Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Analysis of Novel, Flavin-Dependent Halogenases from the Botryococcus braunii Consortia
2.2. In Vitro Experiments with the Flavin-Dependent Halogenases SpH1 and SpH2
2.2.1. Determination of Halogenation Activity and Substrate Scope
2.2.2. Investigation of Mono- and Dibromination Activity
3. Materials and Methods
3.1. Analytics
3.1.1. Analytical, Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC)
3.1.2. Preparative, Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC)
3.1.3. High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS)
3.1.4. Gas Chromatography–Mass Spectrometry (GC-MS)
3.1.5. Nuclear Magnetic Resonance (NMR) Spectroscopy
3.2. Bioinformatic Analysis
3.2.1. Metagenomic Analysis for the Detection of Flavin-Dependent Halogenases
3.2.2. Phylogenetic Analysis
3.3. In Vitro Enzyme Assays
3.3.1. Vector Construction and Molecular Cloning
3.3.2. Heterologous Protein Expression and Purification
3.3.3. Enzymatic Halogenation/Enzyme Assay with Purified Protein on an Analytical Scale
3.3.4. Determination of Specific Activity
3.3.5. Catalase Activity Assay
3.3.6. Enzymatic Halogenation with Immobilised Protein on a Preparative Scale
3.3.7. FAD Reconstitution
3.4. In Silico Study Using YASARA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frese, M.; Sewald, N. Enzymatic halogenation of tryptophan on a gram scale. Angew. Chem. Int. Ed. 2015, 54, 298–301. [Google Scholar] [CrossRef]
- Schnepel, C.; Sewald, N. Enzymatic halogenation: A timely strategy for regioselective C−H activation. Chem. Eur. J. 2017, 23, 12064–12086. [Google Scholar] [CrossRef]
- Frese, M.; Guzowska, P.H.; Voss, H.; Sewald, N. Regioselective Enzymatic Halogenation of Substituted Tryptophan Derivatives using the FAD-Dependent Halogenase RebH. ChemCatChem 2014, 6, 1270–1276. [Google Scholar]
- Frese, M.; Schnepel, C.; Minges, H.; Voß, H.; Feiner, R.; Sewald, N. Modular Combination of Enzymatic Halogenation of Tryptophan with Suzuki-Miyaura Cross-Coupling Reactions. ChemCatChem 2016, 8, 1799–1803. [Google Scholar] [CrossRef]
- Dachwitz, S.; Widmann, C.; Frese, M.; Niemann, H.H.; Sewald, N. Enzymatic halogenation: Enzyme mining, mechanisms, and implementation in reaction cascades. Amino Acids Pept. Proteins 2021, 44, 1. [Google Scholar]
- Minges, H.; Sewald, N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020, 12, 4450–4470. [Google Scholar] [CrossRef]
- Mascotti, M.L.; Ayub, M.J.; Furnham, N.; Thornton, J.M.; Laskowski, R.A. Chopping and changing: The evolution of the flavin-dependent monooxygenases. J. Mol. Biol. 2016, 428, 3131–3146. [Google Scholar] [CrossRef] [Green Version]
- Badieyan, S.; Bach, R.D.; Sobrado, P. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases. J. Org. Chem. 2015, 80, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Kemker, I.; Schnepel, C.; Schröder, D.C.; Marion, A.; Sewald, N. Cyclization of RGD Peptides by Suzuki-Miyaura Cross-Coupling. J. Med. Chem. 2019, 62, 7417–7430. [Google Scholar] [CrossRef]
- Durak, L.J.; Payne, J.T.; Lewis, J.C. Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS Catal. 2016, 6, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Latham, J.; Henry, J.-M.; Sharif, H.H.; Menon, B.R.K.; Shepherd, S.A.; Greaney, M.F.; Micklefield, J. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kemker, I.; Schröder, D.C.; Feiner, R.C.; Müller, K.M.; Marion, A.; Sewald, N. Tuning the Biological Activity of RGD Peptides with Halotryptophans. J. Med. Chem. 2021, 64, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Corr, M.J.; Sharma, S.V.; Pubill-Ulldemolins, C.; Bown, R.T.; Poirot, P.; Smith, D.R.M.; Cartmell, C.; Abou-Fayad, A.; Goss, R.J.M. Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water. Chem. Sci. 2017, 8, 2039–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruß, H.; Sewald, N. Late-Stage Diversification of Tryptophan-Derived Biomolecules. Chem. Eur. J. 2020, 26, 5328–5340. [Google Scholar] [CrossRef] [PubMed]
- Pubill-Ulldemolins, C.; Sharma, S.V.; Cartmell, C.; Zhao, J.; Cárdenas, P.; Goss, R.J.M. Heck Diversification of Indole-Based Substrates under Aqueous Conditions: From Indoles to Unprotected Halo-tryptophans and Halo-tryptophans in Natural Product Derivatives. Chem. Eur. J. 2019, 25, 10866–10875. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Wage, T.; Hohaus, K.; Hölzer, M.; Eichhorn, E.; van Pée, K.-H. Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew. Chem. Int. Ed. 2000, 39, 2300–2302. [Google Scholar] [CrossRef]
- Kirner, S.; Hammer, P.E.; Hill, D.S.; Altmann, A.; Fischer, I.; Weislo, L.J.; Lanahan, M.; van Pée, K.-H.; Ligon, J.M. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. Res. 1998, 180, 1939–1943. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.; Butovich, I.A.; Braña, A.F.; Rohr, J.; Méndez, C.; Salas, J.A. The biosynthetic gene cluster for the antitumor rebeccamycin: Characterization and generation of indolocarbazole derivatives. Chem. Biol. 2002, 9, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Heemstra, J.R., Jr.; Walsh, C.T. Tandem action of the O2-and FADH2-dependent halogenases KtzQ and KtzR produce 6, 7-dichlorotryptophan for kutzneride assembly. J. Am. Chem. Soc. 2008, 130, 14024–14025. [Google Scholar] [CrossRef] [Green Version]
- Seibold, C.; Schnerr, H.; Rumpf, J.; Kunzendorf, A.; Hatscher, C.; Wage, T.; Ernyei, A.J.; Dong, C.; Naismith, J.H.; van Pée, K.-H. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal. Biotransform. 2006, 24, 401–408. [Google Scholar] [CrossRef]
- Zeng, J.; Zhan, J. Characterization of a tryptophan 6-halogenase from Streptomyces toxytricini. Biotechnol. Lett. 2011, 33, 1607–1613. [Google Scholar] [CrossRef]
- Xu, L.; Han, T.; Ge, M.; Zhu, L.; Qian, X. Discovery of the new plant growth-regulating compound LYXLF2 based on manipulating the halogenase in Amycolatopsis orientalis. Curr. Microbiol. 2016, 73, 335–340. [Google Scholar] [CrossRef]
- Zehner, S.; Kotzsch, A.; Bister, B.; Süssmuth, R.D.; Méndez, C.; Salas, J.A.; van Pée, K.-H. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem. Biol. 2005, 12, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.S. Biosynthetic gene cluster for the cladoniamides, bis-indoles with a rearranged scaffold. PLoS ONE 2011, 6, e23694. [Google Scholar] [CrossRef]
- Moritzer, A.-C.; Minges, H.; Prior, T.; Frese, M.; Sewald, N.; Niemann, H.H. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J. Biol Chem. 2019, 294, 2529–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minges, H.; Schnepel, C.; Böttcher, D.; Weiß, M.S.; Sproß, J.; Bornscheuer, U.T.; Sewald, N. Targeted Enzyme Engineering Unveiled Unexpected Patterns of Halogenase Stabilization. ChemCatChem 2020, 12, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Van Pée, K.-H. Enzymatic chlorination and bromination. Meth. Enzymol. 2012, 516, 237–257. [Google Scholar]
- Dong, C.; Flecks, S.; Unversucht, S.; Haupt, C.; van Pee, K.-H.; Naismith, J.H. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 2005, 309, 2216–2219. [Google Scholar] [CrossRef]
- Zhu, X.; de Laurentis, W.; Leang, K.; Herrmann, J.; Ihlefeld, K.; Van Pée, K.-H.; Naismith, J.H. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J. Mol. Biol. 2009, 391, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Kotzsch, A.; Dorward, M.; van Pée, K.-H.; Naismith, J.H. Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Cryst. 2004, 60, 1438–1440. [Google Scholar]
- Ainsley, J.; Mulholland, A.J.; Black, G.W.; Sparagano, O.; Christov, C.Z.; Karabencheva-Christova, T.G. Structural insights from molecular dynamics simulations of tryptophan 7-halogenase and tryptophan 5-halogenase. ACS Omega 2018, 3, 4847–4859. [Google Scholar] [CrossRef]
- Yeh, E.; Blasiak, L.C.; Koglin, A.; Drennan, C.L.; Walsh, C.T. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 2007, 46, 1284–1292. [Google Scholar] [CrossRef]
- Neubauer, P.R.; Widmann, C.; Wibberg, D.; Schröder, L.; Frese, M.; Kottke, T.; Kalinowski, J.; Niemann, H.H.; Sewald, N. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS ONE 2018, 13, e0196797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, B.R.K.; Brandenburger, E.; Sharif, H.H.; Klemstein, U.; Shepherd, S.A.; Greaney, M.F.; Micklefield, J. RadH: A Versatile Halogenase for Integration into Synthetic Pathways. Angew. Chem. Int. Ed. 2017, 56, 11841–11845. [Google Scholar] [CrossRef] [PubMed]
- Flecks, S.; Patallo, E.P.; Zhu, X.; Ernyei, A.J.; Seifert, G.; Schneider, A.; Dong, C.; Naismith, J.H.; van Pée, K.-H. New insights into the mechanism of enzymatic chlorination of tryptophan. Angew. Chem. Int. Ed. 2008, 47, 9533–9536. [Google Scholar] [CrossRef] [Green Version]
- Bitto, E.; Huang, Y.; Bingman, C.A.; Singh, S.; Thorson, J.S.; Phillips, G.N. The structure of flavin-dependent tryptophan 7-halogenase RebH. Proteins 2008, 70, 289–293. [Google Scholar] [CrossRef]
- Podzelinska, K.; Latimer, R.; Bhattacharya, A.; Vining, L.C.; Zechel, D.L.; Jia, Z. Chloramphenicol biosynthesis: The structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. J. Mol. Biol. 2010, 397, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.D.; Grüschow, S.; Cairns, N.; Goss, R.J.M. Gene expression enabling synthetic diversification of natural products: Chemogenetic generation of pacidamycin analogs. J. Am. Chem. Soc. 2010, 132, 12243–12245. [Google Scholar] [CrossRef] [PubMed]
- Glenn, W.S.; Nims, E.; O′Connor, S.E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 2011, 133, 19346–19349. [Google Scholar] [CrossRef]
- Runguphan, W.; Qu, X.; O′connor, S.E. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 2010, 468, 461–464. [Google Scholar] [CrossRef]
- Veldmann, K.H.; Dachwitz, S.; Risse, J.M.; Lee, J.-H.; Sewald, N.; Wendisch, V.F. Bromination of L-tryptophan in a Fermentative Process with Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 2019, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Hammer, P.E.; Hill, D.S.; Lam, S.T.; Van Pée, K.-H.; Ligon, J.M. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 1997, 63, 2147–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.M.; Uria, A.R.; Helfrich, E.J.N.; Milbredt, D.; van Pée, K.-H.; Piel, J.; Goss, R.J.M. An unusual flavin-dependent halogenase from the metagenome of the marine sponge Theonella swinhoei WA. ACS Chem. Biol. 2017, 12, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, B.R.K.; Latham, J.; Dunstan, M.S.; Brandenburger, E.; Klemstein, U.; Leys, D.; Karthikeyan, C.; Greaney, M.F.; Shepherd, S.A.; Micklefield, J. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. Org. Biomol. Chem. 2016, 14, 9354–9361. [Google Scholar] [CrossRef] [Green Version]
- Ortega, M.A.; Cogan, D.P.; Mukherjee, S.; Garg, N.; Li, B.; Thibodeaux, G.N.; Maffioli, S.I.; Donadio, S.; Sosio, M.; Escano, J. Two flavoenzymes catalyze the post-translational generation of 5-chlorotryptophan and 2-aminovinyl-cysteine during NAI-107 biosynthesis. ACS Chem. Biol. 2017, 12, 548–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, V.; el Gamal, A.A.; Yamanaka, K.; Poth, D.; Kersten, R.D.; Schorn, M.; Allen, E.E.; Moore, B.S. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 2014, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Zhan, J. A Novel Fungal Flavin-Dependent Halogenase for Natural Product Biosynthesis. ChemBioChem 2010, 11, 2119–2123. [Google Scholar] [CrossRef]
- Chooi, Y.-H.; Cacho, R.; Tang, Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 2010, 17, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xu, Y.; Maine, E.A.; Wijeratne, E.K.; Espinosa-Artiles, P.; Gunatilaka, A.L.; Molnár, I. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 2008, 15, 1328–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, K.; Scheuermayer, M.; Fieseler, L.; Hentschel, U. Genomic mining for novel FADH 2-dependent halogenases in marine sponge-associated microbial consortia. Mar. Biotechnol. 2013, 15, 63–72. [Google Scholar] [CrossRef]
- Ismail, M.; Frese, M.; Patschkowski, T.; Ortseifen, V.; Niehaus, K.; Sewald, N. Flavin-Dependent Halogenases from Xanthomonas campestris pv. campestris B100 Prefer Bromination over Chlorination. Adv. Synth. Catal. 2019, 361, 2475–2486. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, P.R.; Pienkny, S.; Wessjohann, L.A.; Brandt, W.; Sewald, N. Predicting the substrate scope of the flavin-dependent halogenase BrvH. ChemBioChem 2020, 21, 3282–3288. [Google Scholar] [CrossRef]
- Widmann, C.; Ismail, M.; Sewald, N.; Niemann, H.H. Structure of apo flavin-dependent halogenase Xcc4156 hints at a reason for cofactor-soaking difficulties. Acta Cryst. 2020, 76, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Rojo, F. Degradation of alkanes by bacteria. Environ. Microbiol. 2009, 11, 2477–2490. [Google Scholar] [CrossRef] [PubMed]
- Löwe, J.; Blifernez-Klassen, O.; Baier, T.; Wobbe, L.; Kruse, O.; Gröger, H. Type II flavoprotein monooxygenase PsFMO_A from the bacterium Pimelobacter sp. Bb-B catalyzes enantioselective Baeyer-Villiger oxidations with a relaxed cofactor specificity. J. Biotechnol. 2019, 294, 81–87. [Google Scholar] [CrossRef]
- Metzger, P.; Largeau, C. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 2005, 66, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Blifernez-Klassen, O.; Chaudhari, S.; Klassen, V.; Wördenweber, R.; Steffens, T.; Cholewa, D.; Niehaus, K.; Kalinowski, J.; Kruse, O. Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLoS ONE 2018, 13, e0198976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirac, C.; Casadevall, E.; Largeau, C.; Metzger, P. Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii 1. J. Phycol. 1985, 21, 380–387. [Google Scholar] [CrossRef]
- Blifernez-Klassen, O.; Klassen, V.; Wibberg, D.; Cebeci, E.; Henke, C.; Rückert, C.; Chaudhari, S.; Rupp, O.; Blom, J.; Winkler, A. Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria ecosystems based on the biocoenosis of Botryococcus consortia. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de los Santos, E.L.C.; Kim, H.U.; Nave, M. antiSMASH 4.0—Improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017, 45, W36–W41. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Ligtenbarg, A.G.J.; Hage, R.; Feringa, B.L. Catalytic oxidations by vanadium complexes. Coord. Chem. Rev. 2003, 237, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Crichton, R.R. Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780444537829. reprinted. [Google Scholar]
- Hager, L.P.; Morris, D.R.; Brown, F.S.; Eberwein, H. Chloroperoxidase: II. Utilization of halogen anions. J. Biol. Chem. 1966, 241, 1769–1777. [Google Scholar] [CrossRef]
- Schroeder, L.; Frese, M.; Müller, C.; Sewald, N.; Kottke, T. Photochemically Driven Biocatalysis of Halogenases for the Green Production of Chlorinated Compounds. ChemCatChem 2018, 10, 3336–3341. [Google Scholar] [CrossRef]
- Sundberg, R.J. Electrophilic Substitution Reactions of Indoles. In Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry; Gribble, G.W.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–115. [Google Scholar] [CrossRef]
- Hölzer, M.; Burd, W.; Reißig, H.-U.; van Pée, K.-H. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915. Adv. Synth. Catal. 2001, 343, 591–595. [Google Scholar] [CrossRef]
- Van Pée, K.H. Microbial biosynthesis of halometabolites. Arch. Microbiol. 2001, 175, 250–258. [Google Scholar] [CrossRef]
- Fisher, B.F.; Snodgrass, H.M.; Jones, K.A.; Andorfer, M.C.; Lewis, J.C. Site-Selective C–H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent. Sci. 2019, 5, 1844–1856. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, B.N.; Harper, C.P. The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 2018, 69, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozga, J.A.; Reinecke, D.M.; Ayele, B.T.; Ngo, P.; Nadeau, C.; Wickramarathna, A.D. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol. 2009, 150, 448–462. [Google Scholar] [CrossRef] [Green Version]
- Tivendale, N.D.; Davidson, S.E.; Davies, N.W.; Smith, J.A.; Dalmais, M.; Bendahmane, A.I.; Quittenden, L.J.; Sutton, L.; Bala, R.K.; Le Signor, C. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 2012, 159, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant–microbe interactions. Antonie Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Murphy, K. Applying Green Chemistry Principles in the Electrophilic Bromination of Indole-3-Acetic Acid. Undergrad. Rev. 2014, 10, 111–115. [Google Scholar]
- Kramer, J.; Özkaya, Ö.; Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020, 18, 152–163. [Google Scholar] [CrossRef]
- Kishimoto, S.; Nishimura, S.; Hattori, A.; Tsujimoto, M.; Hatano, M.; Igarashi, M.; Kakeya, H. Chlorocatechelins A and B from Streptomyces sp.: New siderophores containing chlorinated catecholate groups and an acylguanidine structure. Org. Lett. 2014, 16, 6108–6111. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Krieger, E.; Vriend, G. YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 2009, 77, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [Green Version]
No. | Length (bp) | Complete | Contig Location | Phyla | Putative Origin |
---|---|---|---|---|---|
1 | 225 | no | contig-391000007_2 | Alphaproteobacteria | Porphyrobacter |
2 | 394 | no | contig-1913000010_2 | Alphaproteobacteria | Sphingopyxis |
3 | 348 | no | contig-565000012_1 | Alphaproteobacteria | Caulobacter |
4 | 272 | no | contig-1532000014_2 | Alphaproteobacteria | Sphingopyxis |
5 | 503 | yes | contig-1000028_60 | Alphaproteobacteria | Sphingomonas |
6 | 502 | yes | contig-1029000036_1 | Alphaproteobacteria | Sphingopyxis |
7 | 501 | yes | contig-3201000046_41 | Gammaproteobacteria | Stenotrophomonas |
8 | 511 | yes | contig-2000047_22 | Alphaproteobacteria | Sphingomonas |
9 | 501 | yes | contig-2000047_33 | Alphaproteobacteria | Sphingomonas |
10 | 533 | yes | contig-2000047_110 | Alphaproteobacteria | Sphingomonas |
11 | 505 | yes | contig-2000047_112 | Alphaproteobacteria | Sphingomonas |
12 | 501 | yes | contig-2000047_113 | Alphaproteobacteria | Sphingomonas |
13 | 418 | no | contig-1419000070_1 | Alphaproteobacteria | Caulobacter |
14 | 359 | no | contig-832000073_1 | Alphaproteobacteria | Porphyrobacter |
15 | 501 | yes | contig-252000084_3 | Alphaproteobacteria | Sphingopyxis |
16 | 501 | yes | contig-2000086_90 | Alphaproteobacteria | Brevundimonas |
17 | 443 | no | contig-2264000090_1 | Alphaproteobacteria | Sphingopyxis |
18 | 521 | yes | contig-16000092_39 | Alphaproteobacteria | Sphingomonas |
19 | 502 | yes | contig-867000143_2 | Alphaproteobacteria | Caulobacter |
20 | 513 | yes | contig-3212000146_163 | Alphaproteobacteria | Sphingomonas |
21 | 512 | yes | contig-3212000146_164 | Alphaproteobacteria | Sphingomonas |
22 | 553 | yes | contig-3212000146_184 | Alphaproteobacteria | Sphingomonas |
23 | 493 | yes | contig-1000154_7 | Alphaproteobacteria | Sphingomonas |
24 | 522 | yes | contig-981000159_36 | Alphaproteobacteria | Brevundimonas |
25 | 516 | yes | contig-981000159_37 | Alphaproteobacteria | Brevundimonas |
Enzyme/Substrate | Mode | Binding Affinity [kJ/mol] |
---|---|---|
SpH2/indole | 3 | 22.9 |
SpH1/indole | 9 | 20.1 |
SpH2/3-bromoindole | 5 | 22.5 |
SpH1/3-bromoindole | 11 | 19.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neubauer, P.R.; Blifernez-Klassen, O.; Pfaff, L.; Ismail, M.; Kruse, O.; Sewald, N. Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination. Catalysts 2021, 11, 485. https://doi.org/10.3390/catal11040485
Neubauer PR, Blifernez-Klassen O, Pfaff L, Ismail M, Kruse O, Sewald N. Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination. Catalysts. 2021; 11(4):485. https://doi.org/10.3390/catal11040485
Chicago/Turabian StyleNeubauer, Pia R., Olga Blifernez-Klassen, Lara Pfaff, Mohamed Ismail, Olaf Kruse, and Norbert Sewald. 2021. "Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination" Catalysts 11, no. 4: 485. https://doi.org/10.3390/catal11040485
APA StyleNeubauer, P. R., Blifernez-Klassen, O., Pfaff, L., Ismail, M., Kruse, O., & Sewald, N. (2021). Two Novel, Flavin-Dependent Halogenases from the Bacterial Consortia of Botryococcus braunii Catalyze Mono- and Dibromination. Catalysts, 11(4), 485. https://doi.org/10.3390/catal11040485