Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates
Abstract
:1. Introduction
2. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord. Chem. Rev. 2018, 373, 317–332. [Google Scholar] [CrossRef]
- Sordakis, K.; Tang, C.; Vogt, L.K.; Junge, H.; Dyson, P.J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372–433. [Google Scholar] [CrossRef] [PubMed]
- Eppinger, J.; Huang, K.-W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous hydrogenation of carbon-dioxide. Chem. Rev. 1995, 95, 259–272. [Google Scholar] [CrossRef]
- Jessop, P.G.; Joό, F.; Tai, C.C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord. Chem. Rev. 2004, 248, 2425–2442. [Google Scholar] [CrossRef]
- Himeda, Y. Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: Tuning catalytic activity and water solubility through the acid-base equilibrium of the ligand. Eur. J. Inorg. Chem. 2007, 3927–3941. [Google Scholar] [CrossRef]
- Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169. [Google Scholar] [CrossRef]
- Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials. Top. Catal. 2010, 53, 902–914. [Google Scholar] [CrossRef]
- Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973. [Google Scholar] [CrossRef]
- Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem. Lett. 1976, 5, 863–864. [Google Scholar] [CrossRef] [Green Version]
- Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angew. Chem. Int. Ed. 2016, 55, 7296–7343. [Google Scholar] [CrossRef]
- Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F. A charge/discharge device for chemical hydrogen storage and generation. Angew. Chem. Int. Ed. 2011, 50, 10433–10435. [Google Scholar] [CrossRef]
- Himeda, Y.; Miyazawa, S.; Hirose, T. Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 2011, 4, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Filonenko, G.A.; van Putten, R.; Schulpen, E.N.; Hensen, E.J.M.; Pidko, E.A. Highly efficient reversible hydrogenation of carbon dioxide to formats using a ruthenium PNP-pincer catalyst. ChemCatChem 2014, 6, 1526–1530. [Google Scholar] [CrossRef]
- Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.-P.; May, R.B.; Prakash, G.K.S.; Olah, G.A. Amine-free reversible hydrogen storage in formate salts catalysed by ruthenium pincer complex without pH control or solvent change. ChemSusChem 2015, 8, 1442–1451. [Google Scholar] [CrossRef]
- Horváth, H.; Papp, G.; Szabolcsi, R.; Kathó, Á.; Joó, F. Water-soluble iridium-NHC-phosphine complexes as catalysts for chemical hydrogen batteries based on formate. ChemSusChem 2015, 8, 3036–3038. [Google Scholar] [CrossRef] [PubMed]
- Siek, S.; Burks, D.B.; Gerlach, D.L.; Liang, G.; Tesh, J.M.; Thompson, C.R.; Qu, F.; Shankwitz, J.E.; Vasquez, R.M.; Chambers, N.; et al. Iridium and ruthenium complexes of N-heterocyclic carbene- and pyridinol-derived chelates as catalysts for aqueous carbon dioxide hydrogenation and formic acid dehydrogenation: The role of the alkali metal. Organometallics 2017, 36, 1091–1106. [Google Scholar] [CrossRef]
- Kanega, R.; Onishi, N.; Szalda, D.J.; Ertem, M.Z.; Muckerman, J.T.; Fujita, E.; Himdea, Y. CO2 hydrogenation catalysts with deprotonated picolimaide ligands. ACS Catal. 2017, 7, 6426–6429. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Álvarez, A.E.; Cadierno, V. Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Appl. Sci. 2013, 3, 55–69. [Google Scholar] [CrossRef]
- Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysis. Chem. Rev. 1992, 92, 1051–1069. [Google Scholar] [CrossRef]
- Crabtree, R.H. Transfer hydrogenation with glycerol as H-donor: Catalyst activation, deactivation and homogeneity. ACS Sustain. Chem. Eng. 2019, 7, 15845–15853. [Google Scholar] [CrossRef]
- Heltzel, J.M.; Finn, M.; Ainembabazi, D.; Wang, K.; Voutchkova-Kostal, A.M. Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions. Chem. Commun. 2018, 54, 6184–6187. [Google Scholar] [CrossRef]
- Kumar, A.; Semwal, S.; Choudhury, J. Catalytic conversion of CO2 to formate with renewable hydrogen donors: An ambient-pressure and H2-independent strategy. ACS Catal. 2019, 9, 2164–2168. [Google Scholar] [CrossRef]
- Cheong, Y.-J.; Sung, K.; Park, S.; Jung, J.; Jang, H.-Y. Valorization of chemical wates: Ir(biscarbene)-catalyzed transfer hydrogenation of inorganic carbonates using glycerol. ACS Sustain. Chem. Eng. 2020, 8, 6972–6978. [Google Scholar] [CrossRef]
- Ainembabazi, D.; Wang, K.; Finn, M.; Ridenour, J.; Voutchkova-Kostal, A. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts. Green Chem. 2020, 22, 6093–6104. [Google Scholar] [CrossRef]
- Brieger, G.; Nestrick, T.J. Catalytic transfer hydrogenation. Chem. Rev. 1974, 74, 567–580. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686. [Google Scholar] [CrossRef]
- Sanz, S.; Azua, A.; Peris, E. (η6-arene)Ru(bis-NHC) complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH. Dalton Trans. 2010, 39, 6339–6343. [Google Scholar] [CrossRef] [PubMed]
- Azua, A.; Sanz, S.; Peris, E. Water-soluble IrIII N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water. Chem. Eur. J. 2011, 17, 3963–3967. [Google Scholar] [CrossRef] [PubMed]
- Sanz, S.; Benítez, M.; Peris, E. A New approach to the reduction of carbon dioxide: CO2 reduction to formate by transfer hydrogenation in iPrOH. Organometallics 2010, 29, 275–277. [Google Scholar] [CrossRef]
- Iglesias, M.; Oro, L.A. A leap forward in iridium-NHC catalysis: New horizons and mechanistic insights. Chem. Soc. Rev. 2018, 47, 2772–2808. [Google Scholar] [CrossRef] [PubMed]
- Cheong, Y.-J.; Sung, K.; Kim, J.; Kim, Y.K.; Jang, H.-Y. Highly efficient iridium-catalyzed production of hydrogen and lactate from glycerol: Rapid hydrogen evolution by bimetallic iridium catalysts. Eur. J. Inorg. Chem. 2020, 4064–4068. [Google Scholar] [CrossRef]
- Lu, Z.; Cherepakhin, V.; Demianets, I.; Lauridsen, P.J.; Williams, T.J. Iridium-based hydride transfer catalysts: From hydrogen storage to fine chemicals. Chem. Commun. 2018, 54, 7711–7724. [Google Scholar] [CrossRef] [PubMed]
- Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M. NaOH-promoted hydrogen transfer: Does NaOH or traces of transition metals catalyze the reaction? ChemCatChem 2009, 1, 504–509. [Google Scholar] [CrossRef]
- Ramírez-López, C.A.; Ochoa-Gómez, J.R.; Fernández-Santos, M.; Gómez-Jiménez-Aberasturi, O.; Alonso-Vicario, A.; Torrecilla-Soria, J. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind. Eng. Chem. Res. 2010, 49, 6270–6278. [Google Scholar] [CrossRef]
- Wu, J.; Shen, L.; Chen, Z.-N.; Zheng, Q.; Xu, Z.; Tu, T. Iridium-catalyzed selective cross-coupling of ethylene glycol and methanol to lactic acid. Angew. Chem. Int. Ed. 2020, 59, 10421–10425. [Google Scholar] [CrossRef]
- Sharninghausen, L.S.; Campos, J.; Manas, M.G.; Crabtree, R.H. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat. Commun. 2014, 5, 5084–5092. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Chen, J.; Huang, C.; Tu, T. Robust iridium coordination polymers: Highly selective, efficient, and recyclable catalysts for oxidative conversion of glycerol to potassium lactate with dihydrogen liberation. ACS Catal. 2015, 5, 6573–6578. [Google Scholar] [CrossRef]
- Wu, J.; Shen, L.; Duan, S.; Chen, Z.-N.; Zheng, Q.; Liu, Y.; Sun, Z.; Clark, J.H.; Xu, X.; Tu, T. Selective catalytic dehydrogenative oxidation of bio-polyols to lactic acid. Angew. Chem. Int. Ed. 2020, 59, 13871–13878. [Google Scholar] [CrossRef]
Entry | Catalyst (mol%) | CO2 (bar) | KOH (mmol) | Temp (°C) | Formate (TON, TOF h−1) | Lactate (TON, TOF h−1) |
---|---|---|---|---|---|---|
1 | 1 (3.5 × 10−4) | 5 | 20 | 180 | 3360, 168 | 3900, 195 |
2 | 1 (3.5 × 10−4) | 5 | 40 | 180 | 1490, 74.5 | 23,800, 1190 |
3 | 1 (3.5 × 10−4) | 5 | 40 | 200 | 15,800, 790 | 73,900, 3700 |
4 | 1 (3.5 × 10−4) | 1 | 40 | 200 | 2110, 106 | 104,000, 5200 |
5 | 1 (3.5 × 10−4) | 10 | 40 | 200 | 12,700, 635 | 14,400, 720 |
6 | 1 (3.5 × 10−5) | 5 | 40 | 200 | 200,000, 10,000 | 875,000, 43,800 |
7 | 1′ (1.75 × 10−5) a | 5 | 40 | 200 | 77,400, 3870 | 534,000, 26,700 |
8 | 2 (3.5 × 10−5) | 5 | 40 | 200 | 176,000, 8800 | 753,000, 37,700 |
9 | 2′ (1.75 × 10−5) a | 5 | 40 | 200 | 70,400, 3520 | 548,000, 27,400 |
10 | 3 (3.5 × 10−5) | 5 | 40 | 200 | 174,000, 8700 | 683,000, 34,200 |
11 | 3′ (1.75 × 10−5) a | 5 | 40 | 200 | 103,000, 5150 | 414,000, 20,700 |
12 | 1 (3.5 × 10−5) | 5 | -- | 200 | -- | -- |
13 | -- | 5 | 40 | 200 | 0.06 mmol | 0.4 mmol |
Entry | Catalyst (mol%) | Formate (TON, TOF h−1) | Lactate (TON, TOF h−1) |
---|---|---|---|
1 | 1 (3.5 × 10−5) | 203,000, 10,150 | 414,000, 20,700 |
2 | 1′ (1.75 × 10−5) a | 163,000, 8150 | 357,000, 17,850 |
3 | 2 (3.5 × 10−5) | 149,000, 7450 | 315,000, 15,800 |
4 | 2′ (1.75 × 10−5) a | 178,000, 8900 | 342,000, 17,100 |
5 | 3 (3.5 × 10−5) | 164,000, 8200 | 326,000, 16,300 |
6 | 3′ (1.75 × 10−5) a | 195,000, 9750 | 400,000, 20,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, Y.-J.; Sung, K.; Kim, J.-A.; Kim, Y.K.; Yoon, W.; Yun, H.; Jang, H.-Y. Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates. Catalysts 2021, 11, 695. https://doi.org/10.3390/catal11060695
Cheong Y-J, Sung K, Kim J-A, Kim YK, Yoon W, Yun H, Jang H-Y. Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates. Catalysts. 2021; 11(6):695. https://doi.org/10.3390/catal11060695
Chicago/Turabian StyleCheong, Yeon-Joo, Kihyuk Sung, Jin-A Kim, Yu Kwon Kim, Woojin Yoon, Hoseop Yun, and Hye-Young Jang. 2021. "Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates" Catalysts 11, no. 6: 695. https://doi.org/10.3390/catal11060695
APA StyleCheong, Y. -J., Sung, K., Kim, J. -A., Kim, Y. K., Yoon, W., Yun, H., & Jang, H. -Y. (2021). Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates. Catalysts, 11(6), 695. https://doi.org/10.3390/catal11060695