Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts
Abstract
:1. Introduction
2. Results
2.1. Characterization of RNs
2.1.1. Chemical Compositions
2.1.2. XRD Analysis of Catalyst
2.2. Two Steps of Esterification and Hydrogenation over Raney Ni Catalyst
2.3. Two Steps of Esterification and Hydrogenation of Bio-Oil over Modified Raney Ni Catalysts
2.4. Comparation between One Step Esterification–Hydrogenation and Two Steps of Esterification and Hydrogenation of Bio-Oil over Mo-Raney Ni Catalyst
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalysts
3.3. Catalyst Characterization
3.4. Esterification and Hydrogenation Processes
3.5. Product Analysis
3.6. Feedstock Conversion, Product Quantification and Yield Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Yang, Y.; Xiao, C.; Zhang, X. Energy balance and global warming potential of corn straw-based bioethanol in China from a life cycle perspective. Int. J. Green Energy 2018, 15, 296–304. [Google Scholar] [CrossRef]
- Zhu, L.; Li, K.; Ding, H.; Zhu, X. Studying on properties of bio-oil by adding blended additive during aging. Fuel 2018, 211, 704–711. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Y.; Li, T.; Ren, Z. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005, 96, 545–550. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Zacher, A.H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; et al. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol. 2012, 124, 470–477. [Google Scholar] [CrossRef]
- Yang, Z.; Kumar, A.; Huhnke, R.L. Review of recent developments to improve storage and transportation stability of bio-oil. Renew. Sustain. Energy Rev. 2015, 50, 859–870. [Google Scholar] [CrossRef]
- Horáček, J.; Kubička, D. Bio-oil hydrotreating over conventional CoMo & NiMo catalysts: The role of reaction conditions and additives. Fuel 2017, 198, 49–57. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Q.; Lu, L.; Leng, F.; Wang, S. Upgrading of the Acid-Rich Fraction of Bio-oil by Catalytic Hydrogenation-Esterification. ACS Sustain. Chem. Eng. 2016, 5, 1073–1081. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Chang, J.; Zhang, X.; Ma, L.; Wang, T.; Zhang, Q. One step hydrogenation–esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts. Energy Convers. Manag. 2016, 108, 78–84. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Wang, C.; Wang, C.; Ma, L.; Wang, T.; Zhang, X.; Zhang, Q. In-situ hydrogenation of model compounds and raw bio-oil over Ni/CMK-3 catalyst. Fuel Process. Technol. 2017, 161, 226–231. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Huang, Z.; Chen, B.; Wang, F. Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Appl. Catal. B Environ. 2015, 165, 547–554. [Google Scholar] [CrossRef]
- Shen, P.; Wei, R.; Zhu, M.Y.; Pan, D.; Xu, S.; Gao, L.; Xiao, G. Hydrodeoxygenation of Octanoic Acid over the Mo-Doped CeO2 -Supported Bimetal Catalysts: The Role of Mo. Chemistryselect 2018, 3, 4786–4796. [Google Scholar] [CrossRef]
- Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers. Manag. 2009, 50, 3147–3157. [Google Scholar] [CrossRef]
- Wang, S.; Cai, Q.; Chen, J.; Zhang, L.; Zhu, L.; Luo, Z. Co-cracking of bio-oil model compound mixtures and ethanol over different metal oxide-modified HZSM-5 catalysts. Fuel 2015, 160, 534–543. [Google Scholar] [CrossRef]
- Remón, J.; Broust, F.; Valette, J.; Chhiti, Y.; Alava, I.; Fernández-Akarregi, A.R.; Arauzo, J.; Garcia, L. Production of a hydrogen-rich gas from fast pyrolysis bio-oils: Comparison between homogeneous and catalytic steam reforming routes. Int. J. Hydrogen Energy 2014, 39, 171–182. [Google Scholar] [CrossRef]
- Tang, Y.; Miao, S.; Shanks, B.H.; Zheng, X. Bifunctional mesoporous organic–inorganic hybrid silica for combined one-step hydrogenation/esterification. Appl. Catal. A Gen. 2010, 375, 310–317. [Google Scholar] [CrossRef]
- Tang, Y.; Miao, S.; Mo, L.; Zheng, X.; Shanks, B.H. One-Step Hydrogenation/Esterification Activity Enhancement over Bifunctional Mesoporous Organic–Inorganic Hybrid Silicas. Top. Catal. 2013, 56, 1804–1813. [Google Scholar] [CrossRef]
- Tang, Y.; Miao, S.; Pham, H.N.; Datye, A.; Zheng, X.; Shanks, B.H. Enhancement of Pt catalytic activity in the hydrogenation of aldehydes. Appl. Catal. A Gen. 2011, 406, 81–88. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, W.J.; Mo, L.Y.; Lou, H.; Zheng, X.M. One-step hydrogenation-esterification of aldehyde and acid to ester Over Bifunctional Pt catlysts: A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil. Energy Fuel 2008, 22, 3484–3488. [Google Scholar] [CrossRef]
- Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X. One-step hydrogenation–esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresour. Technol. 2011, 102, 8241–8246. [Google Scholar] [CrossRef]
- Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X. Bifunctional Pd/Al-SBA-15 catalyzed one-step hydrogenation–esterification of furfural and acetic acid: A model reaction for catalytic upgrading of bio-oil. Catal. Commun. 2011, 13, 35–39. [Google Scholar] [CrossRef]
- Wang, J.-J.; Chang, J.; Fan, J. Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number for Evaluating Esterification Degree. Energy Fuels 2010, 24, 3251–3255. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Kong, W.; Wang, T.; Zhang, Q.; Long, J.; Xu, Y.; Ma, L. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process. Energy 2015, 84, 83–90. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Wan, H.; Chaudhari, R.V.; Subramaniam, B. Catalytic Hydroprocessing of p-Cresol: Metal, Solvent and Mass-Transfer Effects. Top. Catal. 2012, 55, 129–139. [Google Scholar] [CrossRef]
- Bykova, M.V.A.; Rekhtina, M.A.; Lebedev, M.; Zavarukhin, S.G.; Kaichev, V.V.; Venderbosch, R.H.; Yakovlev, V.A. Hydrotreatment of 2-Methoxyphenol over High Ni-Loaded Sol-Gel Catalysts: The Influence of Mo on Catalyst Activity and Reaction Pathways. Chemistryselect 2018, 3, 5153–5164. [Google Scholar] [CrossRef]
- Şenol, O.; Ryymin, E.-M.; Viljava, T.-R.; Krause, A. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. J. Mol. Catal. A Chem. 2007, 277, 107–112. [Google Scholar] [CrossRef]
- Patel, B.; Arcelus-Arrillaga, P.; Izadpanah, A.; Hellgardt, K. Catalytic Hydrotreatment of algal biocrude from fast Hydrothermal Liquefaction. Renew. Energy 2017, 101, 1094–1101. [Google Scholar] [CrossRef]
- Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; Barth, T. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach. ChemSusChem 2017, 10, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Furimsky, E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen. 2000, 199, 147–190. [Google Scholar] [CrossRef]
- Bouxin, F.P.; Strub, H.; Dutta, T.; Aguilhon, J.; Morgan, T.J.; Mingardon, F.; Konda, M.; Singh, S.; Simmons, B.; George, A. Elucidating transfer hydrogenation mechanisms in non-catalytic lignin depolymerization. Green Chem. 2018, 20, 3566–3580. [Google Scholar] [CrossRef] [Green Version]
- Sordakis, K.; Tang, C.H.; Vogt, L.K.; Junge, H.; Dyson, P.J.; Beller, M.; Laurenczy, G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev. 2018, 118, 372–433. [Google Scholar] [CrossRef] [PubMed]
- Putra RD, D.; Trajano, H.L.; Liu, S.D.; Lee, H.; Smith, K.; Kim, C.S. In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni (R). Chem. Eng. J. 2018, 350, 181–191. [Google Scholar] [CrossRef]
- Xu, Y.; Long, J.; Liu, Q.; Li, Y.; Wang, C.; Zhang, Q.; Lv, W.; Zhang, X.; Qiu, S.; Wang, T.; et al. In situ Hydrogenation of Model Compounds and Raw Bio-Oil over Raney Ni Catalyst. Energy Convers. Manag. 2015, 89, 188–196. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Ma, L.; Lu, C.S.; Zhang, Q.F.; Li, X.N. Aqueous system for the improved hydrogenation of phenol and its derivatives. Green Chem. 2008, 10, 939–943. [Google Scholar] [CrossRef]
- Galarza, E.D.; Fermanelli, C.S.; Pierella, L.B.; Saux, C.; Renzini, M.S. Influence of the Sn incorporation method in ZSM-11 zeolites in the distribution of bio-oil products obtained from biomass pyrolysis. J. Anal. Appl. Pyrolysis 2021, 156, 105116. [Google Scholar] [CrossRef]
- Xiong, Y.; Hou, G.; Fan, Y.; Li, X.; Yin, H. The deterioration of bio-oil and catalyst during the catalytic upgrading of biomass pyrolysis volatiles. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–15. [Google Scholar] [CrossRef]
- Lei, J.X.; Shi, Q.J. Effect of Mo on properties of Ni-B/γ-Al2O3 amorphous alloy catalyst for liquid-phase furfural hydrogenation to furfural alcohol. Nonferr. Metal. 2007, 59, 58–61. [Google Scholar]
- Zhang, Y.F.; Xie, Y.C.; Xiao, N.H.; Han, W.; Tang, Y.Q. Effect of MgO and La2O3 additives Ni methanation catalyst. Petrochem. Technol. 1985, 14, 141–148. [Google Scholar]
- Shi, Q.J.; Li, F.Y.; Luo, L.T.; Zhang, X.H. Effects of heavy rare earth elements on properties of amorphous NiB alloy. J. Chin. Rare Earth Soc. 2003, 21, 449. [Google Scholar]
- Zhang, M.J.; Li, W.Z.; Zu, S.; Huo, W.; Zhu, X.F.; Wang, Z.Y. Catalytic Hydrogenation for Bio-Oil Upgrading by a Supported NiMoB Amorphous Alloy. Chem. Eng. Technol. 2013, 36, 2108–2116. [Google Scholar] [CrossRef]
- Lian, X.; Xue, Y.; Zhao, Z.; Xu, G.; Han, S.; Yu, H. Progress on upgrading methods of bio-oil: A review. Int. J. Energy Res. 2017, 41, 1798–1816. [Google Scholar] [CrossRef]
Catalyst | Mass Ratio/% | ||
---|---|---|---|
Ni | Al | M(M = Mo/Sn) | |
Ni-Al alloy | 48.7 | 51.3 | 0 |
Raney Ni | 93.6 | 6.4 | 0 |
Mo-RN | 93.3 | 6.0 | 0.7 (Mo) |
Sn-RN | 86.7 | 7.6 | 5.7 (Sn) |
1:1 a | 2:1 | 3:1 | |
---|---|---|---|
Liquid product yield/% b | 91.13 | 90.52 | 85.66 |
Char | 0.8 | 1.15 | 1.11 |
Yield of Different Compounds (%) | |||||||
---|---|---|---|---|---|---|---|
Alcohols | Acids | Esters | Ketones and Aldehydes | Phenols | Ethers | Others | |
Raw bio-oil | 5.79 | 49.04 | 4.74 | 28.87 | 7.35 | 2.79 | 1.42 |
1:1 a E b | 18.58 | 14.09 | 38.97 | 16.95 | 6.97 | 2.97 | 1.47 |
1:1 a H c | 56.32 | 7.34 | 30.10 | 0 | 4.59 | 0.83 | 0.82 |
2:1 a E b | 20.43 | 9.99 | 40.74 | 16.86 | 6.51 | 3.52 | 0.95 |
2:1 a H c | 60.35 | 6.00 | 29.13 | 0 | 3.48 | 1.04 | 0 |
3:1 a E b | 21.34 | 6.62 | 46.16 | 16.19 | 6.14 | 3.27 | 1.28 |
3:1 a H c | 61.23 | 4.32 | 31.28 | 0 | 2.39 | 0.78 | 0 |
Contents of Different Compounds (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Alcohols | Acids | Esters | Ketones and Aldehydes | Phenols | Ethers | Others | ||
Raw bio-oil | 5.79 | 49.04 | 4.74 | 28.87 | 7.35 | 2.79 | 1.42 | |
Sn-RN | 1:1E | 18.58 | 14.09 | 38.97 | 16.95 | 6.97 | 2.97 | 1.47 |
1:1H | 54.62 | 7.53 | 30.40 | 0 | 5.48 | 1.04 | 0.93 | |
* 1:1E a | 37.22 | 20.19 | 26.34 | 8.24 | 5.96 | 1.01 | 1.04 | |
1:1H b | 63.27 | 5.32 | 25.28 | 0 | 4.79 | 0.98 | 0.36 | |
Mo-RN | 1:1E | 18.58 | 14.09 | 38.97 | 16.95 | 6.97 | 2.97 | 1.47 |
1:1H | 61.06 | 5.44 | 29.10 | 0 | 2.89 | 0.75 | 0.76 | |
* 1:1E a | 38.00 | 20.21 | 25.94 | 8.22 | 5.69 | 0.96 | 0.98 | |
1:1H b | 66.89 | 3.21 | 26.71 | 0 | 2.01 | 0.32 | 0.86 |
Contents of Different Compounds (%) | |||||||
---|---|---|---|---|---|---|---|
Alcohols | Acids | Esters | Ketones and Aldehydes | Phenols | Ethers | Others | |
Raw bio-oil | 5.79 | 49.04 | 4.74 | 28.87 | 7.35 | 2.79 | 1.42 |
OHE | 53.61 | 6.77 | 33.66 | 0 | 3.84 | 0.68 | 0 |
TEH | 61.06 | 5.44 | 29.10 | 0 | 2.89 | 0.75 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, L.; Lv, W.; Wang, C.; Wang, C.; Zhang, X.; Zhang, Q.; Ma, L. Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts. Catalysts 2021, 11, 818. https://doi.org/10.3390/catal11070818
Xu Y, Zhang L, Lv W, Wang C, Wang C, Zhang X, Zhang Q, Ma L. Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts. Catalysts. 2021; 11(7):818. https://doi.org/10.3390/catal11070818
Chicago/Turabian StyleXu, Ying, Limin Zhang, Wei Lv, Chenguang Wang, Congwei Wang, Xinghua Zhang, Qi Zhang, and Longlong Ma. 2021. "Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts" Catalysts 11, no. 7: 818. https://doi.org/10.3390/catal11070818
APA StyleXu, Y., Zhang, L., Lv, W., Wang, C., Wang, C., Zhang, X., Zhang, Q., & Ma, L. (2021). Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts. Catalysts, 11(7), 818. https://doi.org/10.3390/catal11070818