The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review
Abstract
:1. Introduction
2. Photocatalytic Reactors for Wastewater Treatment: Working Principles and Components
3. Photoreactors Design and Concepts
3.1. Cylindrical Photoreactors
3.2. Rectangular Photoreactors
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitehead, P.G.; Bussi, G.; Hughes, J.M.R.; Castro-Castellon, A.T.; Norling, M.D.; Jeffers, E.S.; Rampley, C.P.N.; Read, D.S.; Horton, A.A. Modelling Microplastics in the River Thames: Sources, Sinks and Policy Implications. Water 2021, 13, 861. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, B.; Li, L. Denitrification mechanism and artificial neural networks modeling for low-pollution water purification using a denitrification biological filter process. Sep. Purif. Technol. 2021, 257, 117918. [Google Scholar] [CrossRef]
- Mashuri, S.I.; Ibrahim, M.L.; Kasim, M.F.; Mastuli, M.S.; Rashid, U.; Abdullah, A.H.; Islam, A.; Asikin Mijan, N.; Tan, Y.H.; Mansir, N.; et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1260. [Google Scholar] [CrossRef]
- Cao, X.; Wang, K.; Feng, X. Removal of phenolic contaminants from water by pervaporation. J. Membr. Sci. 2021, 623, 119043. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Song, P. Effects of electrolyzed water treatment on pesticide removal and texture quality in fresh-cut cabbage, broccoli, and color pepper. Food Chem. 2021, 353, 129408. [Google Scholar] [CrossRef]
- Camargo-Perea, A.L.; Serna-Galvis, E.A.; Torres-Palma, R.A. Understanding the effects of mineral water matrix on degradation of several pharmaceuticals by ultrasound: Influence of chemical structure and concentration of the pollutants. Ultrason. Sonochem. 2021, 73, 105500. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.; Belessiotis, G.V.; Arfanis, M.K.; Athanasekou, C.; Philippopoulos, A.I.; Mitsopoulou, C.A.; Romanos, G.E.; Falaras, P. Surfactant Effects on the Synthesis of Redox Bifunctional V2O5 Photocatalysts. Materials 2020, 13, 4665. [Google Scholar] [CrossRef]
- McBeath, S.T.; English, J.T.; Graham, N.J.D. Circumneutral electrosynthesis of ferrate oxidant: An emerging technology for small, remote and decentralised water treatment applications. Curr. Opin. Electrochem. 2021, 27, 100680. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Vuorinen, H.S.; Nikolaidis, C.; Juuti, P.S.; Katko, T.S.; Juuti, R.P.; Zhang, J.; Samonis, G. Water Quality and Life Expectancy: Parallel Courses in Time. Water 2021, 13, 752. [Google Scholar] [CrossRef]
- Li, D.; Zhuge, Y.; Ma, X. Reuse of drinking water treatment sludge in mortar as substitutions of both fly ash and sand based on two treatment methods. Constr. Build. Mater. 2021, 277, 122330. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhao, Y.; Bao, W. A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects. J. Clean. Prod. 2021, 281, 124668. [Google Scholar] [CrossRef]
- Letshwenyo, M.W.; Mokgosi, S. Investigation of water treatment sludge from drinking water treated with Zetafloc 553I coagulant for phosphorus removal from wastewater. J. Environ. Manag. 2021, 282, 111909. [Google Scholar] [CrossRef]
- Dudita, M.; Bogatu, C.; Enesca, A.; Duta, A. The influence of the additives composition and concentration on the properties of SnOx thin films used in photocatalysis. Mater. Lett. 2011, 65, 2185–2189. [Google Scholar] [CrossRef]
- Tong, K.; Yang, L.; Du, X.; Yang, Y. Review of modeling and simulation strategies for unstructured packing bed photoreactors with CFD method. Renew. Sustain. Energy Rev. 2020, 131, 109986. [Google Scholar] [CrossRef]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J. Water Proc. Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, I.W.; Huang, F. Toward large-scale water treatment using nanomaterials. Nanotoday 2019, 27, 11–27. [Google Scholar] [CrossRef]
- Stefán, D.; Erdélyi, N.; Vargha, M. Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination. Microchem. J. 2019, 149, 104008. [Google Scholar] [CrossRef]
- Fatima, S.; Ali, S.I.; Iqbal, M.Z.; Rizwan, S. Congo Red Dye Degradation by Graphene Nanoplatelets/Doped Bismuth Ferrite Nanoparticle Hybrid Catalysts under Dark and Light Conditions. Catalysts 2020, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Yang, X.; Liu, C.; Qian, X.; Wen, Y.; Yang, Q.; Sun, T.; Chang, W.; Liu, X.; Chen, Z. Facile Construction of All-Solid-State Z-Scheme g-C3N4/TiO2 Thin Film for the Efficient Visible-Light Degradation of Organic Pollutant. Nanomaterials 2020, 10, 600. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Zhang, X.; Zeng, X. Facile synthesis of MoO3 nanospheres and their application in water treatment. Mater. Lett. 2019, 256, 126648. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Zhang, G. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci. Total Environ. 2019, 659, 1415–1427. [Google Scholar] [CrossRef]
- Ji, S.; Yang, Y.; Li, X.; Liu, H.; Zhou, Z. Facile Production of a Fenton-Like Photocatalyst by Two-Step Calcination with a Broad pH Adaptability. Nanomaterials 2020, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Testolin, R.C.; Mater, L.; Radetski, C.M. Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. J. Environ. Chem. Eng. 2020, 8, 104265. [Google Scholar] [CrossRef]
- Enesca, A.; Duta, A. The influence of organic additives on the morphologic and crystalline properties of SnO2 obtained by spray pyrolysis deposition. Thin Solid Film 2011, 519, 5780–5786. [Google Scholar] [CrossRef]
- Xie, A.; Cui, J.; Dai, J. Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. J. Membr. Sci. 2020, 595, 117499. [Google Scholar] [CrossRef]
- Mazarji, M.; Minkina, T.; Dudnikova, T. Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. Environ. Res. 2020, 190, 109948. [Google Scholar] [CrossRef]
- Fiorenza, R.; Balsamo, S.A.; D′Urso, L.; Sciré, S.; Brundo, M.V.; Pecoraro, R.; Scalisi, E.M.; Privitera, V.; Impellizzeri, G. CeO2 for Water Remediation: Comparison of Various Advanced Oxidation Processes. Catalysts 2020, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wang, Z.; Tang, Y. An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. J. Membr. Sci. 2019, 572, 419–427. [Google Scholar] [CrossRef]
- Arshad, A.; Iqbal, J.; Mansoor, Q. Graphene/Fe3O4 nanocomposite: Solar light driven Fenton like reaction for decontamination of water and inhibition of bacterial growth. Appl. Surf. Sci. 2019, 474, 57–65. [Google Scholar] [CrossRef]
- Hassan, A.K.; Rahman, M.M.; Naidu, R. Kinetic of the degradation of sulfanilic acid azochromotrop (SPADNS) by Fenton process coupled with ultrasonic irradiation or L-cysteine acceleration. Environ. Technol. Innov. 2019, 15, 100380. [Google Scholar] [CrossRef]
- Ma, L.; Duan, J.; Yang, Z. Ligand-metal charge transfer mechanism enhances TiO2/Bi2WO6/rGO nanomaterials photocatalytic efficient degradation of norfloxacin under visible light. J. Alloys Compd. 2021, 869, 158679. [Google Scholar] [CrossRef]
- Guo, F.; Huang, X.; Shi, W. Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway. Sep. Purif. Technol. 2020, 253, 117518. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, M. Enhanced photocatalytic reaction and mechanism for treating cyanide-containing wastewater by silicon-based nano-titania. Hydrometallurgy 2020, 198, 105512. [Google Scholar] [CrossRef]
- Mouchaal, Y.; Enesca, A.; Mihoreanu, C.; Khelil, A.; Duta, A. Tuning the opto-electrical properties of SnO2 thin films by Ag+1 and In+3 co-doping. Mater. Sci. Eng. B Adv. 2015, 199, 22–29. [Google Scholar] [CrossRef]
- Gu, Z.; Cui, Z.; Yin, S. Intrinsic carbon-doping induced synthesis of oxygen vacancies-mediated TiO2 nanocrystals: Enhanced photocatalytic NO removal performance and mechanism. J. Catal. 2021, 393, 179–189. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Moon, G.; Choi, W. Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. App. Catal. B 2021, 286, 119905. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; An, T. Superoxide radical enhanced photocatalytic performance of styrene alters its degradation mechanism and intermediate health risk on TiO2/graphene surface. Environ. Res. 2021, 195, 110747. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Y.; Zhang, X. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology. J. Hazard. Mater. 2020, 399, 123070. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, M. Adsorptive-photocatalytic performance and mechanism of Me (Mn, Fe)-N co-doped TiO2/SiO2 in cyanide wastewater. J. Alloy. Compd. 2021, 867, 159020. [Google Scholar] [CrossRef]
- Fan, G.; Ning, R.; Zhang, J. Double photoelectron-transfer mechanism in Ag−AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. J. Hazard. Mater. 2021, 403, 123964. [Google Scholar] [CrossRef] [PubMed]
- Qiao, D.; Li, Z.; He, X. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem. Eng. J. 2020, 400, 125952. [Google Scholar] [CrossRef]
- Baneto, M.; Enesca, A.; Mihoreanu, C.; Lare, Y.; Jondo, K.; Napo, K.; Duta, A. Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceram. Int. 2015, 41, 4742–4749. [Google Scholar] [CrossRef]
- Teixeira, G.F.; Silva Junior, E.; Vilela, R.; Zaghete, M.A.; Colmati, F. Perovskite Structure Associated with Precious Metals: Influence on Heterogenous Catalytic Process. Catalysts 2019, 9, 721. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Huang, C.X.; Zhu, Y.T. Heterostructure induced dispersive shear bands in heterostructured Cu. Scripta Mater. 2019, 170, 76–80. [Google Scholar] [CrossRef]
- Abdullah, N.R.; Tang, C.-S.; Manolescu, A.; Gudmundsson, V. Manifestation of the Purcell Effect in Current Transport through a Dot–Cavity–QED System. Nanomaterials 2019, 9, 1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albornoz, L.L.; da Silva, S.W.; Bernardes, A.M. Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: Activity and stability. Chemosphere 2021, 268, 128858. [Google Scholar] [CrossRef]
- Das, A.; Patra, M.; Nair, R.G. Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport. Mater. Chem. Phys. 2021, 263, 124431. [Google Scholar]
- Feng, X.; Yu, Z.; Li, X. 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance. Sep. Purif. Technol. 2021, 266, 118606. [Google Scholar] [CrossRef]
- Li, X.; Jin, Y.; Bao, N. Rational design of Z-scheme Bi12O17Cl2/plasmonic Ag/anoxic TiO2 composites for efficient visible light photocatalysis. Powder Technol. 2021, 384, 342–352. [Google Scholar] [CrossRef]
- Wageh, S.; Al-Ghamdi, A.A.; Zhangc, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667–669. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Bahnemann, D.W. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light. J. Colloid Interfac. Sci. 2020, 580, 223–233. [Google Scholar] [CrossRef]
- Kaur, N.; Zappa, D.; Comini, E. Branch-like NiO/ZnO heterostructures for VOC sensing. Sens. Actuators B 2018, 262, 477–485. [Google Scholar] [CrossRef]
- Yan, X.; Hu, Q.T.; Gu, Z.G. NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. Int. J. Hydrogen Energy 2020, 45, 19206–19213. [Google Scholar] [CrossRef]
- Pu, S.; Wang, H.; Zhu, J.; Li, L.; Long, D.; Jian, Y.; Zeng, Y. Heterostructure Cu2O/(001)TiO2 Effected on Photocatalytic Degradation of Ammonia of Livestock Houses. Catalysts 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Bagyalakshmi, B.; Babu, M.; Sundarakannan, B. Temperature-induced strain mediated magnetization changes in NiFe2O4/BaTiO3 heterostructure. Ceram. Int. 2018, 44, 15099–15103. [Google Scholar]
- Tao, R.; Zhao, C.; Liu, Y. Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. Mater. Res. Bull. 2018, 104, 124–133. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.Y.; Kim, D.Y.; Lee, S. Highly Sensitive UV Photodiode Composed of β-Polyfluorene/YZnO Nanorod Organic-Inorganic Hybrid Heterostructure. Nanomaterials 2020, 10, 1486. [Google Scholar] [CrossRef] [PubMed]
- Enesca, A.; Isac, L.; Duta, A. Charge carriers injection in tandem semiconductors for dyes mineralization. Appl. Catal. B. 2015, 162, 352–363. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Wu, K. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde. Chem. Eng. J. 2020, 394, 124917. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, Z.; Wu, J.C.S. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. App. Catal. B 2017, 219, 412–424. [Google Scholar] [CrossRef]
- Supplis, C.; Gros, F.; Cornet, J.F. Spectral radiative analysis of bio-inspired H2 production in a benchmark photoreactor: A first investigation using spatial photonic balance. Int. J. Hydrogen Energy 2018, 43, 8221–8231. [Google Scholar] [CrossRef]
- Sawicka, M.J.; Lubkowski, K.; Soroka, J.A. Synthesis of 7H-indolo[1,2-a]quinolinium derivatives via oxidative photocyclization of 3H-indolium salts using blue LED photoreactor. Tetrahedron 2019, 75, 3822–3831. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Ngara, Z.S.; Kusuma, H.S. Simple design and preliminary evaluation of continuous submerged solid small-scale laboratory photoreactor (CS4PR) using TiO2/NO3-@TC for dye degradation. J. Environ. Chem. Eng. 2019, 7, 103482. [Google Scholar] [CrossRef]
- Manjunath, S.V.; Tripathy, B.K.; Pramod, S. Simultaneous degradation of anionic and cationic dyes from multi-dye systems using falling film photoreactor: Performance evaluation, kinetic and toxicity analysis. J. Environ. Chem. Eng. 2020, 8, 104486. [Google Scholar]
- Azam, M.U.; Tahir, M.; Nawawi, M.G.M. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. App. Surf. Sci. 2019, 484, 1089–1101. [Google Scholar] [CrossRef]
- Tasleem, S.; Tahir, M. Investigating the performance of liquid and gas phase photoreactors for dynamic H2 production over bimetallic TiO2 and Ni2P dispersed MAX Ti3AlC2 monolithic nanocomposite under UV and visible light. J. Environ. Chem. Eng. 2021, 9, 105351. [Google Scholar] [CrossRef]
- Kumaravel, V.; Imam, M.D.; Badreldin, A.; Chava, R.K.; Do, J.Y.; Kang, M.; Abdel-Wahab, A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Maksoud, Y.K.; Imam, E.; Ramadan, A.R. TiO2 water-bell photoreactor for wastewater treatment. Solar Energy 2018, 170, 323–335. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jafarikojour, M.; Dabir, B.; Dadvar, M. Evaluation and modeling of a spinning disc photoreactor for degradation of phenol: Impact of geometry modification. J. Photochem. Photobiol. A 2017, 346, 206–214. [Google Scholar] [CrossRef]
- Najafabadi, S.M.; Rashidi, F.; Rezaei, M. Performance of a multistage rotating mesh support photoreactor immobilized with TiO2 on photocatalytic degradation of PNP: Reactor construction and optimization. Chem. Eng. Process. Process Intensif. 2019, 146, 107668. [Google Scholar] [CrossRef]
- Palmisano, G.; Loddo, V.; Augugliaro, V.; Bellardita, M.; Roda, G.C.; Parrino, F. Validation of a two-dimensional modeling of an externally irradiated slurry photoreactor. Chem. Eng. J. 2015, 262, 490–498. [Google Scholar] [CrossRef]
- Zheng, Q.; Aiello, A.; Choi, Y.S.; Tarr, K.; Shen, H.; Durkin, D.P.; Shuai, D. 3D printed photoreactor with immobilized graphitic carbon nitride: A sustainable platform for solar water purification. J. Hazard. Mater. 2020, 399, 123097. [Google Scholar] [CrossRef]
- Espíndola, J.C.; Cristóvão, R.O.; Mayer, D.A.; Boaventura, R.A.R.; Dias, M.M.; Lopes, J.C.B.; Vilar, V.J.P. Overcoming limitations in photochemical UVC/H2O2 systems using a mili-photoreactor (NETmix): Oxytetracycline oxidation. Sci. Total Environ. 2019, 660, 982–992. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, M.S. Feasibility of using UV/H2O2 process to degrade sulfamethazine in aqueous solutions in a large photoreactor. J. Photochem. Photobiol. A 2018, 367, 446–451. [Google Scholar] [CrossRef]
- Russo, D.; Spasiano, D.; Vaccaro, M.; Andreozzi, R.; Li Puma, G.; Reis, N.M.; Marotta, R. Direct photolysis of benzoylecgonine under UV irradiation at 254 nm in a continuous flow microcapillary array photoreactor. Chem. Eng. J. 2016, 283, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Moussavi, G.; Momeninejad, H.; Shekoohiyan, S.; Baratpour, P. Oxidation of acetaminophen in the contaminated water using UVC/S2O8-2 process in a cylindrical photoreactor: Efficiency and kinetics of degradation and mineralization. Sep. Purif. Technol. 2017, 181, 132–138. [Google Scholar] [CrossRef]
- Karimian, S.; Moussavi, G.; Fanaei, F.; Mohammadi, S.; Shekoohiyan, S.; Giannakis, S. Shedding light on the catalytic synergies between Fe(II) and PMS in vacuum UV (VUV/Fe/PMS) photoreactors for accelerated elimination of pharmaceuticals: The case of metformin. Chem. Eng. J. 2020, 400, 125896. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chem. Eng. J. 2018, 350, 703–713. [Google Scholar] [CrossRef]
- Ochoa-Gutiérrez, K.S.; Tabares-Aguilar, E.; Mueses, M.A.; Machuca-Martínez, F.; Li Puma, G. A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for solar photocatalytic degradation of water contaminants. Chem. Eng. J. 2018, 341, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Angulo, J.; Arce-Sarria, A.; Mueses, M.; Hernandez-Ramirez, A.; Machuca-Martinez, F. Analysis of two dye-sensitized methods for improving the sunlight absorption of TiO2 using CPC photoreactor at pilot scale. Mater. Sci. Semicond. Process. 2019, 103, 104640. [Google Scholar] [CrossRef]
- Alahiane, S.; Sennaoui, A.; Sakr, F.; Dinne, M.; Qourzal, S.; Assabbane, A. Synchronous role of coupled adsorption-photocatalytic degradation of Direct Red 80 with nanocrystalline TiO2-coated non-woven fibres materials in a static batch photoreactor. Groundw. Sustain. Dev. 2020, 11, 100396. [Google Scholar] [CrossRef]
- Lin, C.C.; Sun, C.C. Decolorization of high-concentration Reactive Red 2 in water using UV and persulfate in a 3-liter photoreactor. J. Taiwan Inst. Chem. Eng. 2020, 115, 169–174. [Google Scholar] [CrossRef]
- Mesgari, Z.; Saien, J. Pollutant degradation over dye sensitized nitrogen doped titania substances in different configurations of visible light helical flow photoreactor. Sep. Purif. Technol. 2017, 185, 129–139. [Google Scholar] [CrossRef]
- Li, D.; Zheng, H.; Wang, Q.; Wang, X.; Jiang, W.; Zhang, Z.; Yang, Y. A novel double-cylindrical-shell photoreactor immobilized with monolayer TiO2-coated silica gel beads for photocatalytic degradation of Rhodamine B and Methyl Orange in aqueous solution. Sep. Purif. Technol. 2014, 123, 130–138. [Google Scholar] [CrossRef]
- Santoro, D.; Crapulli, F.; Turolla, A.; Antonelli, M. Detailed modeling of oxalic acid degradation by UV-TiO2 nanoparticles: Importance of light scattering and photoreactor scale-up. Water Res. 2017, 121, 361–373. [Google Scholar] [CrossRef]
- Rahmani, E.; Rahmani, M.; Silab, H. TiO2:SiO2 thin film coated annular photoreactor for degradation of oily contamination from waste water. J. Water Process. Eng. 2020, 37, 101374. [Google Scholar] [CrossRef]
- Ghafoori, S.; Mehrvar, M.; Chan, P.K. Photoreactor scale-up for degradation of aqueous poly(vinyl alcohol) using UV/H2O2 process. Chem. Eng. J. 2014, 245, 133–142. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Pisano, D.; Sannino, D.; Ciambelli, P. From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem. Eng. Sci. 2015, 137, 152–160. [Google Scholar] [CrossRef]
- Di Capua, G.; Femia, N.; Migliaro, M.; Sacco, O.; Sannino, D.; Stoyka, K.; Vaiano, V. Intensification of aflat-plate photocatalytic reactor performances byinnovative visible light modulation techniques: A proof of concept. Chem. Eng. Process. Process Intensif. 2017, 118, 117–123. [Google Scholar] [CrossRef]
- Sutisna; Rokhmat, M.; Wibowo, E.; Khairurrijal; Abdullah, M. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination. Sustain. Environ. Res. 2017, 27, 172–180. [Google Scholar]
- Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M. Novel Solar Photocatalytic Reactor for Wastewater Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 214, 012010. [Google Scholar]
- Zhang, C.; Sabouni, R.; Shao, Y.; Goma, H.G. Performance of submerged oscillatory membrane photoreactor for water treatment. J. Environ. Chem. Eng. 2017, 5, 3330–3336. [Google Scholar] [CrossRef]
- Bukman, L.; de Freitas, C.F.; Caetano, W.; Fernandes, N.R.C.; Hioka, N.; Batistela, V.R. Kinetic spectrophotometric method for real-time monitoring of ultraviolet photoreactions: A mini-photoreactor. Spectrochim. Acta A 2019, 211, 330–335. [Google Scholar] [CrossRef]
- Grcic, I.; Li Puma, G. Six-flux absorption-scattering models for photocatalysis underwide-spectrum irradiation sources in annular and flat reactors usingcatalysts with different optical properties. App. Catal. B 2017, 211, 222–234. [Google Scholar] [CrossRef]
- Wang, P.; Lim, T.T. Membrane vis-LED photoreactor for simultaneous penicillin G degradation and TiO2 separation. Water Res. 2012, 46, 1825–1837. [Google Scholar] [CrossRef]
- Almansba, A.; Kane, A.; Nasrallah, N.; Maachi, R.; Lamaa, L.; Peruchon, L.; Brochier, C.; Bechohra, I.; Amrane, A.; Assadi, A.A. Innovative photocatalytic luminous textiles optimized towards water treatment: Performance evaluation of photoreactors. Chem. Eng. J. 2021, 416, 129195. [Google Scholar] [CrossRef]
- Roselin, L.S.; Rajarajeswari, G.R.; Selvin, R.; Sadasivam, V.; Sivasankar, B.; Rengaraj, K. Sunlight/ZnO-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor. Sol. Energy 2002, 73, 281–285. [Google Scholar] [CrossRef]
- Aoudjit, L.; Martins, P.M.; Madjene, F.; Petrovykh, D.Y.; Lanceros-Mendez, S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J. Hazard. Mater. 2018, 344, 408–416. [Google Scholar] [CrossRef]
- Foulady-Dehaghi, R.; Behpour, M. Visible and solar photodegradation of textile wastewater by multiple doped TiO2/Zn nanostructured thin films in fixed bed photoreactor mode. Inorg. Chem. Commun. 2020, 117, 107946. [Google Scholar] [CrossRef]
- Kassahun, S.K.; Kiflie, Z.; Kim, H.; Gadisa, B.T. Effects of operational parameters on bacterial inactivation in Vis-LEDs illuminated N-doped TiO2 based photoreactor. J. Environ. Chem. Eng. 2020, 8, 104374. [Google Scholar] [CrossRef]
- Azadi, S.; Karimi-Jashni, A.; Javadpour, S.; Amiri, H. Photocatalytic treatment of landfill leachate using cascade photoreactor with immobilized W-C-codoped TiO2 nanoparticles. J. Water Proc. Eng. 2020, 36, 101307. [Google Scholar] [CrossRef]
- Joven-Quintero, S.A.; Castilla-Acevedo, S.F.; Betancourt-Buitrago, L.A.; Acosta-Herazo, R.; Machuca-Martinez, F. Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: A new perspective for mining wastewater treatment. Mater. Sci. Semicond. Proc. 2020, 110, 104972. [Google Scholar] [CrossRef]
- Devia-Orjuel, J.S.; Betancourt-Buitrago, L.A.; Machuca-Martinez, F. CFD modeling of a UV-A LED baffled flat-plate photoreactor for environment applications: A mining wastewater case. Environ. Sci. Pollut. Res. 2020, 26, 4510–4520. [Google Scholar] [CrossRef]
- Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. UiO-66(Ti)-Fe3O4-WO3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor. J. Hazard. Mater. 2020, 393, 122360. [Google Scholar] [CrossRef] [PubMed]
- Larijani, R.S.; Ghadiri, M.; Hafezi, M.; Jafarikojour, M.; Dabir, B. Evaluation of mass and photon transfer enhancement by an impinging jet atomization photoreactor for photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A 2021, 408, 113088. [Google Scholar] [CrossRef]
- Kim, S.; Cho, H.; Joo, H.; Her, N.; Han, J.; Yi, K.; Kim, J.O.; Yoon, J. Evaluation of performance with small and scale-up rotating and flatreactors; photocatalytic degradation of bisphenol A, 17 β-estradiol, and 17 α-ethynyl estradiol under solar irradiation. J. Hazard. Mater. 2017, 336, 21–32. [Google Scholar] [CrossRef]
Photoreactor | Radiation Parameters | Photocatalyst Material and Dosage | Photocatalysis | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Working Regime | Volume (L) | Flow Rate L/min | Spectra | Intensity (W) | Period (min) | Pollutant | Concentration (mg/L) | Efficiency (%) | Constant Rate (h−1) | ||
Dynamic/Flow | 4.9 | 19 | UV-A | 60 | 240 | TiO2 350 | Phenol | 20 | 15.8 | 0.041 | [69] |
TiO2 3000 | 55.7 | 0.205 | |||||||||
90 | TiO2 350 | 21.7 | 0.06 | ||||||||
TiO2 3000 | 49 | 0.171 | |||||||||
Dynamic/Flow | 3.3 | 2 | UV | 40 | 150 | TiO2 100 | Phenol | 30 | 100 | np * | [70] |
Dynamic/Flow | 1.06 | 6.0 | UV-C | 11 | 300 | TiO2 Np | p-Nitrophenol | 15 | 95.7 | 0.611 | [71] |
Dynamic/Stirring | 0.15 | nr ** | UV | 90 | 15 | TiO2 0.55 | 4-nitrophenol | 10 | 80 | np | [72] |
Dynamic/Flow | 0.34 | 0.05 | UV-Vis | 1000 | 300 | g-C3N4/chitosan 0.1 | Sulfamethoxazole | 25 | 30 | 0.096 | [73] |
Carbamazepine | 23 | 10 | 0.042 | ||||||||
Phenol | 9.4 | 20 | 0.06 | ||||||||
Dynamic/Flow | 1.6 × 10−2 | 0.83 | UV-C | 11 | 120 | Direct photolysis aid with H2O2 100 Mm | Oxytetracycline | 20 | 97 | np | [74] |
Dynamic/Stirring | 3 | nr | UV | 16 | 15 | Direct photolysis aid with H2O2 10 mM | Sulfamethazine | 10 | 100 | 0.315 | [75] |
Dynamic/Flow | 1 × 10−4 | 0.01 | UV | 8 | 2 | Direct photolysis | Benzoylecgonine | 9.1 | 100 | np | [76] |
Dynamic/Stirring | 0.12 | nr | UV-C | 9 | 60 | Direct photolysis aid with S2O82−0.36 | Acetaminophen | 50 | 84.3 | 0.027 | [77] |
Dynamic/Flow | 0.44 | 0.07 | UV | 5.7 | 60 | Fe(II) 0.05 and peroxymonosulfate 20 | Metformin | 50 | 99 | 0.014 | [78] |
Dynamic/Flow | 0.2 | 144 ncc/min | UV | 14 | 240 | ZnO 0.41 | Caffeine | 12.5 | 100 | 0.0196 | [79] |
Paracetamol | 12.5 | 77 | np | ||||||||
Dynamic/Flow | 14.4 | 24 | Sunlight | 15.17 | 70 | TiO2 0.25 | Methylene blue (MB) | 10 | 99 | np | [80] |
TiO2 0.5 | 4-chlorophenol | 55 | |||||||||
Dynamic/Flow | 7.7 | 12 | UV | np | 120 | TiO2 0.5 | Methyl red | 10 | 99.5 | 0.05 | [81] |
Dynamic/Stirring | 0.5 | nr | UV | 125 | 140 | TiO2 100 | Direct Red | 30 | 100 | 0.07 | [82] |
240 | 40 | 100 | 0.04 | ||||||||
Dynamic/Stirring | 3 | nc | UV | 16 | 60 | Na2S2O8 1.92 | Reactive Red | 100 | 100 | np | [83] |
Dynamic/Flow | np | 2.7 | Vis | 150 | 60 | N-doped TiO20.7 | Methyl orange (MO) | 5 | 59.3 | 0.03 | [84] |
Dynamic/Flow | 0.8 | 0.05 | UV | 10 | 720 | TiO2 Np | Rhodamine B | 10 | 91 | 0.032 | [85] |
MO | 10 | 69 | 0.026 | ||||||||
Dynamic/Flow | 1.41 | 16.1 | UV | 100 | 60 | TiO2 400 | Oxalic acid | 0.9 | 80 | np | [86] |
Dynamic/Flow | np | 2.5 | UV-C | 16 | 180 | TiO2:SiO2 np | Paraffin | 500 | 86 | 2.5 | [87] |
Dynamic/Flow | 6 | 0.5 | UV | 13 | 150 | Direct photolysis aid with H2O2 0.9 | Poly(vinyl alcohol) | 20 | 63 | np | [88] |
Photoreactor | Radiation Parameters | Photocatalyst Material and Dosage | Photocatalysis | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Working Regime | Volume (L) | Flow Rate L/min | Spectra | Intensity (W) | Period (min) | Pollutant | Concentration (mg/L) | Efficiency (%) | Constant Rate (min−1) | ||
Dynamic/Flow | 0.375 | 0.04 | UV | 8 | 264 | N-doped TiO2 372 | MB | 32 | 75 | np* | [89] |
Dynamic/Flow | 0.3 | 0.15 | Vis | 36 | 180 | N-doped TiO2 Np | MB | 7 | 70 | np | [90] |
Dynamic/Flow | 3.4 | 7.25 | Sunlight | np | 2880 | TiO2 0.9 | MB | 25 | 98 | np | [91] |
Dynamic/Flow | 1.25 | 3.44 | Sunlight | np | 2880 | TiO2 0.5 | MB | 25 | 96 | 8 × 10−4 | [92] |
3.25 | 2880 | TiO2 0.9 | 97 | 0.002 | |||||||
Dynamic/Oscillatory | 0.1 | nr ** | UV | 4 | 110 | ZnO 100 | MB | 10 | 100 | 0.05 | [93] |
Dynamic/Stirring | 0.003 | nr | UV | 5 | 30 | ZnO, H2O2 200 | MB | 0.013 | 100 | 0.097 | [94] |
500 | salicylic acid | 0.013 | 100 | 0.0057 | |||||||
Dynamic/Flow | 0.066 | 0.033 | UVA | 8 | 240 | Ag-modified TiO2 1 | Salicylic acid | 27.6 | 90 | np | [95] |
0.033 | Vis | 92 | |||||||||
0.067 | 100 | ||||||||||
Dynamic/Stirring | 0.5 | nr | Vis | 15 | 240 | C-N-S tridoped TiO2 1 | Penicillin G | 5 | 95 | 0.016 | [96] |
Dynamic/Flow and Stirring | 0.6 | 0.09 | UV | 30 | np | TiO2 0.36/face | Flumequine | 20 | 93 | 0.2 | [97] |
Dynamic/Flow | 0.5 | 0.03 | Sunlight | np | 100 | ZnO Np | Reactive red | 118 | 100 | np | [98] |
Dynamic/Flow | 1.0 | 1.68 | UV | np | 300 | TiO2 Np | Tartrazine | 10 | 77.77 | 0.3 | [99] |
20 | 57.72 | 0.18 | |||||||||
30 | 46.57 | 0.15 | |||||||||
Dynamic/Flow and Stirring | 0.15 | 0.032 | Vis | np | 480 | N and S-doped TiO2 Np | Basic Yellow | 25 | 65 | np | [100] |
Basic Red | 78 | ||||||||||
Basic Blue | 98 | ||||||||||
240 | Zn, N and S tri-doped TiO2 Np | Basic Yellow | 25 | 88 | |||||||
Basic Red | 94 | ||||||||||
Basic Blue | 99 | ||||||||||
Dynamic/Flow | 0.075 | 0.04 | Vis | 60 | 200 | N-doped TiO2 0.6 | E. coli | 106 colony-forming units mL−1 | 50 | 0.067 | [101] |
Dynamic/Flow | 4.5 | 6 | Vis | 40 | 3600 | W-C-codoped TiO2 8.47 | Leachate | 550 | 84 | 0.0191 | [102] |
Dynamic/Stirring | 1.5 | nr | UV-A | 120 | 350 | TiO2 0.2 | Hexacyanocobaltate | 32 | 40 | 0.0021 | [103] |
Dynamic/Flow | 0.04 | np | UV-A | 15 | 90 | TiO2 1 | Potassium hexacyanoferrate | 100 | 70 | np | [104] |
Dynamic/Flow | 5 | 0.55 | UV | 14.4 | 60 | UiO-66(Ti)-Fe3O4-WO3 0.125 | Ammonia | 30 | 91.8 | 0.903 | [105] |
Dynamic/Flow | 6 | 7.8 | UV | 5 | 360 | TiO2 0.5 | p-nitrophenol | 50 | 71.91 | 0.118 | [106] |
Dynamic/Flow | 0.3 | np | Sunlight | np | 300 | TiO2 Np | Bisphenol A | 0.45 | 78.7 | 0.036 | [107] |
17 β-estradiol | 0.54 | 83.7 | 0.051 | ||||||||
17 α-ethynyl estradiol | 0.59 | 79.7 | 0.059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enesca, A. The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021, 11, 556. https://doi.org/10.3390/catal11050556
Enesca A. The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts. 2021; 11(5):556. https://doi.org/10.3390/catal11050556
Chicago/Turabian StyleEnesca, Alexandru. 2021. "The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review" Catalysts 11, no. 5: 556. https://doi.org/10.3390/catal11050556
APA StyleEnesca, A. (2021). The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts, 11(5), 556. https://doi.org/10.3390/catal11050556