Recent Advances of Pd/C-Catalyzed Reactions
Abstract
:1. Introduction
2. Catalyst
3. Reactions Catalyzed by Pd/C
3.1. Reductions
3.2. Coupling Reactions
3.2.1. Suzuki–Miyaura Coupling Reaction
3.2.2. Sonogashira Coupling Reaction
3.2.3. Hiyama Coupling Reaction
3.2.4. Other C-C Coupling Reaction
3.2.5. Other C-X Coupling Reaction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001; pp. 1–38. [Google Scholar]
- Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Seki, M. Recent Advances in Pd/C-Catalyzed Coupling Reactions. Synthesis 2006, 18, 2975–2992. [Google Scholar] [CrossRef]
- Yin, L.; Liebscher, J. Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 2007, 107, 133–173. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Sakurai, A.; Udzu, T.; Maegawa, T.; Monguchi, Y.; Sjiki, H. Heterogeneous Pd/C-catalyzed ligand-free Suzuki-Miyaura coupling reaction using aryl boronic esters. Tetrahedron 2007, 63, 10596–10602. [Google Scholar] [CrossRef]
- Chen, J.S.; Krogh-Jespersen, K.; Khinast, J.G. Base- and ligand-free heterogeneously catalyzed homocoupling of arylboronic acids. J. Mol. Catal. A Chem. 2008, 285, 14–19. [Google Scholar] [CrossRef]
- Kitamura, Y.; Sako, S.; Tsutsui, A.; Monguchi, Y.; Maegawa, T.; Kitade, Y.; Sajiki, H. Ligand-free and heterogeneous palladium on carbon-catalyzed hetero-Suzuki-Miyaura cross-coupling. Adv. Synth. Catal. 2010, 352, 718–730. [Google Scholar] [CrossRef]
- Felpin, F.-X. Ten Years of Adventures with Pd/C Catalysts: From Reductive Processes to Coupling Reactions. Synlett 2014, 25, 1055–1067. [Google Scholar] [CrossRef]
- Zhang, G. Easy copper-, ligand- and amine-free Sonogashira coupling reaction catalyzed by palladium on carbon at low catalyst loading and by exposure to air. Synlett 2005, 4, 619–622. [Google Scholar] [CrossRef]
- Liu, X.; Astruc, D. Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv. Synth. Catal. 2018, 360, 3426–3459. [Google Scholar] [CrossRef]
- Hafeez, S.; Sanchez, F.; Al-Salem, S.M.; Villa, A.; Manos, G.; Dimitratos, N.; Constantinou, A. Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. Catalysts 2021, 11, 341. [Google Scholar] [CrossRef]
- Mameda, T.; Nakai, K.; Misaki, T.; Okamoto, Y. Substrate dependent ligand acceleration in enantioselective hydrogenation of (E)-2,3-diarylpropenoic acid on cinchonidine-modified Pd/C. Catal. Today 2015, 245, 129–133. [Google Scholar] [CrossRef]
- Yongwoo, K.; Seung-hoon, K.; Hyung Chul, H.; Do Heui, K. Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C. J. Catal. 2020, 389, 506–516. [Google Scholar]
- Yongwoo, K.; Do Heui, K. Understanding the effect of Pd size on formic acid dehydrogenation via size-controlled Pd/C catalysts prepared by NaBH4 treatment. Appl. Catal. B 2019, 244, 684–693. [Google Scholar]
- Di, L.; Zhang, J.; Craven, M.; Wang, Y.; Wang, H.; Zhang, X.; Tu, X. Dehydrogenation of formic acid over Pd/C catalysts: Insight into the cold plasma treatment. Catal. Sci. Technol. 2020, 10, 6151–6160. [Google Scholar] [CrossRef]
- Simeone, J.P.; Sowa, J. R Palladium on carbon as a precatalyst for the Suzuki-Miyaura cross-coupling of aryl chlorides. Tetrahedron 2007, 63, 12646–12654. [Google Scholar] [CrossRef]
- Cameron, D.S.; Cooper, S.J.; Dodgson, I.L.; Harrison, B.; Jenkins, J.W. Carbons as supports for precious metal catalysts. Catal. Today 1990, 7, 113–137. [Google Scholar] [CrossRef]
- Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A Gen. 1998, 173, 259–271. [Google Scholar] [CrossRef]
- Patti, A.; Pedotti, S. Hydrogenation of ortho-nitrochalcones over Pd/C as a simple access to 2-substituted 1,2,3,4-tetrahydroquinolines. Tetrahedron 2010, 66, 5607–5611. [Google Scholar] [CrossRef]
- Sugimura, T.; Oie, K.; Misaki, T.; Okamoto, Y.; Yanaka, K.; Mori, H. Hydrogenation of 5-Alkylidene-2,4-Thiazolidiones on Pd/C Catalysts Under Mild Conditions: An Alternative Synthesis Route to Pioglitazone. Catal. Lett. 2013, 143, 495–500. [Google Scholar] [CrossRef]
- Yang, K.; Dai, L.; Chen, Y. New Synthetic Method of Pioglitazone Hydrochloride. Chin. J. Org. Chem. 2004, 24, 890–892. [Google Scholar]
- Liu, X.; Zhang, Z.; Yang, Y.; Yin, D.; Su, S.; Lei, D.; Yang, J. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon supported nano-palladium under atmospheric pressure. Chem. Eng. J. 2015, 263, 290–298. [Google Scholar] [CrossRef]
- Perez, J.R.G.; Malthete, J.; Jacques, J. Asymmetric hydrogenation of prochiral cinnamic acids in the presence of palladium on activated carbon and of chiral bases. Acad. Sci. Paris II 1985, 30, 169–172. [Google Scholar]
- Sugimura, T.; Watanabe, J.; Uchida, T.; Mitta, Y.; Okuyama, T. Highly enantioselective hydrogenation of α-alkyl-β-arylpropenoic acids over cinchonidine-modified palladium catalyst. Catal. Lett. 2006, 112, 27–30. [Google Scholar] [CrossRef]
- Sugimura, T.; Uchida, T.; Watanabe, J.; Kubota, T.; Okamoto, Y.; Misaki, T.; Okumaya, T. Structural requirements for substrate in highly enantioselective hydrogenation over the cinchonidine-modified Pd/C. J. Catal. 2009, 262, 57–64. [Google Scholar] [CrossRef]
- Sugimura, T.; Kim, T.Y. Enantioselective hydrogenation in water over chiral modified heterogeneous catalyst admixed with organic solvent. Catal. Lett. 2009, 130, 564–567. [Google Scholar] [CrossRef]
- Izumi, Y. Methods of asymmetric synthesis. Enantioselective catalytic hydrogenation. Angew. Chem. Int. Ed. 1971, 10, 871–881. [Google Scholar] [CrossRef]
- Nitta, Y.; Kobiro, K. Enantioselective hydrogenation of (E)-α-phenylcinnamic acid over cinchonidine-modified palladium catalysts. Chem. Lett. 1994, 6, 1095–1098. [Google Scholar] [CrossRef]
- Nitta, Y.; Shibata, A. Enantioselective hydrogenation of (E)-α-phenylcinnamic acid on Pd/TiO2 catalyst modified by cinchona alkaloids: Effect of modifier structure. Chem. Lett. 1998, 2, 161–162. [Google Scholar] [CrossRef]
- Nitta, Y. Importance of product desorption in enantioselective hydrogenation of (E)-α-phenylcinnamic acid with a cinchonidine-modified Pd/TiO2 catalyst: Effect of additives. Chem. Lett. 1999, 7, 635–636. [Google Scholar] [CrossRef]
- Nitta, Y.; Watanabe, J.; Okuyama, T.; Sugimura, T. Activation-temperature dependence in enantioselective hydrogenation of unsaturated carboxylic acids over cinchonidine-modified Pd/C catalysts. J. Catal. 2005, 236, 164–167. [Google Scholar] [CrossRef]
- Mori, A.; Mayakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Sajiki, H. Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of Diphenylsulfide. Org. Lett. 2006, 8, 3279–3281. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Mizusaki, T.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron 2006, 62, 11925–11932. [Google Scholar] [CrossRef]
- Sajiki, H.; Monguchi, Y. Development of Palladium Catalysts for Chemoselective Hydrogenation. In Pharmaceutical Process Chemistry; Wiley-VCH Verlag: Weinheim, Germany, 5 October 2010; Chapter 4. [Google Scholar]
- Cheng, C.; Wang, C.; Liu, N.; Chen, W.; Wang, X.; Hu, Y. Controlling chemoselective transformations of 4-acylpyridines via a Pd-C catalytic hydrodechlorination-hydrogenation. Tetrahedron 2014, 70, 930–935. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Z.; Liu, Y.; Wang, Y.J. N-Tosylhydrazine-mediated deoxygenative hydrogenation of aldehydes and ketones catalyzed by Pd/C. Tetrahedron 2013, 69, 6083–6087. [Google Scholar] [CrossRef]
- Tuokko, S.; Pihko, P.M. Palladium on Charcoal as a Catalyst for Stoichiometric Chemo- and Stereoselective Hydrosilylations and Hydrogenations with Triethylsilane. Org. Process Res. Dev. 2014, 18, 1740–1751. [Google Scholar] [CrossRef]
- Kim, T.G.; Cho, C.S.; Kim, Y. Transfer hydrogenation of ketones to alkanes using tributylamine under heterogeneous Pd/C catalysis. Appl. Organomet. Chem. 2014, 28, 797–799. [Google Scholar] [CrossRef]
- Karageorge, G.N.; Macor, J.E. Synthesis of novel serotonergics and other N-alkylamines using simple reductive amination using catalytic hydrogenation with Pd/C. Tetrahedron Lett. 2011, 52, 5117–5119. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, S.; Qian, C. Catalytic transfer hydrogenation of aryl sulfo compounds. J. Sulfur Chem. 2012, 33, 179–185. [Google Scholar] [CrossRef]
- Vilches-Herrera, M.; Werkmerster, S.; Junge, K.; Borner, A.; Beller, M. Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C. Catal. Sci. Technol. 2014, 4, 629–632. [Google Scholar] [CrossRef]
- Marck, G.; Villiger, A.; Buchecker, R. Aryl couplings with heterogeneous palladium catalysts. Tetrahedron Lett. 1994, 35, 3277–3280. [Google Scholar] [CrossRef]
- LeBlond, C.R.; Andrews, A.T.; Sun, Y.; Sowa, J.R. Activation of Aryl Chlorides for Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium. Org. Lett. 2001, 3, 1555–1557. [Google Scholar] [CrossRef]
- Felpin, F.X.; Ayad, T.; Mitra, S. Pd/C: An old catalyst for new applications -its use for the Suzuki-Miyaura reaction. Eur. J. Org. Chem. 2006, 2679–2690. [Google Scholar] [CrossRef]
- Felpin, F.X.; Lory, C.; Sow, H.; Acherar, S. Practical and efficient entry to isoflavones by Pd(0)/C-mediated Suzuki-Miyaura reaction. Total synthesis of geranylated isoflavones. Tetrahedron 2007, 63, 3010–3016. [Google Scholar] [CrossRef]
- Maegawa, T.; Kitamura, Y.; Sako, S.; Sajiki, H. Heterogeneous Pd/C-catalyzed ligand-free, room-temperature Suzuki-Miyaura coupling reactions in aqueous media. Chem. Eur. J. 2007, 13, 5937–5943. [Google Scholar] [CrossRef]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Khedkar, M.V.; Tambade, P.J.; Qureshi, Z.S.; Bhanage, B.M. Pd/C: An Efficient, Heterogeneous and Reusable Catalyst for Phosphane-Free Carbonylative Suzuki Coupling Reactions of Aryl and Heteroaryl Iodides. Eur. J. Org. Chem. 2010, 6981–6986. [Google Scholar] [CrossRef]
- Monguchi, Y.; Fujita, Y.; Hashimoto, S.; Ina, M.; Takahashi, T.; Ito, R.; Nozaki, K.; Maegawa, T.; Sajiki, H. Palladium on carbon-catalyzed solvent-free and solid-phase hydrogenation and Suzuki-Miyaura reaction. Tetrahedron 2011, 67, 8628–8634. [Google Scholar] [CrossRef]
- Maiuolo, L.; Algieri, V.; Russo, B.; Tallarida, M.; Nardi, M.; Di Gioia, M.; Merchant, Z.; Merino, P.; Delso, I.; De Nino, A. Synthesis, Biological and In Silico Evaluation of Pure Nucleobase-Containing Spiro (Indane-Isoxazolidine) Derivatives as Potential Inhibitors of MDM2–p53 Interaction. Molecules 2019, 24, 2909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felpin, F.X. Practical and Efficient Suzuki-Miyaura Cross-Coupling of 2-Iodocycloenones with Arylboronic Acids Catalyzed by Recyclable Pd(0)/C. J. Org. Chem. 2005, 70, 8575–8578. [Google Scholar] [CrossRef]
- Lamblin, M.; Bares, H.; Dessolin, J.; Marty, C.; Pourgougnon, N.; Felpin, F.X. Practical Pd/C-Catalysed Suzuki-Miyaura Reactions for the Preparation of 3-Aryl-4-oxypyridin-2(1H)-ones, 3-Aryl-2,4-oxypyridines and 3-Aryl-2,4-oxyquinolines as Useful Intermediates for the Synthesis of Biologically Active Compounds. Eur. J. Org. Chem. 2012, 5525–5533. [Google Scholar] [CrossRef]
- Talor, R.H.; Felpin, F.X. Suzuki-Miyaura Reactions of Arenediazonium Salts Catalyzed by Pd(0)/C. One-Pot Chemoselective Double Cross-Coupling Reactions. Org. Lett. 2007, 9, 2911–2914. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Rao, X.; Zhang, Y.; Li, X.; Qiu, J.; Jin, Z. An Aerobic and Very Fast Pd/C-Catalyzed Ligand-Free and Aqueous Suzuki Reaction Under Mild Conditions. Eur. J. Org. Chem. 2013, 4345–4350. [Google Scholar] [CrossRef]
- Mondal, M.; Bora, U. Ligandless heterogeneous palladium. An efficient and recyclable catalyst for Suzuki-type cross-coupling reaction. Appl. Organomet. Chem. 2014, 28, 354–358. [Google Scholar] [CrossRef]
- De la Rosa, M.; Martha, A.; Velarde, E.; Guzman, A. Cross-Coupling Reactions of Monosubstituted Acetylenes and Aryl Halides Catalyzed by Palladium on Charcoal. Synth. Commun. 1990, 20, 2059–2064. [Google Scholar] [CrossRef]
- Barange, D.K.; Batchu, V.R.; Gorja, D.; Pattabiraman, V.R.; Tatini, L.K.; Babu, J.M.; Pal, M. Regioselective construction of six-membered fused heterocyclic rings via Pd/C-mediated C-C coupling followed by iodocyclization strategy: A new entry to 2H-1,2-benzothiazine-1,1-dioxides. Tetrahedron 2007, 63, 1775–1789. [Google Scholar] [CrossRef]
- Batchu, V.R.; Barange, D.K.; Kumar, D.; Sreekanth, B.R.; Vyas, K.; Reddy, E.A.; Pal, M. Tandem C-C coupling-intramolecular acetylenic Schmidt reaction under Pd/C-Cu catalysis. Chem. Commun. 2007, 1966–1968. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, J.; Xia, C. A simple and efficient recyclable phosphine-free catalytic system for alkoxycarbonylation and carbonylative Sonogashira coupling reactions of aryl iodides. J. Catal. 2008, 1, 50–56. [Google Scholar] [CrossRef]
- Mori, S.; Yanase, T.; Aoyagi, S.; Monguchi, Y.; Maegawa, T.; Sajiki, H. Ligand-free Sonogashira coupling reactions with heterogeneous Pd/C as the catalyst. Chem. Eur. J. 2008, 14, 6994–6999. [Google Scholar] [CrossRef]
- Reddy, E.A.; Barange, D.K.; Islam, A.; Mukkanti, K.; Pal, M. Synthesis of 2-alkynylquinolines from 2-chloro and 2,4-dichloroquinoline via Pd/C-catalyzed coupling reaction in water. Tetrahedron 2008, 64, 7143–7150. [Google Scholar] [CrossRef]
- Layek, M.; Gajare, V.; Kalita, D.; Islam, A.; Mukkanti, K.; Pal, M. Pd/C-Cu in coupling-cyclization process: A general synthesis of 2-substituted 6-oxopyrrolo[3,2,1-ij]quinoline derivatives. Tetrahedron Lett. 2009, 50, 3867–3871. [Google Scholar] [CrossRef]
- Bakherad, M.; Keivanloo, A.; Kalantar, Z.; Jajarmi, S. Pd/C-catalyzed heterocyclization during copper-free Sonogashira coupling: Synthesis of 2-benzylimidazo[1,2-a]pyrimidines in water. Tetrahedron Lett. 2011, 52, 228–230. [Google Scholar] [CrossRef]
- Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem. 1988, 53, 918–920. [Google Scholar] [CrossRef]
- Komaromi, A.; Szabo, F.; Novak, Z. Activity of palladium on charcoal catalysts in cross-coupling reactions. Tetrahedron Lett. 2010, 51, 5411–5414. [Google Scholar] [CrossRef]
- Yanase, T.; Mori, S.; Monguchi, Y.; Sajiki, H. Pd/C-catalyzed and water-mediated Hiyama cross-coupling reaction using an electron-deficient phosphine ligand. Chem. Lett. 2011, 40, 910–912. [Google Scholar] [CrossRef]
- Monguchi, Y.; Yanase, T.; Mori, S.; Sajiki, H. A practical protocol for the Hiyama cross-coupling reaction catalyzed by palladium on carbon. Synthesis 2013, 45, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Yanase, T.; Monguchi, Y.; Sajiki, H. Ligand-free Hiyama cross-coupling reaction catalyzed by palladium on carbon. RSC Adv. 2012, 2, 590–594. [Google Scholar] [CrossRef]
- Andersson, C.M.; Hallberg, A. Regiochemistry of palladium-catalyzed arylation reactions of enol ethers. Electronic control of selection for α- or β-arylation. J. Org. Chem. 1987, 52, 3529–5336. [Google Scholar] [CrossRef]
- Bhanage, B.M.; Shirai, M.; Arai, M. Heterogeneous catalyst system for Heck reaction using supported ethylene glycol phase Pd/TPPTS catalyst with inorganic base. J. Mol. Catal. A Chem. 1999, 145, 69–74. [Google Scholar] [CrossRef]
- Zhao, F.; Shirai, M.; Arai, M. Palladium-catalyzed homogeneous and heterogeneous Heck reactions in NMP and water-mixed solvents using organic, inorganic and mixed bases. J. Mol. Catal. A Chem. 2000, 154, 39–44. [Google Scholar] [CrossRef]
- Zhao, F.; Bhanage, B.M.; Shirai, M.; Arai, M. Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/or inorganic bases without ligands. Chem. Eur. J. 2000, 6, 843–848. [Google Scholar] [CrossRef]
- Zhao, F.; Murakami, K.; Shirai, M.; Arai, M. Recyclable Homogeneous/Heterogeneous Catalytic Systems for Heck Reaction through Reversible Transfer of Palladium Species between Solvent and Support. J. Catal. 2000, 194, 479–483. [Google Scholar] [CrossRef]
- Heidenreich, R.G.; Köhler, K.; Krauter, J.G.E.; Pietsch, J. Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions. Synlett 2002, 7, 1118–1122. [Google Scholar] [CrossRef]
- Köhler, K.; Heidenreich, R.G.; Krauter, J.G.E.; Pietsch, J. Highly active palladium/activated carbon catalysts for heck reactions: Correlation of activity, catalyst properties, and Pd leaching. Chem. Eur. J. 2002, 8, 622–631. [Google Scholar] [CrossRef]
- Heidenreich, R.G.; Krauter, J.G.E.; Pietsch, J.; Köhler, K. Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon. J. Mol. Catal. A Chem. 2002, 182–183, 499–509. [Google Scholar] [CrossRef]
- Tambade, P.J.; Patil, Y.P.; Bhanushali, M.J.; Bhanage, B.M. Pd/C: An efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides. Tetrahedron Lett. 2008, 49, 2221–2224. [Google Scholar] [CrossRef]
- Tarabay, J.; Al-Maksoud, W.; Jaber, F.; Pinel, C.; Prakash, S.; Djakovitch, L. Synthesis of diethyl 2-(aryl)vinylphosphonate by the Heck reaction catalyzed by supported palladium catalysts. Appl. Catal. A Gen. 2010, 388, 124–133. [Google Scholar] [CrossRef]
- Kurita, T.; Abe, M.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Ligand- and base-free synthesis of 1,3-diynes catalyzed by low loading of heterogeneous Pd/C and CuI. Synlett 2007, 16, 2521–2524. [Google Scholar] [CrossRef]
- Shao, L.; Du, Y.; Zeng, M.; Li, X.; Shen, W.; Zuo, S.; Lu, Y.; Zhang, X.; Qi, C. Ethanol-promoted reductive homocoupling reactions of aryl halides catalyzed by palladium on carbon (Pd/C). Appl. Organomet. Chem. 2010, 24, 421–425. [Google Scholar]
- Leblond, C.R.; Butler, K.M.; Ferrington, M.W.; Browe, M.A. Palladium on carbon-catalyzed cross-coupling of aryl halides with potassium p-tolyltrifluoroborate in air. Synth. Commun. 2009, 39, 636–640. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Q.; Zhu, J. Pd/C-Catalyzed Cyclizative Cross-Coupling of Two ortho-Alkynylanilines under Aerobic Conditions: Synthesis of 2,3′-Bisindoles. Chem. Eur. J. 2015, 21, 7413–7416. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.T.D.; Collins, K.D.; Glorius, F. Completely Regioselective Direct C-H Functionalization of Benzo[b]thiophenes Using a Simple Heterogeneous Catalyst. J. Am. Chem. Soc. 2013, 135, 7450–7453. [Google Scholar] [CrossRef] [PubMed]
- Hatsuda, M.; Seki, M. A practical synthesis of highly functionalized aryl nitriles through cyanation of aryl bromides employing heterogeneous Pd/C. Tetrahedron Lett. 2005, 46, 1849–1853. [Google Scholar] [CrossRef]
- Jiang, Z.; She, J.; Lin, X. Palladium on Charcoal as a Recyclable Catalyst for C-S Cross-Coupling of Thiols with Aryl Halides under Ligand-Free Conditions. Adv. Synth. Catal. 2009, 351, 2558–2562. [Google Scholar] [CrossRef]
- Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. The palladium catalyzed nucleophilic substitution of aryl halides by thiolate anions. Bull. Chem. Soc. Jpn. 1980, 53, 1385–1389. [Google Scholar] [CrossRef] [Green Version]
- Felpin, F.X.; Landais, Y. Practical Pd/C-Mediated Allylic Substitution in Water. J. Org. Chem. 2005, 70, 6441–6446. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Peng, Q.; Fan, W.; Li, P. Room-Temperature Ligand-Free Pd/C-Catalyzed C-S Bond Formation: Synthesis of 2-Substituted Benzothiazoles. J. Org. Chem. 2014, 79, 5812–5819. [Google Scholar] [CrossRef] [PubMed]
- Rummelt, S.M.; Ranocchiari, M.; van Bokhoven, J.A. Synthesis of Water-Soluble Phosphine Oxides by Pd/C-Catalyzed P-C Coupling in Water. Org. Lett. 2012, 14, 2188–2190. [Google Scholar] [CrossRef]
- Guram, A.S.; Rennels, R.A.; Buchwald, S.L. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew. Chem. Int. Ed. Engl. 1995, 34, 1348–1350. [Google Scholar] [CrossRef]
- Louie, J.; Hartwig, J.F. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett. 1995, 36, 3609–3612. [Google Scholar] [CrossRef]
- Djakovitch, L.; Wagner, M.; Kohler, K. Amination of aryl bromides catalyzed by supported palladium. J. Organomet. Chem. 1999, 592, 225–234. [Google Scholar] [CrossRef]
- Komaromi, A.; Novak, Z. Examination of the Aromatic Amination Catalyzed by Palladium on Charcoal. Adv. Synth. Catal. 2010, 352, 1523–1532. [Google Scholar] [CrossRef]
- Monguchi, Y.; Marumoto, T.; Takamatsu, H.; Sawama, Y.; Sajiki, H. Palladium on carbon-catalyzed one-pot N-arylindole synthesis: Intramolecular aromatic amination, aromatization, and intermolecular aromatic amination. Adv. Synth. Catal. 2014, 356, 1866–1872. [Google Scholar] [CrossRef]
- Crawford, C.J.; Qiao, Y.; Liu, Y.; Huang, D.; Yankee, W.; Seeberger, P.H.; Oscarson, S.; Chen, S. Defining the Qualities of High-Quality Palladium on Carbon Catalysts for Hydrogenolysis. Org. Process Res. Dev. 2021, 25, 1573–1578. [Google Scholar] [CrossRef]
Substrate | Product | Yield |
---|---|---|
no reaction | - | |
98 | ||
97 | ||
90 [a] | ||
99 | ||
no reaction [b] | - | |
no reaction [b] | - |
Substrate | Product | Yield |
---|---|---|
100 [a] | ||
100 [a] | ||
quant | ||
95 | ||
94 | ||
quant | ||
98 | ||
99 |
R1 | R2 | Ligand Assisted Yield(%) [b] | Ligand Free Yield(%) [b] |
---|---|---|---|
4-CH3 | 2-CH3 | 91 | 27 |
2-CH3 | H | 71 | 15 |
2-CH3 | 2-CH3 | 80 | 7 |
2- OCH3 | 2-CH3 | 30 | 0 |
2,6-dimethyl | 2-CH3 | 71 | 0 |
2-CH3 | 4-CHO | 86 | n.d. |
2,6-dimethyl | 2-F | 70 | n.d. |
4-CH3 | 2-F | 75 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Gu, H.; Lin, X. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 2021, 11, 1078. https://doi.org/10.3390/catal11091078
Mao Z, Gu H, Lin X. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts. 2021; 11(9):1078. https://doi.org/10.3390/catal11091078
Chicago/Turabian StyleMao, Zhenjun, Haorui Gu, and Xufeng Lin. 2021. "Recent Advances of Pd/C-Catalyzed Reactions" Catalysts 11, no. 9: 1078. https://doi.org/10.3390/catal11091078
APA StyleMao, Z., Gu, H., & Lin, X. (2021). Recent Advances of Pd/C-Catalyzed Reactions. Catalysts, 11(9), 1078. https://doi.org/10.3390/catal11091078