Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.2. Cycloaddition of CO2 with Epichlorohydrin
2.3. Cycloaddition of CO2 with Different Epoxides
2.4. Reusability of Catalyst
2.5. Comparison with Other MOFs
2.6. Cycloaddition Reaction Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Catalyst
3.2.1. Preparation of CPM-200-In
3.2.2. Preparation of CPM-200-In/Mg
3.3. Cycloaddition of CO2 and Epoxide
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 2013, 114, 1709–1742. [Google Scholar] [CrossRef] [PubMed]
- Wilmer, C.E.; Farha, O.K.; Bae, Y.-S.; Hupp, J.T.; Snurr, R.Q. Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ. Sci. 2012, 5, 9849–9856. [Google Scholar] [CrossRef]
- Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707–3728. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81. [Google Scholar] [CrossRef]
- Kleij, A.W.; North, M.; Urakawa, A. CO2 catalysis. ChemSusChem 2017, 10, 1036–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, C.; Miyazaki, Y.; Ema, T. Recent progress in catalytic conversions of carbon dioxide. Catal. Sci. Technol. 2014, 4, 1482–1497. [Google Scholar] [CrossRef] [Green Version]
- Lang, X.-D.; He, L.-N. Green Catalytic Process for Cyclic Carbonate Synthesis from Carbon Dioxide under Mild Conditions. Chem. Rec. 2016, 16, 1337–1352. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, L.; Jackstell, R.; Meller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 5, 5933. [Google Scholar] [CrossRef]
- Guo, W.; Martínez-Rodríguez, L.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. Highly Efficient Catalytic Formation of (Z)-1,4-But-2-ene Diols Using Water as a Nucleophile. Angew. Chem. Int. Ed. 2016, 55, 11037–11040. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, I.; Zhao, C.; Mao, Y.; Chen, Y.; Zhang, Y.J. Enantioselective Construction of Tertiary C–O Bond via Allylic Substitution of Vinylethylene Carbonates with Water and Alcohols. J. Am. Chem. Soc. 2017, 139, 10733–10741. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Env. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Pascual, A.; Tan, J.P.K.; Yuen, A.; Chan, J.M.W.; Coady, D.J.; Mecerreyes, D.; Hedrick, J.L.; Yang, Y.Y.; Sardon, H. Broad-Spectrum Antimicrobial Polycarbonate Hydrogels with Fast Degradability. Biomacromolecules 2015, 16, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Deng, Y.; Sima, T.; Peng, J.; Gu, Y.; Qiao, B. Alternatives to Phosgene and Carbon Monoxide: Synthesis of Symmetric Urea Derivatives with Carbon Dioxide in Ionic Liquids. Angew. Chem. Int. Ed. 2003, 42, 3257–3260. [Google Scholar] [CrossRef]
- Xiong, H.; Wei, X.; Zhou, D.; Qi, Y.; Xie, Z.; Chen, X.; Jing, X.; Huang, Y. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. Bioconjug. Chem. 2016, 27, 2214–2223. [Google Scholar] [CrossRef]
- Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angew. Chem. Int. Ed. 2017, 56, 10394–10398. [Google Scholar] [CrossRef] [PubMed]
- Fulfer, K.D.; Kuroda, D.G. Solvation Structure and Dynamics of the Lithium Ion in Organic Carbonate-Based Electrolytes: A Time-Dependent Infrared Spectroscopy Study. J. Phys. Chem. C 2016, 120, 24011–24022. [Google Scholar] [CrossRef]
- Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabu-tylammonium halides as solvents and catalysts. Org. Lett. 2002, 4, 2561–2563. [Google Scholar] [CrossRef] [PubMed]
- Toda, Y.; Komiyama, Y.; Kikuchi, A.; Suga, H. Tetraarylphosphonium Salt-Catalyzed Carbon Dioxide Fixation at Atmospheric Pressure for the Synthesis of Cyclic Carbonates. ACS Catal. 2016, 6, 6906–6910. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, D.; Zhang, J.; Chen, K.; Li, J.; Wang, L.; Zhang, J.; He, H.-Y.; Zhang, S. Protic Quaternary Ammonium Ionic Liquids for Catalytic Conversion of CO2 into Cyclic Carbonates: A Combined Ab Initio and MD Study. Ind. Eng. Chem. Res. 2018, 57, 7121–7129. [Google Scholar] [CrossRef]
- Al-Qaisi, F.M.; Nieger, M.; Kemell, M.L.; Repo, T.J. Catalysis of cycloaddition of carbon dioxide and epoxides using a bifunc-tional schiff base iron(III) catalyst. ChemistrySelect 2016, 3, 545–548. [Google Scholar] [CrossRef]
- Decortes, A.; Belmonte, M.M.; Benet-Buchholz, J.; Kleij, A.W. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst. Chem. Commun. 2010, 46, 4580–4582. [Google Scholar] [CrossRef] [PubMed]
- Sopeña, S.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. Pushing the Limits with Squaramide-Based Organocatalysts in Cyclic Carbonate Synthesis. ACS Catal. 2017, 7, 3532–3539. [Google Scholar] [CrossRef]
- Choi, H.-J.; Selvaraj, M.; Park, D.-W. Catalytic performance of immobilized ionic liquid onto PEG for the cycloaddition of carbon dioxide to allyl glycidyl ether. Chem. Eng. Sci. 2013, 100, 242–248. [Google Scholar] [CrossRef]
- Han, L.; Choi, H.-J.; Choi, S.-J.; Liu, B.; Park, D.-W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem. 2011, 13, 1023–1028. [Google Scholar] [CrossRef]
- Roshith, K.R.; Mathai, G.; Kim, J.; Tharun, J.; Park, G.A.; Park, D.W. A biopolymer mediated efficient synthesis of cyclic car-bonates from epoxides and carbon dioxide. Green Chem. 2012, 14, 2933–2940. [Google Scholar]
- Lee, S.D.; Kim, B.M.; Kim, D.W.; Kim, M.I.; Roshan, K.R.; Kim, M.K.; Won, Y.S.; Park, D.W. Synthesis of cyclic carbonate from carbon dioxide and epoxides with polystyrene-supported quaternary ammonium salt catalysts. Appl. Catal. A Gen. 2014, 486, 69–76. [Google Scholar] [CrossRef]
- Rehman, A.; Saleem, F.; Javed, F.; Qutab, H.; Eze, V.C.; Harvey, A. Kinetic study for styrene carbonate synthesis via CO2 cycloaddition to styrene oxide using silica-supported pyrrolidinopyridinium iodide catalyst. J. CO2 Util. 2021, 43, 101379. [Google Scholar] [CrossRef]
- Janeta, M.; Lis, T.; Szafert, S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro-Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low-Pressure CO2. Chem. Eur. J. 2020, 26, 13686–13697. [Google Scholar] [CrossRef] [PubMed]
- Mirabaud, A.; Mulatier, J.-C.; Martinez, A.; Dutasta, J.-P.; Dufaud, V. Investigating Host–Guest Complexes in the Catalytic Synthesis of Cyclic Carbonates from Styrene Oxide and CO2. ACS Catal. 2015, 5, 6748–6752. [Google Scholar] [CrossRef]
- Rachuri, Y.; Kurisingal, J.F.; Chitumalla, R.K.; Vuppala, S.; Gu, Y.; Jang, J.; Choe, Y.; Suresh, E.; Park, D.-W. Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO2 Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorg. Chem. 2019, 58, 11389–11403. [Google Scholar] [CrossRef]
- Kurisingal, J.F.; Rachuri, Y.; Gu, Y.; Choe, Y.; Park, D.-W. Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chem. Eng. J. 2020, 386, 121700. [Google Scholar] [CrossRef]
- Kurisingal, J.F.; Rachuri, Y.; Palakkal, A.S.; Pillai, R.S.; Gu, Y.; Choe, Y.; Park, D.-W. Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO2 and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Appl. Mater. Interfaces 2019, 11, 41458–41471. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Ren, J.; Chen, S.; Shen, C.; Chen, Y.; Zhang, M.; Liu, C.-J. The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 2020, 277, 115560. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Babu, R.; Jeong, H.; Jang, Y.H.; Lee, M.H.; Park, D.-W. Room temperature CO2 fixation via cyclic carbonate synthesis over vanadium-MOF catalysts. Korean J. Chem. Eng. 2019, 36, 643–649. [Google Scholar] [CrossRef]
- He, L.; Nath, J.K.; Lin, Q. Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonates. Chem. Commun. 2018, 55, 412–415. [Google Scholar] [CrossRef]
- Kurisingal, J.F.; Rachuri, Y.; Gu, Y.; Chitumalla, R.K.; Vuppala, S.; Jang, J.; Bisht, K.K.; Suresh, E.; Park, D.-W. Facile Green Synthesis of New Copper-Based Metal–Organic Frameworks: Experimental and Theoretical Study of the CO2 Fixation Reaction. ACS Sustain. Chem. Eng. 2020, 8, 10822–10832. [Google Scholar] [CrossRef]
- Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J.S.; Zou, R.; Zhao, Y. A Triazole-Containing Metal–Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.-M.; Han, Z.-B.; Ding, M.; Yuan, D.-Q.; Jiang, H.-L. Exceptionally Robust In-Based Metal–Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion. Inorg. Chem. 2016, 55, 3558–3565. [Google Scholar] [CrossRef] [PubMed]
- Reimer, N.; Reinsch, H.; Inge, A.K.; Stock, N. New Al-MOFs Based on Sulfonyldibenzoate Ions: A Rare Example of Intralayer Porosity. Inorg. Chem. 2014, 54, 492–501. [Google Scholar] [CrossRef]
- Kathalikkattil, A.C.; Roshan, R.; Tharun, J.; Soek, H.-G.; Ryu, H.-S.; Park, D.-W. Pillared Cobalt-Amino Acid Framework Catalysis for Styrene Carbonate Synthesis from CO2 and Epoxide by Metal-Sulfonate-Halide Synergism. ChemCatChem 2014, 6, 284–292. [Google Scholar] [CrossRef]
- Han, L.; Choi, S.J.; Park, M.S.; Kim, Y.J.; Lee, S.M.; Liu, B.; Park, D.W. Carboxylic acid functionalized imidazolium-based ionic liquids: Efficient catalyst for the cycloaddition reaction of CO2 and epoxides. React. Kinet. Mech. Catal. 2016, 106, 25–35. [Google Scholar] [CrossRef]
- Kathalikkattil, A.C.; Kim, D.-W.; Tharun, J.; Soek, H.-G.; Roshan, R.; Park, D.-W. Aqueous-microwave synthesized carboxyl functional molecular ribbon coordination framework catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2013, 16, 1607–1616. [Google Scholar] [CrossRef]
- De, D.; Pal, T.K.; Neogi, S.; Senthilkumar, S.; Das, D.; Gupta, S.S.; Bharadwaj, P.K. A Versatile Cu (II) metal-organic framework exhibiting high gas storage capacity with selectivity for CO2: Conversion of CO2 to cyclic carbonate and other catalytic abilities. Chem. Eur. J. 2016, 22, 3387–3396. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Perman, J.A.; Zhu, G.; Ma, S. Metal-Organic Frameworks for CO2 Chemical Transformations. Small 2016, 12, 6309–6324. [Google Scholar] [CrossRef]
- Lan, J.; Qu, Y.; Zhang, X.; Ma, H.; Xu, P.; Sun, J. A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. J. CO2 Util. 2020, 35, 216–224. [Google Scholar] [CrossRef]
- Pal, T.K.; De, D.; Bharadwaj, P.K. Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord. Chem. Rev. 2020, 408, 213173. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.Q.; Wu, Q.; Wang, W.Y.; Liu, T.T.; Li, H.F.; Huang, Y.B.; Cao, R. Zinc porphyrin/imidazolium intergrated multivariate zirconium metal-organic frameworks for transformation of CO2 into cyclic carbonates. Inorg. Chem. 2018, 57, 2584–2593. [Google Scholar] [CrossRef]
- Beyzavi, M.H.; Stephenson, C.J.; Liu, Y.; Karagiaridi, O.; Hupp, J.T.; Farha, O.K. Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 2015, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Pander, M.; Janeta, M.; Bury, W. Quest for an Efficient 2-in-1 MOF-Based Catalytic System for Cycloaddition of CO2 to Epoxides under Mild Conditions. ACS Appl. Mater. Interfaces 2021, 13, 8344–8352. [Google Scholar] [CrossRef]
- Duan, C.; Li, F.; Zhang, H.; Li, J.; Wang, X.; Xi, H. Template synthesis of hierarchical porous metal–organic frameworks with tunable porosity. RSC Adv. 2017, 7, 52245–52251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huo, J.; Li, J.; Li, F.; Duan, C.; Xi, H. Hierarchically porous metal–organic frameworks with single-crystal structures and their enhanced catalytic properties. CrystEngComm 2018, 20, 5754–5759. [Google Scholar] [CrossRef]
- Ghosh, M.; Lohrasbi, M.; Chuang, S.S.C.; Jana, S.C. Mesoporous Titanium Dioxide Nanofibers with a Significantly Enhanced Photocatalytic Activity. ChemCatChem 2016, 8, 2525–2535. [Google Scholar] [CrossRef]
- Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4, 3030–3040. [Google Scholar] [CrossRef]
- Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Gu, Y.; Lee, C.-H.; Park, D.-W.; Lim, D.-H. Effect of Water for the Synthesis of Cyclic Carbonate from Epoxide and CO2 Using Mg-MOF-74. Nanosci. Nanotechnol. Lett. 2018, 10, 1088–1094. [Google Scholar] [CrossRef]
- Kurisingal, J.F.; Babu, R.; Kim, S.H.; Li, Y.X.; Cho, S.J.; Chang, J.S.; Park, D.W. Microwave-induced synthesis of a bimetallic charge-transfer metal organic framework: A promising host for the chemical fixation of CO2 via cyclic carbonate synthesis. Catal. Sci. Technol. 2018, 8, 591–600. [Google Scholar] [CrossRef]
- Wu, Y.; Song, X.; Xu, S.; Chen, Y.; Oderinde, O.; Gao, L.; Wei, R.; Xiao, G. Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: The role of the interaction between Co and Zn. Dalton Trans. 2020, 49, 312–321. [Google Scholar] [CrossRef]
- Kurisingal, J.F.; Rachuri, Y.; Gu, Y.; Kim, G.H.; Park, D.W. Binary metal organic frameworks: Catalysts for the efficient sol-vent-free CO2 fixation reaction via cyclic carbonate synthesis. Appl. Catal. A Gen. 2019, 571, 1–11. [Google Scholar] [CrossRef]
- Zhai, Q.-G.; Bu, X.; Mao, C.; Zhao, X.; Feng, P. Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal–Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 2524–2527. [Google Scholar] [CrossRef]
- Babu, R.; Kurisingal, J.F.; Chang, J.S.; Park, D.W. Bifunctional pyridinium-based ionic-liquid-immobilized diindium tris(diphenic acid) bis(1,10-phenanthroline) for CO2 fixation. ChemSusChem 2018, 11, 924–932. [Google Scholar] [CrossRef]
- Ranjbar, M.; Taher, M.A.; Sam, A. Mg-MOF-74 nanostructures: Facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. J. Mater. Sci. Mater. Electron. 2016, 27, 1449–1456. [Google Scholar] [CrossRef]
- Gofer, Y.; Turgeman, R.; Cohen, H.; Aurbach, R. XPS Investigation of Surface Chemistry of Magnesium Electrodes in Contact with Organic Solutions of Organochloroaluminate Complex Salts. Langmuir 2003, 19, 2344–2348. [Google Scholar] [CrossRef]
- Badoga, S.; Kamath, G.; Dalai, A. Effects of promoters (Mn, Mg, Co and Ni) on the Fisher-Tropsch activity and selectivity of KCuFe/mesoporous-alumina catalyst. Appl. Catal. A Gen. 2020, 607, 117861. [Google Scholar] [CrossRef]
- Kong, A.; Lin, Q.; Mao, C.; Bu, X.; Feng, P. Efficient oxygen reduction by nanocomposites of heterometallic carbide and ni-trogen-enriched carbon derived from the cobalt-encapsulated indium-MOF. Chem. Commun. 2014, 50, 15619–15622. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Fu, R.; Liu, F.; Pan, Y.; Ding, X.; He, G. Novel Electron-Rich and Sterically Hindered Phosphonium as a Highly Efficient and Recyclable Heterogeneous Catalyst for CO2 Cycloaddition. Ind. Eng. Chem. Res. 2018, 57, 3195–3203. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Billodeaux, D.R. Aluminum Salen Complexes and Tetrabutylammonium Salts: A Binary Catalytic System for Production of Polycarbonates from CO2 and Cyclohexene Oxide. Inorg. Chem. 2005, 44, 1433–1442. [Google Scholar] [CrossRef]
- Patel, P.; Parmar, B.; Kureshy, R.I.; Khan, N.H.; Suresh, E. Amine-functionalized Zn(II) MOF as efficient multifunctional cat-alyst for CO2 utilization and sulfoxidation reaction. Dalton Trans. 2018, 47, 8041–8051. [Google Scholar] [CrossRef]
- Parmar, B.; Patel, P.; Kureshy, R.I.; Khan, N.-U.H.; Suresh, E. Sustainable Heterogeneous Catalysts for CO2 Utilization by Using Dual Ligand ZnII/CdII Metal-Organic Frameworks. Chem. Eur. J. 2018, 24, 15831–15839. [Google Scholar] [CrossRef]
- Kim, S.-N.; Kim, J.; Kim, H.-Y.; Cho, H.-Y.; Ahn, W.-S. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal. Today 2013, 204, 85–93. [Google Scholar] [CrossRef]
- Zhang, S.; Jang, M.-S.; Lee, J.; Puthiaraj, P.; Ahn, W.-S. Zeolite-Like Metal Organic Framework (ZMOF) with a rho Topology for a CO2 Cycloaddition to Epoxides. ACS Sustain. Chem. Eng. 2020, 8, 7078–7086. [Google Scholar] [CrossRef]
- Li, Y.-H.; Wang, S.-L.; Su, Y.-C.; Ko, B.-T.; Tsai, C.-Y.; Lin, C.-H. Microporous 2D indium metal–organic frameworks for selective CO2 capture and their application in the catalytic CO2-cycloaddition of epoxides. Dalton Trans. 2018, 47, 9474–9481. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Li, L.; Advincula, R.C. Design, Synthesis, and Photochemical Behavior of Poly(benzyl ester) Dendrimers with Azobenzene Groups throughout Their Architecture. J. Org. Chem. 2004, 69, 9073–9084. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Elemental Composition (wt%) | |||||
---|---|---|---|---|---|---|
In | Mg | C | H | O | N | |
CPM-200-In | 35.84 | - | 30.05 | 1.86 | 26.69 | 4.81 |
CPM-200-In/Mg | 13.13 | 8.20 | 36.89 | 2.96 | 31.68 | 7.26 |
Catalyst | Acidic Sites NH3-TPD (mmol/g) | Basic Sites CO2-TPD (mmol/g) |
---|---|---|
CPM-200-In | 23.9 | 6.7 |
CPM-200-In/Mg | 24.2 | 12.9 |
Entry | Catalyst | Conversion c (%) | Selectivity c (%) |
---|---|---|---|
1 | None | - | - |
2 | Indium salt | 3 | 96 |
3 | Magnesium salt | 4 | 96 |
4 | CPM-200-In | 3 | 98 |
5 | CPM-200-In/Mg | 5 | 98 |
6 | CPM-200-In a | 14 | 99 |
7 | CPM-200-In/Mg a | 17 | 99 |
8 | TBAB | 43.5 | >99 |
9 | CPM-200-In/TBAB | 81.7 | >99 |
10 | CPM-200-In/Mg/TBAB | 90.3 | >99 |
11 | CPM-200-In/TBAB b | 42.2 | >99 |
12 | CPM-200-In/Mg/TBAB b | 52.4 | >99 |
13 | CPM-200-In/Mg/TBAC | 78.6 | >99 |
14 | CPM-200-In/Mg/TBAI | 85.8 | >99 |
Entry | Reactant | Product | Yield a (%) |
---|---|---|---|
1 | 90.3 | ||
2 | 87.3 | ||
3 | 82.1 | ||
4 | 71.9 | ||
5 | 14.3 |
No | MOF | Epoxide | T (°C) | PCO2 (MPa) | Time (h) | Catalyst Amount (mol%) | Yield (%) | TOF (h−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Mg-MOF-74 a | SO | 100 | 2.0 | 4 | 3.33 | 95 | 7.1 | [55] |
2 | ZnMOF-1-NH2 b | ECH | 80 | 0.8 | 8 | 1.0 | 89 | 11.1 | [68] |
3 | {[Zn(CHDC)(L)]·H2O}n | ECH | 80 | 1.0 | 18 | 1.8 | 91 | 2.8 | [69] |
4 | NH2-MIL-125 | ECH | 100 | 2.0 | 6 | 1.6 | 84 | 8.8 | [70] |
5 | rho-ZMOF c | ECH | 40 | 1.0 | 3 | 25 mg | 97 | - | [71] |
6 | CPM-200-In/Mg | ECH | 80 | 1.2 | 6 | 0.6 | 90 | 25.0 | This work |
7 | CPM-200-In/Mg | PO | 80 | 1.2 | 6 | 0.6 | 89 | 24.7 | This work |
8 | (Me2NH2)[In(SBA)2] | PO | 80 | 2.0 | 24 | 0.15 | 85 | 23.6 | [72] |
9 | (Me2NH2)[In(SBA)(BDC) | PO | 80 | 2.0 | 24 | 0.15 | 89 | 24.7 | [72] |
10 | (Me2NH2) [In(SBA)(BDC NH2)] | PO | 80 | 2.0 | 24 | 0.15 | 92 | 25.6 | [72] |
11 | (NH4)3[In3Cl2(BPDC)5] | PO | 80 | 2.0 | 24 | 0.15 | 95 | 26.4 | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Choe, Y.; Park, D.-W. Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides. Catalysts 2021, 11, 430. https://doi.org/10.3390/catal11040430
Gu Y, Choe Y, Park D-W. Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides. Catalysts. 2021; 11(4):430. https://doi.org/10.3390/catal11040430
Chicago/Turabian StyleGu, Yunjang, Youngson Choe, and Dae-Won Park. 2021. "Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides" Catalysts 11, no. 4: 430. https://doi.org/10.3390/catal11040430
APA StyleGu, Y., Choe, Y., & Park, D. -W. (2021). Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO2 and Epoxides. Catalysts, 11(4), 430. https://doi.org/10.3390/catal11040430