Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Properties
2.2. Transfer Hydrogenation of Anisole: Influence of Copper Content, Hydrogen Donor, and Temperature
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation and Characterization
3.3. Batch Experiments
3.4. Product Analysis
3.5. Calculations of Kinetic Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Özkar, S. Magnetically Separable Transition Metal Nanoparticles as Catalysts in Hydrogen Generation from the Hydrolysis of Ammonia Borane. Int. J. Hydrogen Energy 2021, 46, 21383–21400. [Google Scholar] [CrossRef]
- Ao, M.; Pham, G.H.; Sunarso, J.; Tade, M.O.; Liu, S. Active Centers of Catalysts for Higher Alcohol Synthesis from Syngas: A Review. ACS Catal. 2018, 8, 7025–7050. [Google Scholar] [CrossRef]
- Gambo, Y.; Adamu, S.; Tanimu, G.; Abdullahi, I.M.; Lucky, R.A.; Ba-Shammakh, M.S.; Hossain, M.M. CO2-Mediated Oxidative Dehydrogenation of Light Alkanes to Olefins: Advances and Perspectives in Catalyst Design and Process Improvement. Appl. Catal. A Gen. 2021, 623, 118273. [Google Scholar] [CrossRef]
- Lee, J.H.; Kattel, S.; Jiang, Z.; Xie, Z.; Yao, S.; Tackett, B.M.; Xu, W.; Marinkovic, N.S.; Chen, J.G. Tuning the Activity and Selectivity of Electroreduction of CO2 to Synthesis Gas Using Bimetallic Catalysts. Nat. Commun. 2019, 10, 3724. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Wang, Z.; Lin, W.; Song, W.; Li, S. High Efficient Conversion of Furfural to 2-Methylfuran over Ni-Cu/Al2O3 Catalyst with Formic Acid as a Hydrogen Donor. Appl. Catal. A Gen. 2017, 547, 248–255. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, S.; Fang, T. Enhancing the Catalytic Activity and Selectivity of PdAu/SiO2 Bimetallic Catalysts for Dodecahydro- N-Ethylcarbazole Dehydrogenation by Controlling the Particle Size and Dispersion. ACS Appl. Energy Mater. 2019, 2, 7233–7243. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Juan, J.C.; Yahaya, Y.; Taufiq-Yap, Y.H.; Lin, Y.C.; Lee, H.V. A Review on Catalytic Hydrodeoxygenation of Lignin to Transportation Fuels by Using Nickel-Based Catalysts. Renew. Sustain. Energy Rev. 2021, 138, 110667. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Smirnov, A.A.; Pakharukova, V.P.; Yakovlev, V.A.; Martyanov, O.N. Advanced Green Approaches for the Synthesis of NiCu-Containing Catalysts for the Hydrodeoxygenation of Anisole. Catal. Today 2021, 379, 262–271. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Zhu, L.; Wu, J.; Chen, S. From Lignocellulosic Biomass to Renewable Cycloalkanes for Jet Fuels. Green Chem. 2015, 17, 4736–4747. [Google Scholar] [CrossRef]
- Philippov, A.A.; Chibiryaev, A.M.; Martyanov, O.N. Catalyzed Transfer Hydrogenation by 2-Propanol for Highly Selective PAHs Reduction. Catal. Today 2021, 379, 15–22. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Xu, B. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS Catal. 2016, 6, 1420–1436. [Google Scholar] [CrossRef]
- Yakovlev, V.A.; Khromova, S.A.; Sherstyuk, O.V.; Dundich, V.O.; Ermakov, D.Y.; Novopashina, V.M.; Lebedev, M.Y.; Bulavchenko, O.; Parmon, V.N. Development of New Catalytic Systems for Upgraded Bio-Fuels Production from Bio-Crude-Oil and Biodiesel. Catal. Today 2009, 144, 362–366. [Google Scholar] [CrossRef]
- Viar, N.; Requies, J.M.; Agirre, I.; Iriondo, A.; Gil-Calvo, M.; Arias, P.L. Ni-Cu Bimetallic Catalytic System for Producing 5-Hydroxymethylfurfural-Derived Value-Added Biofuels. ACS Sustain. Chem. Eng. 2020, 8, 11183–11193. [Google Scholar] [CrossRef]
- Tang, F.; Wang, L.; Dessie Walle, M.; Mustapha, A.; Liu, Y.N. An Alloy Chemistry Strategy to Tailoring the D-Band Center of Ni by Cu for Efficient and Selective Catalytic Hydrogenation of Furfural. J. Catal. 2020, 383, 172–180. [Google Scholar] [CrossRef]
- Michalska, K.; Kowalik, P.; Konkol, M.; Próchniak, W.; Stołecki, K.; Słowik, G.; Borowiecki, T. The Effect of Copper on Benzene Hydrogenation to Cyclohexane over Ni/Al2O3 Catalyst. Appl. Catal. A Gen. 2016, 523, 54–60. [Google Scholar] [CrossRef]
- Boudjahem, A.G.; Pietrowski, M.; Monteverdi, S.; Mercy, M.; Bettahar, M.M. Structural and Surface Propperties of Ni-Cu Nanoparticles Supported on SiO2. J. Mater. Sci. 2006, 41, 2025–2030. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, B.; Wu, H.; Liu, M.; Liu, H.; Zhang, J.; Yang, G.; Han, B. Highly Efficient Hydrogenation of Levulinic Acid into 2-Methyltetrahydrofuran over Ni-Cu/Al2O3-ZrO2 Bifunctional Catalysts. Green Chem. 2019, 21, 606–613. [Google Scholar] [CrossRef]
- Reddy Kannapu, H.P.; Mullen, C.A.; Elkasabi, Y.; Boateng, A.A. Catalytic Transfer Hydrogenation for Stabilization of Bio-Oil Oxygenates: Reduction of p-Cresol and Furfural over Bimetallic Ni-Cu Catalysts Using Isopropanol. Fuel Process. Technol. 2015, 137, 220–228. [Google Scholar] [CrossRef]
- Hart, A.; Lewis, C.; White, T.; Greaves, M.; Wood, J. Effect of Cyclohexane as Hydrogen-Donor in Ultradispersed Catalytic Upgrading of Heavy Oil. Fuel Process. Technol. 2015, 138, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Ewan, B.C.R.; Allen, R.W.K. A Figure of Merit Assessment of the Routes to Hydrogen. Int. J. Hydrogen Energy 2005, 30, 809–819. [Google Scholar] [CrossRef]
- Cai, F.; Pan, D.; Ibrahim, J.J.; Zhang, J.; Xiao, G. Hydrogenolysis of Glycerol over Supported Bimetallic Ni/Cu Catalysts with and without External Hydrogen Addition in a Fixed-Bed Flow Reactor. Appl. Catal. A Gen. 2018, 564, 172–182. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.; Yang, J.-H. Bimetallic Cu-Ni/MCM-41 Catalyst for Efficiently Selective Transfer Hydrogenation of Furfural into Furfural Alcohol. Mol. Catal. 2022, 517, 112065. [Google Scholar] [CrossRef]
- Philippov, A.A.; Chibiryaev, A.M.; Prosvirin, I.P.; Martyanov, O.N. Some like It Weak: Different Activity of Raney® Nickel in Transfer Hydrogenation under Air and Inert Atmosphere. Appl. Catal. A Gen. 2020, 605, 117788. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, C.; Liu, Q.; Zhang, J.; Tang, X.; Zeng, X.; Liu, S.; Lin, L. Catalytic Transfer Hydrogenolysis/Hydrogenation of Biomass-Derived 5-Formyloxymethylfurfural to 2, 5-Dimethylfuran over Ni-Cu Bimetallic Catalyst with Formic Acid as a Hydrogen Donor. Ind. Eng. Chem. Res. 2019, 58, 5414–5422. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Pakharukova, V.P.; Martyanov, O.N. Water as a Cosolvent—Effective Tool to Avoid Phase Separation in Bimetallic Ni-Cu Catalysts Obtained via Supercritical Antisolvent Approach. J. Supercrit. Fluids 2017, 130, 133–139. [Google Scholar] [CrossRef]
- Philippov, A.A.; Nesterov, N.N.; Pakharukova, V.P.; Martyanov, O.N. High-Loaded Ni-Based Catalysts Obtained via Supercritical Antisolvent Coprecipitation in Transfer Hydrogenation of Anisole: Influence of the Support. Appl. Catal. A Gen. 2022, 643, 118792. [Google Scholar] [CrossRef]
- Sinfelt, J.H.; Carter, J.L.; Yates, D.J.C. Catalytic Hydrogenolysis and Dehydrogenation over Copper-Nickel Alloys. J. Catal. 1972, 24, 283–296. [Google Scholar] [CrossRef]
- Ford, R.R. Carbon Monoxide Adsorption on the Transition Metals. Adv. Catal. 1970, 21, 51–150. [Google Scholar] [CrossRef]
- Tyson, W.R.; Miller, W.A. Surface Free Energies of Solid Metals Estimation from Liquid Surface Tension Measurements. Surf. Sci. 1977, 62, 267–276. [Google Scholar] [CrossRef]
- Shafaghat, H.; Tsang, Y.F.; Jeon, J.K.; Kim, J.M.; Kim, Y.; Kim, S.; Park, Y.K. In-Situ Hydrogenation of Bio-Oil/Bio-Oil Phenolic Compounds with Secondary Alcohols over a Synthesized Mesoporous Ni/CeO2 Catalyst. Chem. Eng. J. 2020, 382, 122912. [Google Scholar] [CrossRef]
- Graça, I.; Woodward, R.T.; Kennema, M.; Rinaldi, R. Formation and Fate of Carboxylic Acids in the Lignin-First Biorefining of Lignocellulose via H-Transfer Catalyzed by Raney Ni. ACS Sustain. Chem. Eng. 2018, 6, 13408–13419. [Google Scholar] [CrossRef] [Green Version]
- Khromova, S.A.; Smirnov, A.A.; Bulavchenko, O.A.; Saraev, A.A.; Kaichev, V.V.; Reshetnikov, S.I.; Yakovlev, V.A. Anisole Hydrodeoxygenation over Ni-Cu Bimetallic Catalysts: The Effect of Ni/Cu Ratio on Selectivity. Appl. Catal. A Gen. 2014, 470, 261–270. [Google Scholar] [CrossRef]
- Jin, S.; Xiao, Z.; Li, C.; Chen, X.; Wang, L.; Xing, J.; Li, W.; Liang, C. Catalytic Hydrodeoxygenation of Anisole as Lignin Model Compound over Supported Nickel Catalysts. Catal. Today 2014, 234, 125–132. [Google Scholar] [CrossRef]
- Fraga, G.; Yin, Y.; Konarova, M.; Hasan, M.D.; Laycock, B.; Yuan, Q.; Batalha, N.; Pratt, S. Hydrocarbon Hydrogen Carriers for Catalytic Transfer Hydrogenation of Guaiacol. Int. J. Hydrogen Energy 2020, 45, 27381–27391. [Google Scholar] [CrossRef]
- Obregón, I.; Gandarias, I.; Al-Shaal, M.G.; Mevissen, C.; Arias, P.L.; Palkovits, R. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid. ChemSusChem 2016, 9, 2488–2495. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, L.; Fan, G.; Zheng, L.; Yang, L.; Li, F. NiCu Nanoparticles for Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds. ACS Appl. Nano Mater. 2020, 3, 9226–9237. [Google Scholar] [CrossRef]
- Gong, W.; Chen, C.; Fan, R.; Zhang, H.; Wang, G.; Zhao, H. Transfer-Hydrogenation of Furfural and Levulinic Acid over Supported Copper Catalyst. Fuel 2018, 231, 165–171. [Google Scholar] [CrossRef]
- Ardiyanti, A.R.; Khromova, S.A.; Venderbosch, R.H.; Yakovlev, V.A.; Heeres, H.J. Catalytic Hydrotreatment of Fast-Pyrolysis Oil Using Non-Sulfided Bimetallic Ni-Cu Catalysts on a δ-Al2O3 Support. Appl. Catal. B Environ. 2012, 117–118, 105–117. [Google Scholar] [CrossRef]
- He, J.; Yang, S.; Riisager, A. Magnetic Nickel Ferrite Nanoparticles as Highly Durable Catalysts for Catalytic Transfer Hydrogenation of Bio-Based Aldehydes. Catal. Sci. Technol. 2018, 8, 790–797. [Google Scholar] [CrossRef]
- Philippov, A.A.; Chibiryaev, A.M.; Martyanov, O.N. Base-Free Transfer Hydrogenation of Menthone by Sub- and Supercritical Alcohols. J. Supercrit. Fluids 2019, 145, 162–168. [Google Scholar] [CrossRef]
- Shafaghat, H.; Lee, I.G.; Jae, J.; Jung, S.C.; Park, Y.K. Pd/C Catalyzed Transfer Hydrogenation of Pyrolysis Oil Using 2-Propanol as Hydrogen Source. Chem. Eng. J. 2019, 377, 119986. [Google Scholar] [CrossRef]
- Philippov, A.A.; Chibiryaev, A.M.; Martyanov, O.N. Raney® Nickel-Catalyzed Hydrodeoxygenation and Dearomatization under Transfer Hydrogenation Conditions—Reaction Pathways of Non-Phenolic Compounds. Catal. Today 2020, 355, 35–42. [Google Scholar] [CrossRef]
Sample | Ni, wt.% | Cu, wt.% | D (Ni°), nm | a (Ni°), Å | SCO, m2/g |
---|---|---|---|---|---|
Ni(36)–SiO2 | 36.4 ± 0.4 | – | 6.0 ± 0.5 | 3.524 ± 0.001 | 35 ± 3 |
Ni(41)Cu(4)–SiO2 | 40.7 ± 0.4 | 4.0 ± 0.2 | 5.5 ± 0.5 | 3.529 ± 0.001 | 32 ± 3 |
Ni(36)Cu(14)–SiO2 | 36.2 ± 0.4 | 14.4 ± 0.3 | 6.5 ± 0.5 | 3.553 ± 0.001 | 8 ± 1 |
Sample | k1 × 104, s−1 | k2 × 104, s−1 | k3 × 104, s−1 | k4 × 104, s−1 | k∑ × 104, s−1 |
---|---|---|---|---|---|
Ni(36)–SiO2 | 0.73 ± 0.04 | 1.9 ± 0.1 | 2.2 ± 0.1 | 0.27 ± 0.03 | 5.1 ± 0.2 |
Ni(41)Cu(4)–SiO2 | 0.18 ± 0.06 | 0.95 ± 0.07 | 0.89 ± 0.07 | 0.19 ± 0.07 | 2.2 ± 0.3 |
Ni(36)Cu(14)–SiO2 | 0.20 ± 0.14 | 1.1 ± 0.4 | 0.20 ± 0.14 | – | 1.5 ± 0.4 |
Ni(36)–SiO2 1 | 0.41 ± 0.04 | 1.9 ± 0.1 | 1.2 ± 0.1 | 0.19 ± 0.04 | 3.7 ± 0.2 |
Ni(41)Cu(4)–SiO2 1 | 0.13 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.1 | – | 1.4 ± 0.2 |
Sample | k1 × 104, s−1 | k2 × 104, s−1 | k3 × 104, s−1 | k4 × 104, s−1 | k∑ × 104, s−1 |
---|---|---|---|---|---|
Ni(36)–SiO2 | 0.03 ± 0.01 | 0.37 ± 0.03 | 0.70 ± 0.03 | – | 1.1 ± 0.4 |
Ni(41)Cu(4)–SiO2 | 0.06 ± 0.01 | 0.46 ± 0.03 | 0.29 ± 0.03 | – | 0.81 ± 0.4 |
Ni(36)Cu(14)–SiO2 | 0.04 ± 0.01 | 0.34 ± 0.02 | 0.12 ± 0.02 | – | 0.50 ± 0.03 |
Sample | k1/SCO × 105, 1/(s × m2) | k2/SCO × 105, 1/(s × m2) | k3/SCO × 105, 1/(s × m2) | k4/SCO × 105, 1/(s × m2) | k∑/SCO × 105, 1/(s × m2) |
---|---|---|---|---|---|
Ni(36)–SiO2 | 2.0 ± 0.1 | 5.3 ± 0.3 | 6.2 ± 0.3 | 0.74 ± 0.09 | 15.0 ± 0.4 |
Ni(41)Cu(4)–SiO2 | 0.5 ± 0.2 | 2.7 ± 0.2 | 2.5 ± 0.2 | 0.5 ± 0.2 | 6.3 ± 0.3 |
Ni(36)Cu(14)–SiO2 | 2.0 ± 1.4 | 12 ± 4 | 2.0 ± 1.4 | – | 16 ± 4 |
Ni(36)–SiO2 1 | 1.1 ± 0.1 | 4.9 ± 0.3 | 3.1 ± 0.2 | 0.5 ± 0.1 | 9.6 ± 0.4 |
Ni(41)Cu(4)–SiO2 1 | 0.4 ± 0.3 | 2.3 ± 0.3 | 1.4 ± 0.3 | – | 4.1 ± 0.5 |
Sample | k1/SCO × 105, 1/(s × m2) | k2/SCO × 105, 1/(s × m2) | k3/SCO × 105, 1/(s × m2) | k4/SCO × 105, 1/(s × m2) | k∑/SCO × 105, 1/(s × m2) |
---|---|---|---|---|---|
Ni(36)–SiO2 | 0.020 ± 0.007 | 0.30 ± 0.02 | 0.54 ± 0.02 | – | 0.86 ± 0.03 |
Ni(41)Cu(4)–SiO2 | 0.050 ± 0.008 | 0.39 ± 0.03 | 0.25 ± 0.02 | – | 0.69 ± 0.04 |
Ni(36)Cu(14)–SiO2 | 0.14 ± 0.04 | 1.4 ± 0.1 | 0.42 ± 0.07 | – | 2.0 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philippov, A.; Nesterov, N.; Pakharukova, V.; Kozhevnikov, I.; Martyanov, O. Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition. Catalysts 2022, 12, 1307. https://doi.org/10.3390/catal12111307
Philippov A, Nesterov N, Pakharukova V, Kozhevnikov I, Martyanov O. Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition. Catalysts. 2022; 12(11):1307. https://doi.org/10.3390/catal12111307
Chicago/Turabian StylePhilippov, Alexey, Nikolay Nesterov, Vera Pakharukova, Ivan Kozhevnikov, and Oleg Martyanov. 2022. "Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition" Catalysts 12, no. 11: 1307. https://doi.org/10.3390/catal12111307
APA StylePhilippov, A., Nesterov, N., Pakharukova, V., Kozhevnikov, I., & Martyanov, O. (2022). Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition. Catalysts, 12(11), 1307. https://doi.org/10.3390/catal12111307