One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation
Abstract
:1. Introduction
2. Results
2.1. XRD Pattern of ZnFe2O4 NPs
2.2. SEM Analysis of ZnFe2O4 NPs
2.3. HRTEM Analysis of ZnFe2O4 Nano Composite
2.4. EDS Analysis of ZnFe2O4 NPs
2.5. Mass Spectra of Synthesized Compounds
2.6. NMR Spectral Analysis
2.7. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of ZnFe2O4Nanoparticles (NPs)
4.2.2. Structural Characterization
4.2.3. General Procedure for the Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2, 3, 4, 6, 7, 8-Hexahydro-1H-Quinazolin-5-One
4.2.4. AntimicrobialAssays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lednicer, D.; Mitscher, L.A. The Organic Chemistry of Drug Synthesis; Wiley IntersciencePubl: New York, NY, USA, 1977; Volume 1, pp. 338–342. [Google Scholar]
- Lednicer, D.; Mitscher, L.A. The Organic Chemistry of Drug Synthesis; Wiley IntersciencePubl: New York, NY, USA, 1980; Volume 2, p. 361. [Google Scholar]
- Kershaw, S.; Stables, J.P.; Jatav, V.; Mishra, P. Synthesis and CNS depressant activity of some derivatives of novel 3-[5-substituted-1, 3,4-thiadiazole-2-yl]-2-styrylquinazolin-4-(3H)-one. Eur. J. Med. Chem. 2008, 43, 135–141. [Google Scholar]
- Sayed, R.E.; Wasfy, A.F. Synthesis of heterocycles having double character: As antimicrobial. J. Chinesechem. Soc. 2005, 52, 129–135. [Google Scholar]
- Tyagi, M.; Pathak, U.S.; Rathod, R.S. Synthesis of 3-monosubstitutedquinazolin-4-(3H)-ones. Ind. J. Chem. 1995, 2, 617–623. [Google Scholar]
- Thierry, B.A.; Jerome, G.; Charles, W.R. Multistepsynthesis of thiazoloquinazolines-under microwave irradiation in solution. Tetrahedron Lett. 2020, 41, 1027–1030. [Google Scholar]
- Bahl, B.S.; Bahl, A.A. Text Book of Organic Chemistry; Chand and Company Ltd.: New Delhi, India, 1997; Volume 14, p. 735. [Google Scholar]
- Guiry, P.J.; Connolly, D.J.; Cusack, D. Synthesis of quinazolinones and quinazoline. Tetrahedron 2005, 737, 10153–10202. [Google Scholar]
- Feng, L.; Meng, Q.; Feng, Y. An efficient construction of Quinazoline-4-(3H)-ones under microwave irradiation. ARKIVOC 2007, I, 40–50. [Google Scholar]
- Meyyanathan, S. ASEAN review of biodiversity and environmental conversation. ABEC 1998, 2, 4–10. [Google Scholar]
- Alexandra, P.B.; Thierry, B.; Corinne, F. Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts. 2000, 10, 1–34. [Google Scholar]
- Lidstrom, P.; Tierney, J.; Westman, J. Microwaveassistedorganic synthesis—A review. Tetrahedron 2001, 57, 9225–9283. [Google Scholar] [CrossRef]
- Lottie, B.; Thomas, H. Microwave enhanced decarboxylation of aromatic carboxylic acid, improved potential. J. Chem. Res. 2000, 2, 42–46. [Google Scholar]
- Canevari, S.; Bantu, R.; Nagarapu, L. TMSCl mediated highly efficient one-pot synthesis of octa hydro quinazolinone and 1,8-dioxo-octa hydro xanthene derivatives. Arkivoc 2006, XVI, 136–148. [Google Scholar]
- Hassani, Z.; Islami, M.R.; Kalantari, M. An efficient one-pot synthesis of octa hydro quinazolinone derivatives using a catalytic amount of H2SO4 in the water. Bioorganic Med. Chem. Lett. 2006, 16, 4479. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhao, Q.; Xu, B.; Wang, X. Nafion-H catalysed cyclocondensation reaction for the synthesis of octa hydro quinazolinone derivatives. J. Mol. Catal. A: Chem. 2007, 268, 1–2. [Google Scholar] [CrossRef]
- Niralwad, K.S.; Shingate, B.; Shingare, M.S. Microwave-assisted one-pot synthesis of octa hydro quinazolinone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedron Lett. 2010, 51, 3616. [Google Scholar] [CrossRef]
- Mobinikhaledi, A.; Foroughifar, N.; Khodaei, H. Synthesis of octa hydro quinazolinone-derivatives using silica sulfuric acid as an efficient catalyst. Eur. J.Chem. 2010, 1, 291. [Google Scholar] [CrossRef] [Green Version]
- Kefayati, H.; Asghari, F.; Khanjanian, R. 1-Methylimidazolium hydrogen sulfate/chlorotrimethylsilane: An effective catalytic system for the synthesis of 3, 4-dihydropyridine-2(1H)-ones and hydroquinazolinone-2,5-diones. J. Mol. Liq. 2012, 172, 147. [Google Scholar] [CrossRef]
- Khurana, J.M.; Kumar, S. Ionic liquids: An efficient and recyclable medium for the synthesis of octa hydro quinazolinone and biscoumarin derivatives. Montashefte Fur Chem. 2010, 141, 561. [Google Scholar] [CrossRef]
- Karami, S.; Karami, B.; Khodabakhshi, S. Solvent-free synthesis of novel and known octahydroquinazolinones/thione by the use of ZrOCl2.8H2O as a highly efficient and reusable catalyst. J. Chin. Chem.Soc. 2013, 60, 22. [Google Scholar] [CrossRef]
- Pachpinde, A.M.; Langade, M.M. A simple one pot synthesis of 5-Acetyl-3,4-Dihydro-4-Phenylpyrimidin-2(1H)-one, by using magnetically recoverable heterogeneous nickel substituted nanoferro-spinel catalyst. Int. J. Res. Appl. Sci. Biotechnol. 2019, 6, 23–26. [Google Scholar] [CrossRef]
- Kumar, B.V.; Naik, H.S.B.; Girija, D. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation. J. Chem. Sci. 2011, 123, 615–621. [Google Scholar] [CrossRef]
- Beletskaya, I.; Tyurin, V. Recyclable Nanostructured Catalytic Systems in Modern Environmentally Friendly Organic Synthesis. Molecules 2010, 15, 4792–4814. [Google Scholar] [CrossRef]
- Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S.M. Function of nanocatalyst in chemistry of organic compounds revolution: An overview. J. Nanomater. 2013, 2013, 1–23. [Google Scholar] [CrossRef]
- Cormier, R.A. A convenient synthesis of 3,3-dimethylcyclohexanone. Synth. Commun. 1981, 11, 295–298. [Google Scholar] [CrossRef]
- Singletary, K.; MacDonald, C.; Iovinelli, M.; Fisher, C.; Wallig, M. Effect of the β-diketonesdiferuloylmethane (curcumin) and dibenzoylmethane on rat mammary DNA adducts and tumors induced by 7,12-dimethylbenz[a] anthracene. Carcinogenesis 1998, 19, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, H.B.; Christensene, S.B.; Kirs, L.P.; Karazmi, A. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med. 2000, 66, 396–397. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Koiwai, A. Antioxidative-Diketones in stigma lipids of tobacco. Agric. Biol. Chem. 1988, 52, 2341–2342. [Google Scholar] [CrossRef]
- Francis, L.E.; Douglas, D.E. Some observations on the antihistamine activity in the guinea pig of aliphatic 2,4diketones, a new class of physiological tissue components. Res. Commun. Chem. Patel. Pharmacol. 1977, 17, 357–364. [Google Scholar]
- Guo, S.B.; Wang, S.X.; Li, J.T.D. L-Proline-catalyzed one-pot synthesis of Pyrans and Pyrano[2,3c]Pyrazole derivatives by a grinding method under solvent, free conditions. Synth. Commun. 2007, 37, 2111–2120. [Google Scholar] [CrossRef]
- Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. A concise study on dimedone: A versatile molecule in multicomponent reactions, an outlook to the green reaction media. Synth. Commun. 2009, 39, 433–440. [Google Scholar] [CrossRef]
- Sadeh, F.N.; Fatahpour, M.; Hazeri, N.; Maghsoodlou, M.T.; Lashkari, M. One-pot condensation approach for the synthesis of some 1,8-dioxooctahydroxanthenes and 14-aryl-14hdibenzo[a,j]xanthenes using lactic acid as an efficient and eco-friendly catalyst. Acta Chem. Iasi. 2017, 25, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Leila, M.; Maryam, T. Green synthesis of 3,4-dihydropyrimidinones using nanoFe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J. Saudi Chem. Soc. 2018, 22, 66–75. [Google Scholar]
- Ramgopal, A.; Baburao, B.; Kiran, G. Synthesis and Antibacterial Activity of 3-(Substituted)-2-(4-oxo2-Phenylquinazolin-3(4H)-Arylamino) Quinazolin-4(3H)-One; Hindawi Publishing Corporation Scientifica: Cairo, Egypt, 2016; Volume 124, p. 5. [Google Scholar]
- Kobra, N.F.; Molaei, F. A concise study on dimedone: A versatile molecule in multicomponent reactions, an outlook to the green reaction media. J. Saudi Chem. Soc. 2018, 22, 715–741. [Google Scholar]
- Wang, G.W.; Lu, Q.Q.; Xia, J.J. Synthesis of N-substituted Acridinediones and Polyhydroquinoline derivatives in refluxing water. Eur. J. Org. Chem. 2011, 4429–4438. [Google Scholar] [CrossRef]
Atom | x | y | z | Occ. | Biso | Site | Sym. |
---|---|---|---|---|---|---|---|
Zn | 0.125 | 0.125 | 0.125 | 1 | 0.024 | 8a | 43 m |
Fe | 0.5 | 0.5 | 0.5 | 1.035 | 0.009 | 16d | 3 m |
O | 0.26335 | 0.26335 | 0.26335 | 1.038 | 0.016 | 32e | 3 m |
Unit cell Parameters | a = b = c = 8.43695 Å α = β = γ = 90° | ||||||
Unit cell Volume | 600.559 Å3 | ||||||
Rp (%) | 12.1 | ||||||
Rwp (%) | 18.3 | ||||||
χ2 | 2.02 | ||||||
Fe-O | 2.00295 Å | ||||||
Zn-O | 2.02174 Å |
Entry | Ar(a) | Molecular Formula | Time a (min) | Yield b (%) | Molecular Weight (MW) g/mol | m.p (°C) Lit). |
---|---|---|---|---|---|---|
4a | C6H5 | C16H18N2OS | 75 | 85 | 286.71 | 285–286 °C |
4b | 4-OH-C6H4 | C17H20N2O2 S | 130 | 87 | 317.53 | 274–276 °C |
4c | 3-OC2H5-4-OH-C6H3 | C18H22N2O3 S. | 150 | 87 | 365.22 (M-H). | 273–274 °C |
4d | 4-Cl-C6H4 | C16H17ClN2OS | 120 | 90 | 321.64 | 274–276 °C (Lit275–276 °C) |
4e | 4-Br-C6H4 | C16H17BrN2OS | 120 | 91 | 366.16 | 284 °C |
4f | 2-OH-4-N(CH3)2-C6H3 | C18H23N3O2 S | 130 | 88 | 345.48 | 275–277 °C |
4g | 2-I-3,5-(OCH3)2-C6H3 | C18H21IN2O3S. | 150 | 90 | 472.29 | 275–276 °C |
4h | 4-CN-C6H4 | C17H17N3OS. | 175 | 88 | 310.45 (M-H). | 269–271 °C |
S.No | Compound Code | Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|---|---|
Gram-Negative Bacteria | Gram-Positive Bacteria | Fungal Strains | |||||
E.coli | P.aeruginosa | B.subtilis | B.megaterium | A.niger | C.albicans | ||
1 | 4a | 16 | 13 | 21 | 15 | 15 | 16 |
2 | 4b | 14 | 12 | 22 | 14 | 12 | 14 |
3 | 4c | 16 | 15 | 14 | 16 | 13 | 16 |
4 | 4d | 11 | 15 | 15 | 14 | 14 | 15 |
5 | 4e | 19 | 17 | 20 | 20 | 23 | 24 |
6 | 4f | 20 | 14 | 21 | 22 | 24 | 25 |
7 | 4g | 19 | 20 | 21 | 21 | 23 | 24 |
8 | 4h | 17 | 16 | 17 | 18 | 19 | 20 |
Control | DMSO | 10 | 10 | ||||
Standard | Streptomycin | 25 | 25 | 25 | 25 | ||
Fluconazole | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, T.N.; Krishnarao, N.; Ahmed, F.; Alomar, S.Y.; Albalawi, F.; Mani, P.; Aljaafari, A.; Parvatamma, B.; Arshi, N.; Kumar, S. One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation. Catalysts 2021, 11, 431. https://doi.org/10.3390/catal11040431
Rao TN, Krishnarao N, Ahmed F, Alomar SY, Albalawi F, Mani P, Aljaafari A, Parvatamma B, Arshi N, Kumar S. One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation. Catalysts. 2021; 11(4):431. https://doi.org/10.3390/catal11040431
Chicago/Turabian StyleRao, Tentu Nageswara, Nalla Krishnarao, Faheem Ahmed, Suliman Yousef Alomar, Fadwa Albalawi, Panagal Mani, Abdullah Aljaafari, Botsa Parvatamma, Nishat Arshi, and Shalendra Kumar. 2021. "One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation" Catalysts 11, no. 4: 431. https://doi.org/10.3390/catal11040431
APA StyleRao, T. N., Krishnarao, N., Ahmed, F., Alomar, S. Y., Albalawi, F., Mani, P., Aljaafari, A., Parvatamma, B., Arshi, N., & Kumar, S. (2021). One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation. Catalysts, 11(4), 431. https://doi.org/10.3390/catal11040431