Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates
Abstract
:1. Introduction
2. Results
2.1. Structure Description of (CHBMAH2)ZnBr4·3/2H2O 1
2.2. Structure Discussion
2.3. Thermal Analyses (DTA/TGA)
2.4. Single-Crystal-to-Single-Crystal (SCSC) Transformation. Crystal Structure of (CHBMAH2)ZnCl4 4 and Comparison with That of 2
2.5. Hirshfeld Surface Analysis
3. Discussion
4. Materials and Methods
4.1. Synthesis
4.1.1. Synthesis of (CHBMAH2)ZnBr4·3/2H2O, 1
4.1.2. Synthesis of (CHBMAH2)ZnCl4, 4
4.2. Crystal Structures Determination and Refinement
4.3. Hirshfeld Surface Calculation
4.4. Catalytic Study
4.5. Characterization of Acetals 7ae–7ie
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luz, I.; Llabrés i Xamena, F.X.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: ‘‘Click” reactions with Cu-MOF catalysts. J. Catal. 2010, 276, 134–140. [Google Scholar] [CrossRef]
- Zhuo, L.; Ying-Ying, L.; Guo-Hai, X.; Jian-Fang, M. Two polyoxometalate-based inorganic-organic hybrids and one coordination polymer assembled with a functionalized calix[4]arene: Catalytic and electrochemical properties. Polyhedron 2020, 178, 114324. [Google Scholar]
- Peipei, Z.; Ning, S.; Guodong, L.; Jing, Q.; Xiya, Y. Two Keggin polyoxometalate-based hybrid compounds with different helix: Syntheses, structure and catalytic activities. Polyhedron 2017, 131, 52–58. [Google Scholar]
- Rayes, A.; Herrera, R.P.; Moncer, M.; Ara, I.; Calestani, G.; Ayed, B.; Mezzadri, F. Synthesis, structural determination and catalytic study of a new 2-D chloro-substituted zinc phosphate, (C8N2H20)[ZnCl(PO3(OH))]2. J. Mol. Struct. 2020, 1202, 127216. [Google Scholar] [CrossRef]
- Kagan, C.R.; Mitzi, D.B.; Dimitrakopoulos, C.D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef] [PubMed]
- Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678. [Google Scholar] [CrossRef]
- Joseph, A.I.; Edwards, R.L.; Luis, P.B.; Presley, S.H.; Porter, N.A.; Schneider, C. Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Org. Biomol. Chem. 2018, 16, 3273–3281. [Google Scholar] [CrossRef]
- Chen, J.; He, Z.-M.; Wang, F.-L.; Zhang, Z.-S.; Liu, X.-z.; Zhai, D.-D.; Chen, W.-D. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur. J. Pharmacol. 2016, 772, 33–42. [Google Scholar] [CrossRef]
- Oladipo, S.D.; Omondi, B.; Mocktar, C. Synthesis and structural studies of nickel(II)- and copper(II)-N,N’-diarylformamidinedithiocarbamate complexes as antimicrobial and antioxidant agents. Polyhedron 2019, 170, 712–722. [Google Scholar] [CrossRef]
- Chung, I.; Lee, B.; He, J.; Chang, R.P.H.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.-Q.; Ye, H.-Y.; Zhang, Y.; Xiong, R.-G. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic–inorganic hybrid compound: [C3H4NS][CdBr3]. Dalton Trans. 2015, 44, 10614–10620. [Google Scholar] [CrossRef]
- Rhouma, N.M.; Rayes, A.; Mezzadri, F.; Delmonte, D.; Cabassi, R.; Calestani, G.; Loukil, M. Structural and electrical phase transitions in the [(C2H5)4N]2ZnI3.86Cl0.14 system. J. Solid State Chem. 2017, 256, 60–66. [Google Scholar] [CrossRef]
- García-Fernández, A.; Bermúdez-García, J.M.; Castro-García, S.; Llamas-Saiz, A.L.; Artiaga, R.; López-Beceiro, J.; Hu, S.; Ren, W.; Stroppa, A.; Sánchez-Andújar, M.; et al. Phase transition, dielectric properties, and ionic transport in the[(CH3)2NH2]PbI3 organic–inorganic hybrid with 2H-hexagonal perovskite structure. Inorg. Chem. 2017, 56, 4918–4927. [Google Scholar] [CrossRef]
- Karoui, K.; Rhaiem, A.B.; Guidara, K. Dielectric properties and relaxation behavior of [TMA]2Zn0.5Cu0.5Cl4 compound. Phys. B 2012, 407, 489–493. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Y.; Sun, Z.; Zhang, S.; Zhao, S.; Tang, Y.; Ji, C.; Luo, J. ABX3-type organic–inorganic hybrid phase transition material: 1-pentyl-3-methylimidazolium tribromoplumbate. Inorg. Chem. 2015, 54, 7136–7138. [Google Scholar] [CrossRef] [PubMed]
- Salah, A.M.B.; Fendri, L.B.; Bataille, T.; Herrera, R.P.; Naïli, H. Synthesis, structural determination and antimicrobial evaluation of two novel CoII and ZnII halogenometallates as efficient catalysts for the acetalization reaction of aldehydes. Chem. Central J. 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Naïli, H.; Hajlaoui, F.; Mhiri, T.; Leod, T.C.O.M.; Kopylovich, M.N.; Mahmudov, K.T.; Pombeiro, A.J.L. 2-Dihydromethylpiperazinediium-MII (MII = CuII, FeII, CoII, ZnII) double sulfates and their catalytic activity in diastereoselectivenitroaldol (Henry) reaction. Dalton Trans. 2013, 42, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Reinoso, S.; Artetxe, B.; Gutiérrez-Zorrilla, J.M. Single-crystal-to-single-crystal transformations triggered by dehydration in polyoxometalate-based compounds. Acta Cryst. 2018, 74, 1222–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wołoszyn, Ł.; Ilczyszyn, M.M.; Kinzhybalo, V. The dehydration process in the DL-phenylglycinium trifluoromethanesulfonate monohydrate crystal revealed by XRD, vibrational and DSC studies. Acta Cryst. 2019, 75, 1569–1579. [Google Scholar] [CrossRef]
- Pasińska, K.; Piecha-Bisiorek, A.; Kinzhybalo, V.; Ciżman, A.; Gagor, A.; Pietraszko, A. A paraelectric–ferroelectric phase transition of an organically templated zinc oxalate coordination polymer. Dalton Trans. 2018, 47, 11308–11312. [Google Scholar] [CrossRef]
- Mouchaham, G.; Roques, N.; Brandès, S.; Duhayon, C.; Sutter, J.-P. Self-assembly of Zr(C2O4)44− metallotectons and bisimidazolium cations: Influence of the dication on H-bonded framework dimensionality and material potential porosity. Cryst. Growth Des. 2011, 11, 5424–5433. [Google Scholar] [CrossRef]
- Emami, M.; Ślepokura, K.A.; Trzebiatowska, M.; Noshiranzadeh, N.; Kinzhybalo, V. Oxyanion clusters with antielectrostatic hydrogen bonding (AEHB) in tetraalkylammonium hypodiphosphates. CrystEngComm 2018, 20, 5209–5219. [Google Scholar] [CrossRef]
- Rayes, A.; Moncer, M.; Ara, I.; Dege, N.; Ayed, B. Synthesis, crystal structures, Hirshfeld surface analysis and physico-chemical characterization of twonew ZnII and CdII halidometallates. J. Mater. Sci. Mater. Electron. 2021, 32, 10890–10905. [Google Scholar] [CrossRef]
- Chihaoui, N.; Hamdi, B.; Demmak, T.; Zouari, R. Molecular structure, experimental and theoretical spectroscopic characterization and non-linear optical properties studies of a new non-centrosymmetric hybrid material. J. Mol. Struct. 2016, 1123, 144–152. [Google Scholar] [CrossRef]
- Kubicki, M.; Szafrański, M. Hydrogen bonding in two isomorphous bis-guanidinium salts: Tetrachlorozincate(II) and tetrabromozincate(II). J. Mol. Struct. 1998, 446, 1–9. [Google Scholar] [CrossRef]
- Chkoundali, S.; Hlel, F.; Khemekhem, H. Synthesis, crystal structure, thermal and dielectric properties of tetrapropylammonium tetrabromozincate [N(C3H7)4]2[ZnBr4] compound. Appl. Phys. A 2016, 122, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Trouélan, P.; Lefebvre, J.; Derollez, P. Studies of tetramethylammonium tetrabromometallates. II. Structure of tetramethylammonium tetrabromozincate, [N(CH3)4]2[ZnBr4], in its low-temperature phase. Acta Cryst. 1985, 41, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper (I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Yu, J.; Wu, S.; Wang, R. Doping-induced structure variation of 1,3-cyclohexane−bis(methylamine)-templated zinc−phosphorus open structures. Inorg. Chem. 2008, 47, 769–771. [Google Scholar] [CrossRef]
- Chebbi, H.; Mezrigui, S.; Jomaa, M.B.; Zid, M.F. Crystal structure, Hirshfeld surface analysis and energy framework calculation of the first oxoanion salt containing 1,3-cyclohexanebis(methylammonium): [3-(azaniumylmethyl)cyclohexyl]-methanaminiumdinitrate. Acta Cryst. 2018, 74, 949–954. [Google Scholar] [CrossRef]
- Rhouma, N.M.; Rayes, A.; Mezzadri, F.; Calestani, G.; Loukil, M. Crystal structure of non-centrosymmetricbis(4-methoxybenzylammonium) tetrachloridozincate. Acta Cryst. 2016, 72, 1050–1053. [Google Scholar]
- El Mrabet, R.; Kassou, S.; Tahiri, O.; Balaaraj, A.; El Ammari, L.; Saadi, M. A zero dimensional hybrid organic-inorganic perovskite ZnCl4 based: Synthesis, crystal structure, UV-vis, and electronic properties. J. Cryst. Growth 2017, 472, 76–83. [Google Scholar] [CrossRef]
- Leesakul, N.; Runrueng, W.; Saithong, S.; Pakawatchai, C. 2-{2-[4-(Dimethylamino)phenyl]diazen-1-ium-1-yl}pyridiniumtetrachloridozincate. Acta Cryst. 2012, 68, m837. [Google Scholar] [CrossRef] [Green Version]
- El Glaoui, M.; Jeanneau, E.; Rzaigui, M.; Nars, C.B. 4-(3-Ammoniopropyl)morpholin-4-ium tetrachloridozincate(II). Acta Cryst. 2009, 65, m282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granifo, J.; Suárez, S.; Boubeta, F.; Baggio, R. Crystallographic and computational study of a network composed of [ZnCl4]2− anions and triply protonated 4′-functionalized terpyridine cations. Acta Cryst. 2017, 73, 1121–1130. [Google Scholar] [CrossRef]
- Perrier, P.; Byrn, S.R. Influence of crystal packing on the solid-state desolvation of purine and pyrimidine hydrates: Loss of water of crystallization from thymine monohydrate, cytosine monohydrate, 5-nitrouracil monohydrate, and S’-deoxyadenosine monohydrate. J. Org. Chem. 1982, 47, 4671–4676. [Google Scholar] [CrossRef]
- Meskens, F.A.J. Methods for the preparation of acetals from alcohols or oxiranes and carbonyl compounds. Synthesis 1981, 501–522. [Google Scholar] [CrossRef]
- Schelhaas, M.; Waldmann, H. Protecting group strategies in organic synthesis. Angew. Chem. Int. Ed. Engl. 1996, 35, 2056–2083. [Google Scholar] [CrossRef]
- Greene, T.W.; Wuts, P.G.M. Protecting Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: New York, NY, USA, 2002. [Google Scholar]
- Smirnov, A.A.; Selishcheva, S.A.; Yakovlev, V.A. Acetalization catalysts for synthesis of valuable oxygenated fuel additives from glycerol. Catalysts 2018, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Karimi, B.; Golshani, B. Iodine-catalyzed, efficient and mild procedure for highly chemoselective acetalization of carbonyl compounds under neutral aprotic conditions. Synthesis 2002, 33, 784–788. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.H.; Yoon, C.M. An efficient protection of carbonyls and deprotection of acetals using decaborane. Tetrahedron Lett. 2002, 43, 2699–2703. [Google Scholar] [CrossRef]
- Leonard, N.M.; Oswald, M.C.; Freiberg, D.A.; Nattier, B.A.N.; Smith, R.C.; Mohan, R.S. A simple and versatile method for the synthesis of acetals from aldehydes and ketones using bismuth triflate. J. Org. Chem. 2002, 67, 5202–5207. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.M.; Chudasama, U.V.; Ganesphure, P.A. Ketalization of ketones with diols catalyzed by metal(IV) phosphates as solid acid catalysts. J. Mol. Catal. A Chem. 2003, 194, 267–271. [Google Scholar] [CrossRef]
- Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan, M.-D. Stripping off water at ambient temperature: Direct atom-efficient acetal formation between aldehydes and diols catalyzed by water-tolerant and recoverable vanadyl triflate. Org. Lett. 2005, 7, 3343–3346. [Google Scholar] [CrossRef]
- Kumar, R.; Chakraborti, A.K. Copper(II) tetrafluoroborate as a novel and highly efficient catalyst for acetal formation. Tetrahedron Lett. 2005, 46, 8319–8323. [Google Scholar] [CrossRef]
- Smith, B.M.; Graham, A.E. Indium triflate mediated acetalization of aldehydes and ketones. Tetrahedron Lett. 2006, 47, 9317–9319. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Lawton, M.C. Highly atom efficient aluminium triflate catalysed acetal formation. Green Chem. 2008, 10, 914–917. [Google Scholar] [CrossRef]
- Gregg, B.T.; Golden, K.C.; Quinn, J.F. Indium(III)trifluoromethanesulfonate as a mild, efficient catalyst for the formation of acetals and ketals in the presence of acid sensitive functional groups. Tetrahedron 2008, 64, 3287–3295. [Google Scholar] [CrossRef]
- Ono, F.; Takenaka, H.; Eguchi, Y.; Endo, M.; Sato, T. A simple and efficient procedure for the synthesis of ketone di-sec-alkyl acetals. Synlett 2009, 487–489. [Google Scholar]
- Miao, Z.; Xu, L.; Song, H.; Zhao, H.; Chou, L. One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties. Catal. Sci. Technol. 2013, 3, 1942–1954. [Google Scholar] [CrossRef]
- Zhao, S.; Jia, Y.; Song, Y.-F. Acetalization of aldehydes and ketones over H4[SiW12O40] and H4[SiW12O40]/SiO2. Catal. Sci. Technol. 2014, 4, 2618–2625. [Google Scholar] [CrossRef]
- Yi, H.; Niu, L.; Wang, S.; Liu, T.; Singh, A.K.; Lei, L. Visible-light-induced acetalization of aldehydes with alcohols. Org. Lett. 2017, 19, 122–125. [Google Scholar] [CrossRef]
- Mensah, E.A.; Green, S.D.; West, J.; Kindoll, T.; Lazaro-Martinez, B. Formation of acetals and ketals from carbonyl compounds: A new and highly efficient method inspired by cationic palladium. Synlett 2019, 30, 1810–1814. [Google Scholar] [CrossRef] [Green Version]
- Velusamy, S.; Punniyamurthy, T. Cobalt(II)-catalyzed chemoselective synthesis of acetals from aldehydes. Tetrahedron Lett. 2004, 45, 4917–4920. [Google Scholar] [CrossRef]
- Rajabi, F. Cobalt(II) schiff base functionalized mesoporous silica as an efficient and recyclable chemoselective acetalization catalyst. J. Iran. Chem. Soc. 2010, 7, 695–701. [Google Scholar] [CrossRef]
- Roy, A.; Rahman, M.; Das, S.; Kundu, D.; Kundu, S.K.; Majee, A.; Hajra, A. Zinc chloride as an efficient catalyst for chemoselective dimethyl acetalization. Synth. Commun. 2009, 39, 590–595. [Google Scholar] [CrossRef]
- Saïd, S.; Naïli, H.; Bataille, T.; Herrera, R.P. Crystallisation, thermal analysis and acetal protection activity of new layered Zn(ii) hybrid polymorphs. CrystEngComm 2016, 18, 5365–5374. [Google Scholar] [CrossRef] [Green Version]
- CCDC Deposition Numbers 2073639 (1), 1825834 (2), 1563308 (3) and 1548767 (4) Contain the Supplementary Crystallo-Graphic Data. These Data Can Be Obtained Free of Charge or Contacting the Cambridge Crys-Tallography Data Center (12 Union Road Cambridge CB2 1EZ United Kingdom). Available online: https://www.ccdc.cam.ac.uk/ (accessed on 22 June 2021).
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 17.5, University of Western Australia. 2007. Available online: http://hirshfeldsurface.net (accessed on 22 June 2021).
1 | 4 | |
---|---|---|
Chemical formula | (CHBMAH2)ZnBr4·3/2H2O | (CHBMAH2)ZnCl4 |
Formula weight (g mol−1) | 556.29 | 351.43 |
Temperature (K) | 296 | 296 |
Crystal system | Orthorhombic | Monoclinic |
Space group | P21212 | P21/c |
a (Å) | 12.5741(8) | 7.2772(7) |
b (Å) | 21.0211(14) | 9.8130(9) |
c (Å) | 6.7709(4) | 22.009(2) |
α (°) | 90 | 90 |
β (°) | 90 | 96.1760(10) |
γ (°) | 90 | 90 |
Volume (Å3) | 1789.7(2) | 1562.6(3) |
Z | 4 | 4 |
Density (g·cm−3) | 2.065 | 1.494 |
Absorption coefficient (mm−1) | 10.293 | 2.230 |
F(000) | 1068 | 720 |
Theta range (°) | 2.255–25.155 | 2.274–23.541 |
Reflections measured | 15,931 | 13,805 |
Independent reflections | 5186 | 4500 |
Reflections included [I > 2σ(I)] | 3785 | 2761 |
R(int) | 0.036 | 0.04 |
Restraints/parameters | 0/162 | 0/174 |
Goodness-of-fit | 0.947 | 1.063 |
Refinement on | F2 | F2 |
Final R indices | R = 0.0326 | R = 0.0711 |
- | Rw = 0.0689 | Rw = 0.2078 |
Δρmax, Δρmin (e Å−3) | −0.595, 0.914 | −0.601, 1.593 |
D–H···A | D–H | H···A | D···X | D–H···X |
---|---|---|---|---|
N1-H1B···Br2 | 0.89 | 2.725 (1) | 3.391 (5) | 164.4 (3) |
N1-H1C···Br4 | 0.89 | 2.826 (1) | 3.459 (5) | 129.3 (3) |
N2-H2C···Br3 | 0.89 | 2.492 (1) | 3.366 (5) | 167.1 (3) |
N2-H2E···Br1 | 0.89 | 2.641 (1) | 3.351 (5) | 137.4 (3) |
C2-H2A···Br3 | 0.97 | 3.022 (1) | 3.788 (6) | 136.7 (4) |
O1-H2W1-Br4 | 0.85 | 2.94 (9) | 3.461 (6) | 121 (7) |
O1-H1W1-Br1 | 0.85 | 2.60 (1) | 3.290 (7) | 147 (9) |
O2-H1W2-Br2 | 0.73 (8) | 2.92 (8) | 3.579 (6) | 150 (7) |
D–H···A | D–H | H···A | D···X | D–H···X |
---|---|---|---|---|
N1–H1A···Cl3 | 0.89 | 2.493 (2) | 3.260 (5) | 144.8 (3) |
N1–H1C···Cl3 | 0.89 | 2.772 (2) | 3.435 (6) | 132.3 (3) |
N1–H1C···Cl1 | 0.89 | 2.670 (2) | 3.416 (6) | 142.1 (3) |
N1–H12···Cl2 | 0.89 | 2.444 (2) | 3.327 (6) | 171.4 (3) |
N2–H2A···Cl4 | 0.89 | 2.634 (2) | 3.468 (7) | 156.5 (4) |
N2–H2B···Cl2 | 0.89 | 2.349 (2) | 3.180 (6) | 155.5 (4) |
N2–H2C···Cl1 | 0.89 | 2.383 (2) | 3.260 (6) | 168.7 (4) |
C8–H8A···Cl3 | 0.97 | 2.864 (2) | 3.583 (8) | 131.7 (4) |
(CHBMAH2)ZnBr4·3/2H2O, 1 | (CHBMAH2)ZnCl4, 4 | ||
---|---|---|---|
Contact | % Contribution | Contact | % Contribution |
Br···H/H···Br | 53.4 | Cl···H/H···Cl | 63.4 |
H···H | 35.7 | H···H | 33.9 |
O···H/H···O | 8.9 | Cl···Cl | 2.1 |
Br···Br | 0.9 | H···Zn/Zn···H | 0.4 |
H···Zn/Zn···H | 0.8 | Cl···Zn/Zn···Cl | 0.3 |
Br···Zn/Zn···Br | 0.3 | - | - |
(CHBMAH2)ZnCl4·2H2O, 2 | (CHBMAH2)CdI4·2H2O, 3 | ||||||
---|---|---|---|---|---|---|---|
Alcohol (6a–6i) | Temp. (°C) | Time (h) | Yield (%) | Alcohol (6a–6i) | Temp. (°C) | Time (h) | Yield (%) |
MeOH (6a) (10 mol%) | 50 | 24 | 76 | MeOH (6a) (10 mol%) | 50 | 24 | 94 |
EtOH (6b) (5 mol%) | 40 | 24 | 72 | EtOH (6b) (5 mol%) | 40 | 24 | 79 |
1-PrOH (6c) (5 mol%) | 60 | 72 | 75 | 1-PrOH (6c) (5 mol%) | 60 | 72 | 76 |
1-BuOH (6d) (5 mol%) | 60 | 72 | 85 | 1-BuOH (6d) (5 mol%) | 60 | 72 | 93 |
1-Pentanol (6e) (5 mol%) | 60 | 48 | 71 | 1-Pentanol (6e) (10 mol%) | 60 | 24 | 97 |
1-HexOH (6f) (5 mol%) | 60 | 72 | 69 | 1-HexOH (6f) (5 mol%) | 60 | 72 | 91 |
2-Methylbutanol (6g) (10 mol%) | 60 | 24 | 64 | 2-Methylbutanol (6g) (10 mol%) | 60 | 24 | 83 |
2-PrOH (6h) (10 mol%) | 60 | 24 | 77 | 2-PrOH (6h) (10 mol%) | 50 | 24 | 44 |
1-BnOH (6i) (5 mol%) | 60 | 48 | 52 | 1-BnOH (6i) (5 mol%) | 60 | 48 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayes, A.; Zárate-Roldán, S.; Ara, I.; Moncer, M.; Dege, N.; Gimeno, M.C.; Ayed, B.; Herrera, R.P. Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates. Catalysts 2021, 11, 758. https://doi.org/10.3390/catal11070758
Rayes A, Zárate-Roldán S, Ara I, Moncer M, Dege N, Gimeno MC, Ayed B, Herrera RP. Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates. Catalysts. 2021; 11(7):758. https://doi.org/10.3390/catal11070758
Chicago/Turabian StyleRayes, Ali, Stephany Zárate-Roldán, Irene Ara, Manel Moncer, Necmi Dege, M. Concepción Gimeno, Brahim Ayed, and Raquel P. Herrera. 2021. "Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates" Catalysts 11, no. 7: 758. https://doi.org/10.3390/catal11070758
APA StyleRayes, A., Zárate-Roldán, S., Ara, I., Moncer, M., Dege, N., Gimeno, M. C., Ayed, B., & Herrera, R. P. (2021). Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates. Catalysts, 11(7), 758. https://doi.org/10.3390/catal11070758