Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solvent Extraction
2.2. Optimization of Aqueous Enzymatic Extraction
2.3. Analysis of the Oil Obtained by SE or AEE
2.3.1. Some Physicochemical Properties of the Obtained Oils
2.3.2. Analysis of the Fatty Acid Composition of the Different Extracted Oils through Gas Chromatography
2.4. Scanning Electron Micrographs (SEM) of the Seed before and after Extraction
3. Materials and Methods
3.1. Materials
3.2. Solvent Extraction
3.3. Aqueous Enzymatic Extraction (AEE)
Optimization of the AEE
3.4. Analysis of the Extracted Oil
3.4.1. Determination of Some Physicochemical Properties
3.4.2. Fatty Acid Composition through Gas Chromatography
3.5. Scanning Electron Micrographs (SEM)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alia-Tejacal, I.; Villanueva-Arce, R.; Pelayo-Zaldívar, C.; Colinas-León, M.T.; López-Martínez, V.; Bautista-Baños, S. Postharvest physiology and technology of sapote mamey fruit (Pouteria sapota (Jacq.) HE Moore & Stearn). Postharvest Biol. Technol. 2007, 45, 285–297. [Google Scholar]
- Loyo, E.L.; Hernández, J.I.O.; Rodríguez, J.d.D.G.; Ruíz, E.A.; Calderón, N.M.Á.; Navia, J.M.A. Producción y comercialización del mamey Alpoyeca, Guerrero: Opinión de productores. Rev. Mex. Cienc. Agric. 2020, 11, 635–647. [Google Scholar] [CrossRef]
- Martínez-Castillo, J.; Blancarte-Jasso, N.H.; Chepe-Cruz, G.; Nah-Chan, N.G.; Ortiz-García, M.M.; Arias, R.S. Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: Its putative domestication center. Tree Genet. Genom. 2019, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.S.; Martínez-Castillo, J.; Sobolev, V.S.; Blancarte-Jasso, N.H.; Simpson, S.A.; Ballard, L.L.; Duke, M.V.; Liu, X.F.; Irish, B.M.; Scheffler, B.E. Development of a large set of microsatellite markers in zapote mamey (Pouteria sapota (Jacq.) HE Moore & Stearn) and their potential use in the study of the species. Molecules 2015, 20, 11400–11417. [Google Scholar] [PubMed] [Green Version]
- Palma-Orozco, G.; Ortiz-Moreno, A.; Dorantes-Álvarez, L.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota). Phytochemistry 2011, 72, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; Guttierrez-Orozco, F. Mamey sapote (Pouteria sapota Jacq. HE Moore & Stearn). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, 1st ed.; Yahia, E.M., Ed.; Woodhead Publishing: Sawstone, UK, 2011; pp. 482–493. [Google Scholar]
- Yahia, E.M.; Gutiérrez-Orozco, F.; Arvizu-de Leon, C. Phytochemical and antioxidant characterization of mamey (Pouteria sapota Jacq. HE Moore & Stearn) fruit. Food Res. Int. 2011, 44, 2175–2181. [Google Scholar]
- Chacón-Ordóñez, T.; Schweiggert, R.M.; Bosy-Westphal, A.; Jiménez, V.M.; Carle, R.; Esquivel, P. Carotenoids and carotenoid esters of orange-and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) HE Moore & Stearn) fruit and their post-prandial absorption in humans. Food Chem. 2017, 221, 673–682. [Google Scholar] [PubMed]
- Diaz-Perez, J.C.; Bautista, S.; Villanueva, R. Quality changes in sapote mamey fruit during ripening and storage. Postharvest Biol. Technol. 2000, 18, 67–73. [Google Scholar] [CrossRef]
- Agócs, A.; Murillo, E.; Turcsi, E.; Béni, S.; Darcsi, A.; Szappanos, A.; Kurtán, T.; Szappanos, Á. Isolation of allene carotenoids from mamey. J. Food Compos. Anal. 2018, 65, 1–5. [Google Scholar] [CrossRef]
- Saucedo-Reyes, D.; Carrillo-Salazar, J.A.; Reyes-Santamaría, M.I.; Saucedo-Veloz, C. Effect of pH and storage conditions on Listeria monocytogenes growth inoculated into sapote mamey (Pouteria sapota (Jacq) HE Moore & Stearn) pulp. Food Control 2012, 28, 110–117. [Google Scholar]
- Goenaga, R. Dry matter production and nutrient content of mamey sapote grown on an acid ultisol. Exp. Agric. 2019, 55, 386–394. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. BB Reports 2021, 26, 100989. [Google Scholar] [PubMed]
- Díaz-Pérez, J.C.; Bautista, S.; Villanueva, R.; López-Gómez, R. Modeling the ripening of sapote mamey (Pouteria sapota (Jacq.) HE Moore and Stearn) fruit at various temperatures. Postharvest Biol. Technol. 2003, 28, 199–202. [Google Scholar] [CrossRef]
- Solís-Fuentes, J.A.; Ayala-Tirado, R.C.; Fernández-Suárez, A.D.; Durán-de-Bazúa, M.C. Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior. Grasas Aceites 2015, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Durant-Archibold, A.A.; Santana, A.; Murillo, E.; Abuín, C.M.F. Analysis of the volatile components of Pouteria sapota (Sapote Mamey) fruit by HS-SPME-GC-MS. Nat. Prod. Commun. 2018, 13, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Solís-Fuentes, J.A.; Durán-de-Bazúa, C. Characterization of eutectic mixtures in different natural fat blends by thermal analysis. Eur. J. Lipid Sci. Technol. 2003, 105, 742–748. [Google Scholar] [CrossRef]
- Moo-Huchin, V.; Estrada-Mota, I.; Estrada-León, R.; Cuevas-Glory, L.F.; Sauri-Duch, E. Chemical composition of crude oil from the seeds of pumpkin (Cucurbita spp.) and mamey sapota (Pouteria sapota Jacq.) grown in Yucatan, Mexico. CYTA J. Food 2013, 11, 324–327. [Google Scholar] [CrossRef]
- Kumar, A.; Raju, G.; Reddy, K. Biodiesel production by alkaline transesterification of Mamey Sapote oil. IJRASET 2016, 4, 391–396. [Google Scholar]
- Hernández-Santos, B.; Sánchez-Ortega, E.; Herman-Lara, E.; Rodríguez-Miranda, J.; Gómez-Aldapa, A.; Peryronel, F.; Marangoni, A. Physicochemical and thermal characterization of seed oil from Mexican mamey sapote (Pouteria sapota). J. Am. Oil Chem. Soc. 2017, 94, 1269–1277. [Google Scholar] [CrossRef]
- Mercuri-Pinto, R.; Nakamura, L.R.; Ramires, T.G.; López-Bautista, E.A.; dos Santos Dias, C.T. Genotype selection of Pouteria sapota (Jacq.) HE Moore & Stearn, under a multivariate framework. Acta Agron. 2016, 65, 312–317. [Google Scholar]
- Subroto, E.; Manurung, R.; Heeres, H.J.; Broekhuis, A.A. Optimization of mechanical oil extraction from Jatropha curcas L. kernel using response surface method. Ind. Crops Prod. 2015, 63, 294–302. [Google Scholar] [CrossRef]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
- Mojtaba, A.; Fardin, K. Optimization of enzymatic extraction of oil from Pistacia Khinjuk seeds by using central composite design. Food Sci. Technol. 2013, 1, 37–43. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Gu, H.; Yang, L. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. J. Chromatogr. A 2016, 1471, 68–79. [Google Scholar] [CrossRef]
- Solís-Fuentes, J.A.; Durán-de-Bazua, M.C.; Tapia-Santos, M. Aceite de almendra de zapote mamey, un análisis de rendimientos y condiciones de extracción. Inf. Tecnol. 2001, 12, 23–28. [Google Scholar]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Porta, R. Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends Food Sci. Technol. 2021, 109, 259–270. [Google Scholar] [CrossRef]
- Zhang, S.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Liu, W.; Li, J.; Efferth, T. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour. Technol. 2010, 101, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, A.; Pyle, D.L.; Niranjan, K. Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb. Technol. 1996, 19, 402–420. [Google Scholar] [CrossRef]
- Castañeda-Valbuena, D.; Ayora-Talavera, T.; Luján-Hidalgo, C.; Álvarez-Gutiérrez, P.; Martínez-Galero, N.; Meza-Gordillo, R. Ultrasound extraction conditions effect on antioxidant capacity of mango by-product extracts. Food Bioprod. Process 2021, 127, 212–224. [Google Scholar] [CrossRef]
- Da Silva, S.B.; dos Santos-Garcia, V.A.; Arroyo, P.A.; da Silva, C. Ultrasound-assisted extraction of radish seed oil with methyl acetate for biodiesel production. Can. J. Chem. Eng. 2017, 95, 2142–2147. [Google Scholar] [CrossRef]
- Jiang, L.; Hua, D.; Wang, Z.; Xu, S. Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food Bioprod. Process 2010, 88, 233–238. [Google Scholar] [CrossRef]
- Hu, B.; Xi, X.; Li, H.; Qin, Y.; Li, C.; Zhang, Z.; Liu, Y.; Zhang, Q.; Liu, A.; Liu, S.; et al. A comparison of extraction yield, quality and thermal properties from Sapindus mukorossi seed oil between microwave assisted extraction and Soxhlet extraction. Ind. Crops Prod. 2021, 161, 113185. [Google Scholar] [CrossRef]
- Naik, M.; Natarajan, V.; Rawson, A.; Rangarajan, J.; Manickam, L. Extraction kinetics and quality evaluation of oil extracted from bitter gourd (Momardica charantia L.) seeds using emergent technologies. LWT 2021, 140, 110714. [Google Scholar] [CrossRef]
- Amarasinghe, B.; Kumarasiri, M.P.M.; Gangodavilage, N.C. Effect of method of stabilization on aqueous extraction of rice bran oil. Food Bioprod. Process 2009, 87, 108–114. [Google Scholar] [CrossRef]
- Campbell, K.A.; Glatz, C.E. Mechanisms of Aqueous Extraction of Soybean Oil. J. Agric. Food Chem. 2009, 57, 10904–10912. [Google Scholar] [CrossRef] [Green Version]
- Naksuk, A.; Sabatini, D.A.; Tongcumpou, C. Microemulsion-based palm kernel oil extraction using mixed surfactant solutions. Ind. Crops Prod. 2009, 30, 194–198. [Google Scholar] [CrossRef]
- Hanmoungjai, P.; Pyle, L.; Niranjan, K. Extraction of rice bran oil using aqueous media. J. Chem. Technol. Biotechnol. 2000, 75, 348–352. [Google Scholar] [CrossRef]
- Chen, L.; Li, R.; Ren, X.; Liu, T. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica. Bioresour. Technol. 2016, 214, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, A.; Pyle, D.L.; Niranjan, K.; Gilmour, S.; Trinca, L. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme Microb. Technol. 2001, 28, 499–509. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zu, Y.-G.; Luo, M.; Gu, C.-B.; Zhao, C.-J.; Efferth, T.; Fu, Y.-J. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chem. 2012, 138, 2152–2158. [Google Scholar] [CrossRef]
- Sharma, A.; Khare, S.K.; Gupta, M.N. Enzyme-assisted aqueous extraction of peanut oil. J. Am. Oil Chem. Soc. 2002, 79, 215–218. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Effect of Aqueous Enzymatic Processes on Sunflower Oil Quality. J. Am. Oil Chem. Soc. 2009, 86, 393–400. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Aqueous enzymatic sesame oil and protein extraction. Food Chem. 2011, 125, 679–684. [Google Scholar] [CrossRef]
- Liu, C.; Hao, L.-H.; Chen, F.-S.; Zhu, T.-W. The Mechanism of Extraction of Peanut Protein and Oil Bodies by Enzymatic Hydrolysis of the Cell Wall. J. Oleo Sci. 2020, 69, 1467–1479. [Google Scholar] [CrossRef]
- Souza, T.S.; Dias, F.F.; Koblitz, M.G.; de Moura Bell, J.L.N. Aqueous and enzymatic extraction of oil and protein from almond cake: A comparative study. Processes 2019, 7, 472. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-J.; Li, Z.-G.; Wang, X.; Han, J.-Y.; Zhang, B.; Fu, Y.-J.; Zhao, C.-J. Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect. Food Chem. 2016, 212, 403–410. [Google Scholar] [CrossRef]
- Gai, Q.Y.; Jiao, J.; Mu, P.-S.; Wang, W.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Wei, F.-Y.; Fu, Y.-J. Microwave-assisted aqueous enzymatic extraction of oil from Isatis indigotica seeds and its evaluation of physicochemical properties, fatty acid compositions and antioxidant activities. Ind. Crops Prod. 2013, 45, 303–311. [Google Scholar] [CrossRef]
- Zhang, Y.-l.; Li, S.; Yin, C.-P.; Jiang, D.-H.; Yan, F.-F.; Xu, T. Response surface optimisation of aqueous enzymatic oil extraction from bayberry (Myrica rubra) kernels. Food Chem. 2012, 135, 304–308. [Google Scholar] [CrossRef]
- Liu, Z.; Gui, M.; Xu, T.; Zhang, L.; Kong, L.; Qin, L.; Zou, Z. Efficient aqueous enzymatic-ultrasonication extraction of oil from Sapindus mukorossi seed kernels. Ind. Crops Prod. 2019, 134, 124–133. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.-H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J. Modulating functional and antioxidant properties of proteins from defatted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis. Food Measure 2019, 13, 3257–3266. [Google Scholar] [CrossRef]
- Shahi, Z.; Sayyed-Alangi, S.Z.; Najafian, L. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon 2020, 6, 03365. [Google Scholar] [CrossRef] [Green Version]
- Chim-Chi, Y.; Gallegos-Tintoré, S.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Chel-Guerrero, L. Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates. Food Measure 2018, 12, 323–331. [Google Scholar] [CrossRef]
- Ren, J.; Song, C.L.; Zhang, H.Y.; Kopparapu, N.K.; Zheng, X.Q. Effect of Hydrolysis Degree on Structural and Interfacial Properties of Sunflower Protein Isolates. J. Food Process. Preserv. 2017, 41, 13092. [Google Scholar] [CrossRef]
- Hu, B.; Song, J.; Li, H.; Zhou, Q.; Li, C.; Zhang, Z.; Liu, Y.; Liu, A.; Zhang, Q.; Liu, S.; et al. Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method-design, optimization and quality evaluation. J. Chromatogr. A 2020, 1627, 461380. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.C.; Vuong, D.-P.; Nguyen, N.T.T.; Nguyen, N.P.; Su, C.-H.; Wang, F.-M.; Juan, H.-Y. Aqueous enzymatic extraction of polyunsaturated fatty acid–rich sacha inchi (Plukenetia volubilis L.) seed oil: An eco-friendly approach. LWT 2020, 133, 109992. [Google Scholar] [CrossRef]
- Herrera, J.M.; Sánchez-Chino, X.; Corzo-Ríos, L.; Dávila-Ortiz, G.; Martínez, C.J. Comparative extraction of Jatropha curcas L. lipids by conventional and enzymatic methods. Food Bioprod. Process 2019, 118, 32–39. [Google Scholar] [CrossRef]
- Nolasco-Arroyo, B.Y.; Ovando-Chacón, S.D.; Tacias-Pascacio, V.G.; Ovando-Chacón, G.E.; Ventura-Canseco, C.; Meza-Gordillo, R.; Rosales-Quintero, A. Aqueous Enzymatic Extraction of Oil from Microwave-pretreated Jicaro Seeds. Curr. Biochem. Eng. 2019, 5, 42–49. [Google Scholar] [CrossRef]
- Goula, A.M.; Papatheodorou, A.; Karasavva, S.; Kaderides, S. Ultrasound-assisted aqueous enzymatic extraction of oil from pomegranate seeds. Waste Biomass Valor. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Chen, J.; Li, C.; Jiang, L.; Luo, M.; Sun, A. Optimization of aqueous enzymatic extraction of castor (Ricinus communis) seeds oil using response surface methodology. J. Biobased Mater. 2019, 13, 114–122. [Google Scholar] [CrossRef]
- Yusoff, M.M.; Gordon, M.H.; Ezeh, O.; Niranjan, K. Aqueous enzymatic extraction of Moringa oleifera oil. Food Chem. 2016, 211, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Munder, S.; Latif, S.; Müller, J. Enzyme-Assisted Aqueous Oil Extraction from High Oleic Sunflower Seeds in a Scalable Prototype Reactor. Waste Biomass Valor. 2018, 11, 899–908. [Google Scholar] [CrossRef]
- Cheng, M.H.; Zhang, W.; Rosentrater, K.A.; Sekhon, J.J.K.; Wang, T. Techno-Economic Analysis of Integrated Enzyme Assisted Aqueous Extraction of Soybean Oil. In Proceedings of the ASABE Annual International Meeting, Orlando, FL, USA, 17 July–20 July 2016; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2016. [Google Scholar]
- Hu, B.; Zhou, K.; Liu, Y.; Liu, A.; Zhang, Q.; Han, G.; Liu, S.; Yang, Y.; Zhu, Y.; Zhu, D. Optimization of microwave-assisted extraction of oil from tiger nut (Cyperus esculentus L.) and its quality evaluation. Ind. Crops Prod. 2018, 115, 290–297. [Google Scholar] [CrossRef]
- Peng, L.; Ye, Q.; Liu, X.; Liu, S.; Meng, X. Optimization of aqueous enzymatic method for Camellia sinensis oil extraction and reuse of enzymes in the process. J. Biosci. Bioeng. 2019, 128, 716–722. [Google Scholar] [CrossRef]
- Yusoff, M.M.; Gordon, M.H.; Niranjan, K. Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends Food Sci. Technol. 2015, 41, 60–82. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Z.G.; Gai, Q.Y.; Li, X.J.; Wei, F.Y.; Fu, Y.J.; Ma, W. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 2014, 147, 17–24. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; He, L.; Li, Y.; Li, C.; Zhang, Z.; Liu, Y.; Zhou, K.; Zhang, Q.; Liu, A.; et al. A method for extracting oil from cherry seed by ultrasonic-microwave assisted aqueous enzymatic process and evaluation of its quality. J. Chromatogr. A 2019, 1587, 50–60. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Carballares, D.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates. Catalysts 2020, 10, 605. [Google Scholar] [CrossRef]
- Delgado, M.; Felix, M.; Bengoechea, C. Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials. Ind. Crops Prod. 2018, 125, 401–407. [Google Scholar] [CrossRef]
- Guo, C.; Xie, Y.J.; Zhu, M.T.; Xiong, Q.; Chen, Y.; Yu, Q.; Xie, J.H. Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chem. 2020, 316, 126269. [Google Scholar] [CrossRef]
- Lan, X.; Qiang, W.; Yang, Y.; Gao, T.; Guo, J.; Du, L.; Noman, M.; Li, Y.; Li, J.; Li, H.; et al. Physicochemical stability of safflower oil body emulsions during food processing. LWT 2020, 132, 109838. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; de Barros, D.S.N.; Fernandez-Lafuente, R.; Freire, D.M.G. Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew. Energy 2019, 130, 574–581. [Google Scholar] [CrossRef]
- Zanetta, C.U.; Waluyo, B.; Rachmadi, M.; Karuniawan, A. Oil content and potential region for cultivation black soybean in Java as biofuel alternative. Energy Procedia 2015, 65, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.K.; Bosco, S.J.D. Optimization of viscozyme L assisted extraction of coconut milk and virgin coconut oil. Asian J. Dairy Food Res. 2014, 33, 276–284. [Google Scholar] [CrossRef]
- Sant’Anna, B.P.M.; Freitas, S.P.; Coelho, M.A.Z. Enzymatic aqueous technology for simultaneous coconut protein and oil extraction. Grasas Aceites 2003, 54, 77–80. [Google Scholar] [CrossRef]
- Hanmoungjai, P.; Pyle, D.L.; Niranjan, K. Enzyme-assisted water-extraction of oil and protein from rice bran. J. Chem. Technol. Biotechnol. 2002, 77, 771–776. [Google Scholar] [CrossRef]
- Su, C.H.; Nguyen, H.C.; Bui, T.L.; Huang, D.L. Enzyme-assisted extraction of insect fat for biodiesel production. J. Clean. Prod. 2019, 223, 436–444. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Liu, Y.; Zhang, H. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem. 2014, 150, 482–488. [Google Scholar] [CrossRef]
- Passos, C.P.; Yilmaz, S.; Silva, C.M.; Coimbra, M.A. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem. 2009, 115, 48–53. [Google Scholar] [CrossRef]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Man, Y.B.C. Enzyme-assisted aqueous extraction of Kalahari melon seed oil: Optimization using response surface methodology. J. Am. Oil Chem. Soc. 2009, 86, 1235–1240. [Google Scholar] [CrossRef]
- Gai, Q.Y.; Jiao, J.; Wei, F.Y.; Luo, M.; Wang, W.; Zu, Y.G.; Fu, Y.J. Enzyme-assisted aqueous extraction of oil from Forsythia suspense seed and its physicochemical property and antioxidant activity. Ind. Crops Prod. 2013, 51, 274–278. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-García, R.; Juárez-Barrientos, J.M.; Chávez-Zamudio, R.; Martínez-Sánchez, C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason. Sonochem. 2016, 31, 429–436. [Google Scholar] [CrossRef]
- Jalili, F.; Jafari, S.M.; Emam-Djomeh, Z.; Malekjani, N.; Farzaneh, V. Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Anal. Methods 2018, 11, 598–612. [Google Scholar] [CrossRef]
- Salimon, J.; Noor, D.A.M.; Nazrizawati, A.; Noraishah, A. Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malays. 2010, 39, 761–764. [Google Scholar]
- Lopez-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharm. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Nagumalli, S.K.; Jacob, C.C.; da Costa, G.G. A rapid and highly sensitive UPLC-ESI-MS/MS method for the analysis of the fatty acid profile of edible vegetable oils. J. Chromatogr. B 2020, 1161, 122415. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.N.; Mohamad, H.A.; Aziz, M. Studying the Physicochemical Properties and Isolation of Unsaturated Fatty Acids from Edible Oils by GC-MS and Argentated Silica Gel Chromatography. Iraqi J. Sci. 2021, 62, 346–362. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Soto, C.; Chamy, R.; Zuniga, M.E. Enzymatic hydrolysis and pressing conditions effect on borage oil extraction by cold pressing. Food Chem. 2007, 102, 834–840. [Google Scholar] [CrossRef]
- AOCS. Official Method and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS Press: Champaign, IL, USA, 2004. [Google Scholar]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Fozo, E.M.; Quivey, R.G. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl. Environ. Microbiol. 2004, 70, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacias-Pascacio, V.G.; Rosales-Quintero, A.; Torrestiana-Sánchez, B. Evaluación y caracterización de grasas y aceites residuales de cocina para la producción de biodiésel: Un caso de estudio. Rev. Int. Contam. Ambient. 2016, 32, 303–313. [Google Scholar] [CrossRef]
Treatment | Amount of Enzyme (%) | Time (h) | Agitation Rate (rpm) | Solid-to-Liquid Ratio (w/w) | Oil Yield (%) |
---|---|---|---|---|---|
1 | 2.5 | 5 | 150 | 1:3 | 57 ± 0.36 |
2 | 2.5 | 5 | 150 | 1:5 | 56 ± 0.22 |
3 | 2.5 | 5 | 250 | 1:3 | 66 ± 0.43 |
4 | 2.5 | 5 | 250 | 1:5 | 60 ± 0.37 |
5 | 2.5 | 7 | 150 | 1:3 | 49 ± 0.32 |
6 | 2.5 | 7 | 150 | 1:5 | 48 ± 0.12 |
7 | 2.5 | 7 | 250 | 1:3 | 56 ± 0.26 |
8 | 2.5 | 7 | 250 | 1:5 | 64 ± 0.28 |
9 | 3.5 | 5 | 150 | 1:3 | 51 ± 0.57 |
10 | 3.5 | 5 | 150 | 1:5 | 53 ± 0.58 |
11 | 3.5 | 5 | 250 | 1:3 | 69 ± 0.02 |
12 | 3.5 | 5 | 250 | 1:5 | 65 ± 0.69 |
13 | 3.5 | 7 | 150 | 1:3 | 59 ± 0.14 |
14 | 3.5 | 7 | 150 | 1:5 | 55 ± 0.12 |
15 | 3.5 | 7 | 250 | 1:3 | 63 ± 0.48 |
16 | 3.5 | 7 | 250 | 1:5 | 58 ± 0.23 |
17 | 2 | 6 | 200 | 1:4 | 65 ± 0.02 |
18 | 4 | 6 | 200 | 1:4 | 64 ± 0.43 |
19 | 3 | 4 | 200 | 1:4 | 61 ± 0.17 |
20 | 3 | 8 | 200 | 1:4 | 68 ± 0.30 |
21 | 3 | 6 | 100 | 1:4 | 51 ± 0.47 |
22 | 3 | 6 | 300 | 1:4 | 58 ± 0.43 |
23 | 3 | 6 | 200 | 1:2 | 61 ± 0.03 |
24 | 3 | 6 | 200 | 1:6 | 57 ± 0.29 |
25 | 3 | 6 | 200 | 1:4 | 60 ± 0.03 |
26 | 3 | 6 | 200 | 1:4 | 66 ± 0.25 |
27 | 3 | 6 | 200 | 1:4 | 66 ± 0.35 |
28 | 3 | 6 | 200 | 1:4 | 64 ± 0.47 |
Variable | Effect | p-Value |
---|---|---|
Mean | 64.12 | <0.0001 * |
X1 | 1.44 | 0.0009 * |
X12 | −0.76 | 0.0626 |
X2 | −1.03 | 0.0129 * |
X22 | −0.55 | 0.1737 |
X3 | 7.28 | <0.0001 * |
X32 | −5.54 | <0.0001 * |
X4 | −1.68 | 0.0002 * |
X42 | −3.53 | <0.0001 * |
X1X2 | 2.46 | <0.0001 * |
X1X3 | −0.07 | 0.8881 |
X1X4 | −1.23 | 0.0154 * |
X2X3 | −1.65 | 0.0017 * |
X2X4 | 1.07 | 0.0333 * |
X3X4 | −0.59 | 0.2308 |
Physicochemical Properties | SE | AEE |
---|---|---|
Acid value (mg KOH/g) | 1.12 ± 0.11 a | 1.09 ± 0.06 a |
Free fatty acid content (%) | 0.57 ± 0.06 a | 0.55 ± 0.03 a |
Iodine value (g/100 g) | 57.40 ± 0.62 a | 56.77 ± 1.43 a |
Oxidative stability (h) | 9.33 ± 0.18 b | 11.00 ± 1.17 a |
Fatty Acids | Fatty Acids Average Composition (%) | |||
---|---|---|---|---|
OMSS in This Study | Soybean Oil [92] | Olive Oil [93] | ||
SE | AEE | |||
Palmitic acid (C16:0) | 8.7 ± 0.6 a | 9.6 ± 0.4 a | 10.9 | 5.13 |
Stearic acid (C18:0) | 27.8 ± 0.3 a | 28.1 ± 0.6 a | 3.5 | 2.8 |
Oleic acid (C18:1) | 49.6 ± 0.6 a | 50.5 ± 0.3 a | 20.7 | 89 |
Linoleic acid (C18:2) | 13.0 ± 0.2 a | 11.0 ± 0.1 b | 57.5 | - |
Linolenic acid (C18:3) | - | - | 7.4 | - |
Arachidic acid (C20:0) | 0.8 ± 0.0 a | 0.8 ± 0.1 a | - | 0.6 |
Eicosenic acid (C20:1) | - | - | - | 1.3 |
Docosanoic acid (C22:0) | - | - | - | 0.4 |
Saturated fatty acid (SFA) | 37.3 | 37.7 | 14.4 | 8.93 |
Monounsaturated fatty acid (MUFA) | 49.6 | 50.5 | 20.7 | 90.3 |
Polyunsaturated fatty acid (PUFA) | 13.0 | 11.0 | 64.9 | - |
Variables | Name | Coded Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
X1 | Amount of enzyme (%) | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
X2 | Incubation time (h) | 4 | 5 | 6 | 7 | 8 |
X3 | Agitation rate (rpm) | 100 | 150 | 200 | 250 | 300 |
X4 | Solid-to-liquid ratio (w/w) | 1:2 | 1:3 | 1:4 | 1:5 | 1:6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tacias-Pascacio, V.G.; Rosales-Quintero, A.; Rodrigues, R.C.; Castañeda-Valbuena, D.; Díaz-Suarez, P.F.; Torrestiana-Sánchez, B.; Jiménez-Gómez, E.F.; Fernandez-Lafuente, R. Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts 2021, 11, 748. https://doi.org/10.3390/catal11060748
Tacias-Pascacio VG, Rosales-Quintero A, Rodrigues RC, Castañeda-Valbuena D, Díaz-Suarez PF, Torrestiana-Sánchez B, Jiménez-Gómez EF, Fernandez-Lafuente R. Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts. 2021; 11(6):748. https://doi.org/10.3390/catal11060748
Chicago/Turabian StyleTacias-Pascacio, Veymar G., Arnulfo Rosales-Quintero, Rafael C. Rodrigues, Daniel Castañeda-Valbuena, Pablo F. Díaz-Suarez, Beatriz Torrestiana-Sánchez, Erik F. Jiménez-Gómez, and Roberto Fernandez-Lafuente. 2021. "Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment" Catalysts 11, no. 6: 748. https://doi.org/10.3390/catal11060748
APA StyleTacias-Pascacio, V. G., Rosales-Quintero, A., Rodrigues, R. C., Castañeda-Valbuena, D., Díaz-Suarez, P. F., Torrestiana-Sánchez, B., Jiménez-Gómez, E. F., & Fernandez-Lafuente, R. (2021). Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts, 11(6), 748. https://doi.org/10.3390/catal11060748