef]
- Ji, Y.; Bai, S.; Crocker, M. Al2O3-based passive NOx adsorbers for low temperature applications. Appl. Catal. B Environ. 2015, 170–171, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Schmieg, S.J.; Koch, C.K.; Qi, G.; Li, W. Investigation of Ag-based low temperature NOx adsorbers. Catal. Today 2015, 258, 378–385. [Google Scholar] [CrossRef]
- Gu, Y.; Epling, W.S. Passive NOx adsorber: An overview of catalyst performance and reaction chemistry. Appl. Catal. A Gen. 2019, 570, 1–14. [Google Scholar] [CrossRef]
- Selleri, T.; Gramigni, F.; Nova, I.; Tronconi, E.; Dieterich, S.; Weibel, M.; Schmeisser, V. A PGM-free NOx adsorber+ selective catalytic reduction catalyst system (AdSCR) for trapping and reducing NO x in lean exhaust streams at low temperature. Catal. Sci. Tech. 2018, 8, 2467–2476. [Google Scholar] [CrossRef]
- Halasz, I.; Brenner, A.; Ng, K.S. Active sites of H-ZSM5 catalysts for the oxidation of nitric oxide by oxygen. Catal. Lett. 1995, 34, 151–161. [Google Scholar] [CrossRef]
- Artioli, N.; Lobo, R.F.; Iglesia, E. Catalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States by Micropororous and Mesoporous Siliceous Materials. J. Phys. Chem. C 2013, 117, 20666–20674. [Google Scholar] [CrossRef]
- Gramigni, F.; Selleri, T.; Nova, I.; Tronconi, E. Catalyst systems for selective catalytic reduction+ NOx trapping: From fundamental understanding of the standard SCR reaction to practical applications for lean exhaust after-treatment. React. Chem. Eng. 2019, 4, 1165–1178. [Google Scholar] [CrossRef]
- Chiang, C.-J.; Kuo, C.-L.; Huang, C.-C.; Lee, J.-Y. Model predictive control of SCR aftertreatment system. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010. [Google Scholar]
- Schär, C.M.; Onder, C.H.; Geering, H.P.; Elsener, M. Control-Oriented Model of an SCR Catalytic Converter System. SAE Tech. Pap. 2004, 01, 0153. [Google Scholar]
- Seher, D.H.E.; Reichelt, M.; Wickert, S. Control Strategy for NOx-Emission Reduction with SCR. SAE Tech. Pap. 2003, 01, 3362. [Google Scholar]
- Upadhyay, D.; Van Nieuwstadt, M. Model Based Analysis and Control Design of a Urea-SCR deNOx Aftertreatment System. J. Dyn. Syst. Meas. Control. 2005, 128, 737–741. [Google Scholar] [CrossRef]
- Schär, C.M.; Onder, C.H.; Elsener, M.; Geering, H.P. Model-based control of an SCR system for a mobile application. SAE Tech. Pap. 2004, 05, 0412. [Google Scholar]
- Ericson, C.; Westerberg, B.; Odenbrand, I.; Egnell, R. Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System. SAE Tech. Pap. 2009, 01, 0896. [Google Scholar]
- Chi, J.N.; Dacosta, H.F.M. Modeling and Control of a Urea-SCR Aftertreatment System. SAE Tech. Pap. 2005, 01, 0966. [Google Scholar]
- Chatterjee, D.; Burkhardt, T.; Weibel, M.; Tronconi, E.; Nova, I.; Ciardelli, C. Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications. SAE Tech. Pap. 2006, 01, 0468. [Google Scholar]
- Olsson, L.; Wijayanti, K.; Leistner, K.; Kumar, A.; Joshi, S.Y.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Appl. Catal. B Environ. 2015, 174, 212–224. [Google Scholar] [CrossRef]
- Devarakonda, M.; Parker, G.; Johnson, J.H.; Strots, V. Model-based control system design in a urea-SCR aftertreatment system based on NH3 sensor feedback. Int. J. Automot. Technol. 2009, 10, 653–662. [Google Scholar] [CrossRef]
- Devarakonda, M.; Parker, G.; Johnson, J.H.; Strots, V.; Santhanam, S. Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System. SAE Int. J. Fuels Lubr. 2009, 1, 646–661. [Google Scholar] [CrossRef]
- Devarakonda, M.; Parker, G.G.; Johnson, J.H.; Strots, V.; Santhanam, S. Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System. SAE Tech. Pap. 2008, 01, 0617. [Google Scholar]
- McKinley, T.L.; Alleyne, A.G. A Switched, Controls-Oriented SCR Catalyst Model Using On-Line Eigenvalue Estimation. SAE Tech. Pap. 2009, 01, 1284. [Google Scholar]
- McKinley, T.L.; Alleyne, A.G. Adaptive Model Predictive Control of an SCR Catalytic Converter System for Automotive Applications. IEEE Trans. Control. Syst. Technol. 2011, 20, 1533–1547. [Google Scholar] [CrossRef]
- Gundlapally, S.R.; Papadimitriou, I.; Wahiduzzaman, S.; Gu, T. Development of ECU Capable Grey-Box Models from Detailed Models—Application to a SCR Reactor. Emiss. Control. Sci. Technol. 2016, 2, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Selleri, T.; Nova, I.; Tronconi, E. An efficient reduced model of NH3-SCR converters for mobile aftertreatment systems. Chem. Eng. J. 2019, 377, 120053. [Google Scholar] [CrossRef]
- Balakotaiah, V. On the relationship between Aris and Sherwood numbers and friction and effectiveness factors. Chem. Eng. Sci. 2008, 63, 5802–5812. [Google Scholar] [CrossRef]
- Joshi, S.Y.; Harold, M.P.; Balakotaiah, V. Low-dimensional models for real time simulations of catalytic monoliths. AIChE J. 2009, 55, 1771–1783. [Google Scholar] [CrossRef]
- Joshi, S.Y.; Harold, M.P.; Balakotaiah, V. On the use of internal mass transfer coefficients in modeling of diffusion and reaction in catalytic monoliths. Chem. Eng. Sci. 2009, 64, 4976–4991. [Google Scholar] [CrossRef]
- Le Louvetel-Poilly, J.; Balaji, S.; Lafossas, F. Development of Three Way Catalyst Aging Model: Application to Real Driving Emission Condition. SAE Tech. Pap. 2019, 24, 0047. [Google Scholar]
- Dosda, S.; Berthout, D.; Mauviot, G.; Nogre, A. Modeling of a DOC SCR-F SCR Exhaust Line for Design Optimization Taking Into Account Performance Degradation Due to Hydrothermal Aging. SAE Int. J. Fuels Lubr. 2016, 9, 621–632. [Google Scholar] [CrossRef]
- Ruggeri, M.P.; Nova, I.; Tronconi, E.; Schmeißer, V.; Weibel, M. Modelling the Hydrothermal Ageing of a Fe-Zeolite Catalyst for Automotive NH3 -SCR Applications. Chem. Ing. Tech. 2018, 90, 803–815. [Google Scholar] [CrossRef]
- Bank, R.; Etzien, U.; Buchholz, B.; Töpfer, G.; Troeger, A.; Harndorf, H. Analysis of field-aged and artificially aged SCR catalysts for model development. In Heavy-Duty-, On-und Off-Highway-Motoren; Springer Vieweg: Wiesbaden, Germany, 2016; pp. 133–147. [Google Scholar]
- Wang, D.; An, H.; Gong, J.; Li, J.; Kamasamudram, K.; Currier, N.; Yezerets, A. Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines. SAE Tech. Pap. 2019, 01, 0998. [Google Scholar]
- Commission Directive 77/102/EEC of 30 November 1976 Adapting to Technical Progress Council Directive 70/220/EEC of 20 March 1970 on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Air Pollution by Gases From Positive-Ignition Engines of Motor Vehicles. Off. J. Eur. Union 1977, 32, 32–39. Available online: EUR-Lex-31977L0102-EN-EUR-Lex(europa.eu) (accessed on 15 March 2021).
- Commission Directive 78/665/EEC of 14 July 1978 Adapting to Technical Progress Directive 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Pollution of the Air by Gases from Positive Ignition Engines Installed in Motor Vehicles. Off. J. Eur. Union 1978, 223, 48–56. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31978L0665 (accessed on 15 March 2021).
- Council Directive 83/351/EEC of 16 June 1983 Amending Council Directive 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Air Pollution by Gases from Positive-Ignition Engines of Motor Vehicles. Off. J. Eur. Union 1983, 197, 1–74. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31983L0351 (accessed on 15 March 2021).
- Council Directive 70/220/EEC of 20 March 1970 on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Air Pollution by Gases from Positive-Ignition Engines of Motor Vehicles. Off. J. Eur. Union 1970, 76, 1–22. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31970L0220 (accessed on 15 March 2021).
- Council Directive 74/290/EEC of 28 May 1974 Adapting to Technical Progress Council Directive No 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Air Pollution by Gases from Positive-Ignition Engines of Motor Vehicles. Off. J. Eur. Union 1974, 159, 61–69. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31974L0290 (accessed on 15 March 2021).
- Council Directive 91/441/EEC of 26 June 1991 Amending Directive 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles. Off. J. Eur. Union 1991, 242, 0001–0106. Available online: EUR-Lex-31991L0441-EN-EUR-Lex(europa.eu) (accessed on 15 March 2021).
- Directive 94/12/EC of the European Parliament and the Council of 23 March 1994 Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles and Amending Directive 70/220/EEC. Off. J. Eur. Union 1994, 100, 42–52. Available online: EUR-Lex-31994L0012-EN-EUR-Lex(europa.eu) (accessed on 15 March 2021).
- Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles and Amending Council Directive 70/220/EEC. Off. J. Eur. Union 1998, 350, 1–57. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31998L0069 (accessed on 15 March 2021).
- Commission Directive 1999/102/EC of 15 December 1999 Adapting to Technical Progress Council Directive 70/220/EEC Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles (Text with EEA Relevance). Off. J. Eur. Union 1999, 334, 43–50.
- Directive 2001/1/EC of the European Parliament and of the Council of 22 January 2001 Amending Council Directive 70/220/EEC Concerning Measures to be Taken against Air Pollution by Emissions from Motor Vehicles. Off. J. Eur. Union 2001, 35, 34–35. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0001 (accessed on 15 March 2021).
- Directive 2001/100/EC of the European Parliament and of the Council of 7 December 2001 Amending Council Directive 70/220/EEC on the Approximation of the Laws of the Member States on Measures to be Taken against Air Pollution by Emissions from Motor Vehicles (Text with EEA Relevance). Off. J. Eur. Union 2002, 16, 32–34. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32001L0100 (accessed on 15 March 2021).
- Commission Directive 2002/80/EC of 3 October 2002 Adapting to Technical Progress Council Directive 70/220/EEC Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles (Text with EEA Relevance). Off. J. Eur. Union 2002, 291, 20–56. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0080 (accessed on 15 March 2021).
- Council Decision of 1 February 2003 Establishing the Measures Necessary for the Implementation of the Protocol, Annexed to the Treaty Establishing the European Community, on the Financial Consequences of the Expiry of the ECSC Treaty and on the Research Fund for Coal and Steel. Off. J. Eur. Union 2003, 29, 22–24. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003D0076 (accessed on 15 March 2021).
- Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information (Text with EEA Relevance). Off. J. Eur. Union 2007, 171, 1–16.
- Commission Regulation (EC) No 692/2008 of 18 July 2008 Implementing and Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information (Text with EEA Relevance). Off. J. Eur. Union 2008, 199, 1–136. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008R0692 (accessed on 15 March 2021).
- EC Regulation (EU) No 2017/1151 of 1 June 2017 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information, Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Commission Regulation (EC) No 692/2008. Off. J. Eur. Union 2017, 175, 1–643. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R1151 (accessed on 15 March 2021).
- Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transp. Res. Part D Transp. Environ. 2015, 40, 61–75. [Google Scholar] [CrossRef]
- Pavlovic, J.; Ciuffo, B.; Fontaras, G.; Valverde, V.; Marotta, A. How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDCvs. WLTP)? Transp. Res. Part A Policy Pr. 2018, 111, 136–147. [Google Scholar] [CrossRef]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Gruening, C.; Pavlovic, J.; Manara, D.; Loos, R.; Giechaskiel, B.; Carriero, M.; Otura, M.; et al. Joint Research Centre 2018 Light-Duty Vehicles Emissions Testing—Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; in press.
- Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance) C/2016/1393. Off. J. Eur. Union 2016, 82, 1–98. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0427 (accessed on 15 March 2021).
- Commission Regulation (EU) 2016/646 of 20 April 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance) C/2016/1792. Off. J. Eur. Union 2016, 109, 1–22.
- Commission Regulation (EU) 2017/1154 of 7 June 2017 Amending Regulation (EU) 2017/1151 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information, Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and Repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as Regards Real-Driving Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance) C/2017/3720. Off. J. Eur. Union 2017, 175, 708–732. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32017R1154 (accessed on 15 March 2021).
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef]
- Yang, Z.; Muncrief, R. Market Surveillance of the Vehicle Emissions: Best-Practice Examples with Respect to the European Commission’s Proposed Type-Approval Framework Regulation; Briefing Paper; ICCT: Binangonan, Philippines, 2017. [Google Scholar]
- EC Regulation (EU) 2018/858 of the European Parliament and of the Council of 30 May 2018 on the Approval and Market Surveillance of Motor Vehicles and Their Trailers, and of Systems, Components and Separate Technical Units Intended for Such Vehicles, Amending Regulations (EC) No 715/2007 and (EC) No 595/2009 and Repealing Directive 2007/46/EC (Text with EEA Relevance). Off. J. Eur. Union 2018, 151, 1–218. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32018R0858 (accessed on 15 March 2021).
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A review of the European passenger car regulations—Real driving emissions vs local air quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- EPA Website. Available online: https://www.epa.gov/ve-certification/in-use-testing#:~:text=The%20purpose%20of%20the%20in,leads%20to%20an%20emissions%20recall (accessed on 15 March 2021).
- Wu, Y.; Wang, R.; Zhou, Y.; Lin, B.; Fu, L.; He, K.; Hao, J. On-Road Vehicle Emission Control in Beijing: Past, Present, and Future†. Environ. Sci. Technol. 2011, 45, 147–153. [Google Scholar] [CrossRef]
- Kuson, M. Technical Standards and Future Trend of Diesel Engines in Thailand. In Proceedings of the 2nd Asia-Pacific Diesel Engine and Emission Summit, Bangkok, Thailand, 23–24 May 2019. [Google Scholar]
- Council Directive 88/77/EEC of 3 December 1987 on the Approximation of the Laws of the Member States Relating to the Measures to be Taken against the Emission of Gaseous Pollutants from Diesel Engines for Use in Vehicles. Off. J. Eur. Union 1988, 36, 33–61. Available online: EUR-Lex-31988L0077-EN-EUR-Lex(europa.eu) (accessed on 15 March 2021).
- Council Directive 91/542/EEC of 1 October 1991 Amending Directive 88/77/EEC on the Approximation of the Laws of the Member States Relating to the Measures to be Taken against the Emission of Gaseous Pollutants from Diesel Engines for Use in Vehicles. Off. J. Eur. Union 1991, 295, 1–19. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31991L0542 (accessed on 15 March 2021).
- Directive 96/1/EC of the European Parliament and of the Council of 22 January 1996 Amending Directive 88/77/EEC on the Approximation of the Laws of the Member States Relating to the Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Diesel Engines for Use in Vehicles. Off. J. Eur. Union 1996, 40, 1–9. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0001 (accessed on 15 March 2021).
- Directive 1999/96/EC of the European Parliament and of the Council of 13 December 1999 on the Approximation of the Laws of the Member States Relating to Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Compression Ignition Engines for Use in Vehicles, and the Emission of Gaseous Pollutants from Positive Ignition Engines Fuelled with Natural Gas or Liquefied Petroleum Gas for Use in Vehicles and Amending Council Directive 88/77/EEC. Off. J. Eur. Union 2000, 44, 1–155. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31999L0096 (accessed on 15 March 2021).
- Directive 2005/55/EC of the European Parliament and of the Council of 28 September 2005 on the Approximation of the Laws of the Member States Relating to the Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Compression-Ignition Engines for Use in Vehicles, and the Emission of Gaseous Pollutants from Positive-Ignition Engines Fuelled with Natural Gas or Liquefied Petroleum Gas for Use in Vehicles (Text with EEA Relevance). Off. J. Eur. Union 2005, 275, 1–163. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005L0055 (accessed on 15 March 2021).
- Commission Directive 2008/74/EC of 18 July 2008 Amending, as Regards the Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and Access to Vehicle Repair and Maintenance Information, Directive 2005/55/EC of the European Parliament and of the Council and Directive 2005/78/EC (Text with EEA Relevance). Off. J. Eur. Union 2008, 192, 51–59. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0074 (accessed on 15 March 2021).
- Commission Regulation (EU) No 582/2011 of 25 May 2011 Implementing and Amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council Text with EEA Relevance. Off. J. Eur. Union 2011, 167, 1–168. Available online: https://eur-lex.europa.eu/eli/reg/2011/582/oj (accessed on 15 March 2021).
- Regulation No 49 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Compression-Ignition Engines and Positive Ignition Engines for Use in Vehicles. Off. J. Eur. Union 2013, 171, 1–390. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A42013X0624%2801%29 (accessed on 15 March 2021).
- Bonnel, P.; Kubelt, J.; Provenza, A. Heavy-Duty Engines Conformity Testing Based on PEMS. Lessons Learned from the European Pilot Program. JRC Technical Reports; EUR 24921 EN; Office for Official Publications of the European Communities: Luxembourg, 2011; ISBN 78-92-79-21039-6. [Google Scholar]
- Weiss, M.; Bonnel, P.; Hummel, R.; Provenza, A.; Manfredi, U. On-Road Emissions of Light-Duty Vehicles in Europe. Environ. Sci. Technol. 2011, 45, 8575–8581. [Google Scholar] [CrossRef]
- Weiss, M.; Bonnel, P.; Kühlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G.; et al. Will Euro 6 reduce the NOx emissions of new Diesel cars? Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos. Environ. 2012, 62, 657–665. [Google Scholar] [CrossRef]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, B.; Carriero, M.; Otura, M.; Fontaras, G.; Pavlovic, J.; Martini, G.; Krasenbrink, A.; et al. Joint Research Centre 2017 Light-Duty Vehicles Emissions Testing—Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; EUR 29302 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-90601-5. [Google Scholar]
- Valverde, V.; Clairotte, M.; Bonnel, P.; Giechaskiel, B.; Carriero, M.; Otura, M.; Gruening, C.; Fontaras, G.; Pavlovic, J.; Martini, G.; et al. Joint Research Centre 2018 Light-Duty Vehicles Emissions Testing—Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; EUR29897 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12333-0. [Google Scholar]
- Perujo, A.; Mendoza-Villafuerte, P. Pems Emissions Testing of Heavy Duty Vehicles/Engines: Assessment of PEMS Procedures in Fulfilment of Article 14(3) to Regulation (EU) 582/2011; JRC Technical Reports, EUR 27251 EN; Office for Official Publications of the European Communities: Luxembourg, 2015; ISBN 978-92-79-48338-7. [Google Scholar]
- Bradow, R.L.; Stump, F.D. Unregulated Emissions from Three-Way Catalyst Cars. SAE Tech. Pap. 1997, 770369. [Google Scholar]
- Barbier, J., Jr.; Duprez, D. Steam effects in three-way catalysis. Appl. Catal. B Environ. 1994, 4, 105–140. [Google Scholar] [CrossRef]
- Whittington, B.I.; Jiang, C.J.; Trimm, D.L. Vehicle exhaust catalysis: I. The relative importance of catalytic oxidation, steam reforming, and water-gas shift reactions. Catal. Today 1995, 26, 41–45. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.; Astorga, C. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 2014, 97, 43–53. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Lilova, V.; Meyer, D.; Nakatani, S.; Hibel, F.; Ewers, J.; Clairotte, M.; Hill, L.; Astorga, C. Intercomparison of real-time tailpipe ammonia measurements from vehicles tested over the new world-harmonized light-duty vehicle test cycle (WLTC). Environ. Sci. Pollut. Res. 2015, 22, 7450–7460. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic acid and ammonia in vehicle emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Bishop, G.A.; Stedman, D.H. Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets. Environ. Sci. Technol. 2015, 49, 11234–11240. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selleri, T.; Melas, A.D.; Joshi, A.; Manara, D.; Perujo, A.; Suarez-Bertoa, R. An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts 2021, 11, 404. https://doi.org/10.3390/catal11030404
Selleri T, Melas AD, Joshi A, Manara D, Perujo A, Suarez-Bertoa R. An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts. 2021; 11(3):404. https://doi.org/10.3390/catal11030404
Chicago/Turabian StyleSelleri, Tommaso, Anastasios D. Melas, Ameya Joshi, Dario Manara, Adolfo Perujo, and Ricardo Suarez-Bertoa. 2021. "An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union" Catalysts 11, no. 3: 404. https://doi.org/10.3390/catal11030404
APA StyleSelleri, T., Melas, A. D., Joshi, A., Manara, D., Perujo, A., & Suarez-Bertoa, R. (2021). An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts, 11(3), 404. https://doi.org/10.3390/catal11030404