Assembly of CaIn2S4 on Defect-Rich BiOCl for Acceleration of Interfacial Charge Separation and Photocatalytic Phenol Degradation via S-Scheme Electron Transfer Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology of As-Synthesized CaIn2S4/BiOCl-SOVs(CIS/BOC-SOVs) Heterojunction
2.2. Formation of Surface Oxygen Vacancies
2.3. Optical Property and Photocatalytic Activities of CIS/BOC-SOVs
2.4. Photocatalytic Mechanism
3. Experimental Section
3.1. Chemicals
3.2. Sample Preparation
3.2.1. Preparation of BiOCl and Defect-Rich (BOC-SOVs)
3.2.2. Synthesis of Oxygen-Vacancy-Rich BiOCl-SOVs (BOC-SOVs) Photocatalysts
3.2.3. Preparation of 2D/2D S-Scheme CaIn2S4/BiOCl-SOVs (CIS/BOC-SOVs)
3.3. Characterization
3.4. Photocatalytic Activity Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, D.; Wang, X.; Zhang, C.; Zeng, G.; Peng, Z.; Zhou, J.; Cheng, M.; Wang, R.; Hu, Z.; Qin, X. Sorptive Removal of Ionizable Antibiotic Sulfamethazine from Aqueous Solution by Graphene Oxide-coated Biochar Nanocomposites: Influencing Factors and Mechanism. Chemosphere 2017, 186, 414–421. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Z.; Huang, D.; Xu, P.; Zeng, G.; Zhou, S.; Gong, X.; Cheng, M.; Deng, R.; Yi, H. Biotransformation of Cadmium-sulfamethazine Combined Pollutant in Aqueous Environments: Phanerochaete Chrysosporium bring Cautious Optimism. Chem. Eng. J. 2018, 347, 74–83. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Sun, J.; Rao, J.; Han, Z.; Hu, Y.; Xing, W.; Zhang, C. Doping Effect of Phosphate in Bi2WO6 and Universal Improved Photocatalytic Activity for Removing Various Pollutants in Water. Appl. Catal. B Environ. 2016, 188, 39–47. [Google Scholar] [CrossRef]
- Hu, C.; Huang, D.; Zeng, G.; Min, C.; Gong, X.; Wang, R.; Xue, W.; Hu, Z.; Liu, Y. The Combination of Fenton Process and Phanerochaete chrysosporium for The Removal of Bisphenol A in River Sediments: Mechanism Related to Extracellular Enzyme, Organic Acid and Iron. Chem. Eng. J. 2018, 338, 432–439. [Google Scholar] [CrossRef]
- Hong, Y.; Li, C.; Zhang, G.; Meng, Y.; Yin, B.; Zhao, Y.; Shi, W. Efficient and Stable Nb2O5 Modified g-C3N4 Photocatalyst for Removal of Antibiotic Pollutant. Chem. Eng. J. 2016, 299, 74–84. [Google Scholar] [CrossRef]
- Nielsen, L.; Zhang, P.; Bandosz, T. Adsorption of Carbamazepine on Sludge/fish Waste Derived Adsorbents: Effect of Aurface Chemistry and Texture. Chem. Eng. J. 2015, 267, 170–181. [Google Scholar] [CrossRef]
- Chung, S.; Chang, Y.; Choi, J.; Baek, K.; Hong, S.; Yun, S.; Lee, S. Photocatalytic Degradation of Chlorophenols Using Star Block Copolymers: Removal Efficiency, By-products and Toxicity of Catalyst. Chem. Eng. J. 2013, 215–216, 921–928. [Google Scholar] [CrossRef]
- Omeroglu, A.C.; Ozcan, A.S.; Erdogan, Y.; Ozcan, A. Characterization of Punica granatum, L. Peels and Quantitatively Determination of Its Biosorption Behavior towards Lead (II) Ions and Acid Blue 40. Colloids Surf. B Biointerfaces 2012, 100, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhang, X.; Zeng, G.; Gong, J.; Niu, Q.; Liang, J. Simultaneous Removal of Cd(II) and Ionic Dyes from Aqueous Solution Using Magnetic Graphene Oxide Nanocomposite as An Adsorbent. Chem. Eng. J. 2013, 226, 189–200. [Google Scholar] [CrossRef]
- Gong, J.; Wang, B.; Zeng, G.; Yang, C.; Niu, C.; Niu, Q.; Zhou, W.; Liang, Y. Removal of Cationic Dyes from Aqueous Solution Using Magnetic Multi-wall Carbon Nanotube Nanocomposite as Adsorbent. J. Hazard. Mater. 2009, 164, 1517–1522. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Wang, D.; Niu, C.; Zhao, J.; An, H.; Xie, T.; Deng, Y. Hierarchical Assembly of Graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme Photocatalyst: An Efficient, Sustainable and Heterogeneous Catalyst with Enhanced Visible-light Photoactivity towards Tetracycline Degradation under Visible Light Irradiation. Appl. Catal. B Environ. 2017, 200, 330–342. [Google Scholar] [CrossRef]
- Liang, C.; Niu, C.; Guo, H.; Huang, D.; Wen, X.; Yang, S.; Zeng, G. Combination of Efficient Charge-separation Process with The Assistance of Novel Dual Z-scheme System: Self-assembly Photocatalyst of Ag@AgI/BiOI Modified Oxygen-doped Carbon Nnitride Nanosheet with Enhanced Photocatalytic Performance. Catal. Sci. Technol. 2018, 8, 1161–1175. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, W.; Sun, S.; Dong, J.; Gao, E. Selective Transport of Electron and Hole Among {001} and {110} Facets of BiOCl for Pure Water Splitting. Appl. Catal. B Environ. 2015, 162, 470–474. [Google Scholar]
- Lin, H.; Ding, L.; Pei, Z.; Zhou, Y.; Long, J.; Deng, W.; Wang, X. Au Deposited BiOCl with Different facets: On Determination of The Facet-induced Transfer Preference of Charge Carriers and The Different Plasmonic Activity. Appl. Catal. B Environ. 2014, 160–161, 98–105. [Google Scholar] [CrossRef]
- Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy Associates Promoting Solar-driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. Well-crystallized Square-like 2D BiOCl Nanoplates: Mannitol-assisted Hydrothermal Synthesis and Improved Visible-light-driven Photocatalytic Performance. RSC Adv. 2011, 1, 1542–1553. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Leng, Y.; Su, Y.; Xie, H.; Liu, C. Synthesis of Black Ultrathin BiOCl Nanosheets for Efficient Photocatalytic H2 Production under Visible Light Irradiation. J. Power Sources 2015, 293, 409–415. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W. A Bi/BiOCl Heterojunction Photocatalyst with Enhanced Electron–hole Separation and Excellent Visible Light Photodegrading Activity. J. Mater. Chem. 2014, 2, 1677–1681. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L. Oxygen Vacancy Induced Selective Silver Deposition on The {001} Facets of BiOCl Single-crystalline Nanosheets for Enhanced Cr(VI) and Sodium Pentachlorophenate Removal under Visible Light. Nanoscale 2014, 6, 7805–7810. [Google Scholar] [CrossRef]
- Hu, Z.; Li, K.; Wu, X.; Wang, N.; Li, X.; Li, Q.; Li, L.; Lv, K. Dramatic Promotion of Visible-light Photoreactivity of TiO2 Hollow Microspheres towards NO Oxidation by Introduction of Oxygen Vacancy. Appl. Catal. B Environ. 2019, 256, 117860. [Google Scholar] [CrossRef]
- Ma, J.; Wu, H.; Liu, Y.; He, H. Photocatalytic Temoval of NOx over Visible Light Responsive Oxygen-deficient TiO2. J. Phys. Chem. C 2014, 118, 7434–7441. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Oxygen Vacancy-mediated Photocatalysis of BiOCl: Reactivity, Selectivity and Perspectives. Angew. Chem. Int. Ed. 2018, 57, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Ho, W.; Lv, K.; Li, Q.; Li, M.; Lee, S. Graphene-induced Formation of Visible-light-responsive SnO2-Zn2SnO4 Z-scheme Photocatalyst with Surface Vacancy for The Enhanced Photoreactivity towards NO and Acetone Oxidation. Chem. Eng. J. 2018, 336, 200–210. [Google Scholar] [CrossRef]
- Su, J.; Zhang, T.; Wang, L. Engineered WO3 Nanorods for Conformal Growth of WO3/BiVO4 Core–shell Heterojunction towards Efficient Photoelectrochemical Water Oxidation. J. Mater. Sci.-Mater. 2017, 28, 4481–4491. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Li, W.; Li, J.; Li, Y.; Chen, Q. In Situ Synthesis of Bi2S3 Sensitized WO3 Nanoplate Arrays with Less Interfacial Defects and Enhanced Photoelectrochemical Performance. Sci. Rep. 2016, 6, 23451. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chang, B.; Tian, Y.; Xi, F.; Dong, X. Novel C3N4–CdS Composite Photocatalysts with Organic–inorganic Heterojunctions: In Situ Synthesis, Exceptional Activity, High Stability and Photocatalytic Mechanism. J. Mater. Chem. A 2013, 1, 3083–3090. [Google Scholar] [CrossRef]
- Bafaqeer, A.; Tahir, M.; Amin, N.A. Synergistic Eeffects of 2D/2D ZnV2O6 /RGO Nnanosheets Heterojunction for Stable and Hhigh Performance Photo-induced CO2 Reduction to Solar Fuels. Chem. Eng. J. 2018, 334, 2142–2153. [Google Scholar] [CrossRef]
- Tonda, S.; Kumar, S.; Gawli, Y.; Bhardwaj, M.; Ogale, S. g-C3N4 (2D)/CdS (1D)/rGO (2D) Dual-interface Nano-composite for Excellent and Stable Visible Light Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy 2017, 42, 5971–5984. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Li, X.; Chen, L.; Zhang, X.; Tian, X. Photocatalytic Hydrogen Production Over Plasmonic AuCu/CaIn2S4 Composites with Different AuCu Atomic Arrangements. Appl. Catal. B Environ. 2018, 224, 322–329. [Google Scholar] [CrossRef]
- Jiang, D.; Li, J.; Xing, C.; Zhang, Z.; Meng, S.; Chen, M. Two-Dimensional CaIn2S4/g-C3N4 Heterojunction Nanocomposite with Enhanced Visible-Light Photocatalytic Activities: Interfacial Engineering and Mechanism Insight. ACS Appl. Mater. Interfaces 2015, 7, 19234–19242. [Google Scholar] [CrossRef]
- Ding, J.; Yan, W.; Sun, S.; Bao, J.; Gao, C. Hydrothermal Synthesis of CaIn2S4-Reduced Graphene Oxide Nanocomposites with Increased Photocatalytic Performance. ACS Appl. Mater. Interfaces 2014, 6, 12877–12884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1–17. [Google Scholar]
- Myung, Y.; Wu, F.; Banerjee, S.; Park, J.; Banerjee, P. Electrical Conductivity of p-Type BiOCl Nanosheets. Chem. Commun. 2015, 51, 2629–2632. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Yang, S.; Li, L. Synthesis of g-C3N4/CaIn2S4 Composites with Enhanced Photocatalytic Activity under Visible Light Irradiation. Dalton Trans. 2015, 44, 16091–16098. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Zhang, S. Z-scheme CaIn2S4/Ag3PO4 Nanocomposite with Superior Photocatalytic NO Removal Performance: Fabrication, Characterization and Mechanistic Study. New J. Chem. 2018, 42, 318–326. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Li, F.; Li, Y.; Zhao, J.; Hao, Y. A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets. Sci. Rep. 2016, 6, 24918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, Y.; Wang, F.; Zhang, K.; Yu, S.; Cao, K. Polyaniline-decorated {001} Facets of Bi2O2CO3 Nanosheets: In Situ Oxygen Vacancy Formation and Enhanced Visible Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2015, 7, 730–737. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Gao, S.; Sun, C.; Qi, L. Synthesis of Bi2MoO6 Nanosheets with Rich Oxygen Vacancies by Postsynthesis Etching Treatment for Enhanced Photocatalytic Performance. ACS Appl. Nano Mater. 2018, 1, 3565–3578. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Zhong, L.; Liu, S.; Cao, X.; Cui, F. Oxygen Vacancy-rich 2D/2D BiOCl-g-C3N4 Ultrathin Heterostructure Nanosheets for Enhanced Visible-light-driven Photocatalytic Activity in Environmental Remediation. Appl. Catal. B Environ. 2018, 220, 290–302. [Google Scholar] [CrossRef]
- Zeng, R.; Luo, Z.; Su, L.; Zhang, L.; Tang, D.; Niessner, R.; Dietmar, K.D. Palindromic Molecular Beacon Based Z-scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Anal. Chem. 2019, 91, 2447–2454. [Google Scholar] [CrossRef]
- Tian, F.; Li, G.; Zhao, H.; Chen, F.; Li, M.; Liu, Y.; Chen, R. Residual Fe Enhances the Activity of BiOCl Hierarchical Nanostructure for Hydrogen Peroxide Activation. J. Catal. 2019, 370, 265–273. [Google Scholar] [CrossRef]
- Singh, P.; Priya, B.; Shandilya, P.; Raizada, P.; Singh, N.; Pare, B.; Jonnalagadda, S. Photocatalytic Mineralization of Antibiotics using 60% WO3/BiOCl Stacked to Graphene Sand Composite and Chitosan. Arab. J. Chem. 2019, 12, 4627–4645. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Hong, B.; Luo, Z.; Sun, S.; Bao, J.; Gao, C. Mesoporous Monoclinic CaIn2S4 with Surface Nanostructure: An Efficient Photocatalyst for Hydrogen Production under Visible Light. J. Phys. Chem. C 2014, 118, 27690–27697. [Google Scholar] [CrossRef]
- Ding, J.; Li, X.; Chen, L.; Zhang, X.; Yin, H.; Tian, X. Site-selective Deposition of Reductive and Oxidative Dual Cocatalysts to Improve the Photocatalytic Hydrogen Production Activity of CaIn2S4 with Surface Nanostep Structure. ACS Appl. Mater. Interfaces 2019, 11, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Ou, M.; Cai, W.; Zhang, S.; Zhong, Q. Preparation, Characterization and Mechanistic Analysis of BiVO4/CaIn2S4 Hybrids that Photocatalyze NO Removal under Visible Light. J. Phys. Chem. Solids 2018, 122, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liu, C.; Li, F.; Li, Y.; Zhao, J.; Liu, R.; Li, G. Metalloid Ni2P and Its Behavior for Boosting the Photocatalytic Hydrogen Evolution of CaIn2S4. Int. J. Hydrogen Energy 2018, 43, 219–228. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Li, L.; Zhu, G.Z.; Li, Y.; Li, C.; Gong, Y.; Niu, L.; Xu, S.; Sun, C. CaIn2S4 decorated WS2 Hybrid for Efficient Cr (VI) Reduction. Appl. Surf. Sci. 2019, 484, 300–306. [Google Scholar] [CrossRef]
- Zhen, Y.; Yang, C.; Shen, H.; Xue, W.; Gu, C.; Feng, J.; Zhang, Y.; Fu, F.; Liang, Y. Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Phys. Chem. Chem. Phys. 2020, 22, 26278–26288. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J. CuInS2 Sensitized TiO2 Hybrid Nanofibers for Improved Photocatalytic CO2 Reduction. Appl. Catal. B Environ. 2018, 230, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shen, H.; Guo, L.; Wang, C.; Fu, F.; Liang, Y. Ag/Bi2MoO6-x with Enhanced Visible-light-responsive Photocatalytic Activities via The Synergistic Effect of Surface Oxygen Vacancies and Surface Plasmon. Appl. Surf. Sci. 2018, 436, 536–547. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Cui, J.; An, W.; Liu, L.; Liang, Y.; Cui, W. Surface Oxygen Vacancies Enriched FeOOH/Bi2MoO6 Photocatalysis-fenton Synergy Degradation of Organic Pollutants. J. Hazard. Mater. 2020, 384, 121399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pu, W.; Chen, A.; Xu, Y.; Wang, Y.; Yang, C.; Gong, J. Oxygen Vacancies Enhanced Photocatalytic Activity towards VOCs Oxidation over Pt Deposited Bi2WO6 under Visible Light. J. Hazard. Mater. 2020, 384, 121478. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, Q.; Wu, X.; Jiang, Y.; Xie, X.; Xu, A. Oxygen Deficient ZnO1-x Nanosheets with High Visible Light Photocatalytic Activity. Nanoscale 2015, 7, 7216–7223. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Song, S.; Wang, Y.; Jin, W.; Ding, T.; Tian, Y.; Li, X. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 2734–2744. [Google Scholar] [CrossRef]
O 1s | 529.8 eV, OL (%) | 531.4 eV, OV (%) | OV/OL |
---|---|---|---|
BOC-SOVs | 80.12 | 13.02 | 0.16 |
1 wt% CIS/BOC-SOVs | 77.15 | 19.67 | 0.25 |
Samples | A1 | τ1/nm | A2 | τ2/nm | τav/nm |
---|---|---|---|---|---|
BiOCl | 1360.5 | 21.417 | 6.18 × 1010 | 1.223 | 1.223 |
BOC-SOVs | 1.50 × 103 | 19.215 | 1.39 × 109 | 1.434 | 1.434 |
1% BOC-SOVs | 1.11 × 107 | 2.094 | 2064.6 | 25.938 | 2.148 |
Semiconductor | Band Gap Energy, Eg (eV) | Conduction Band Edge (CBM, V) | Valence Band Edge (VBM, V) |
---|---|---|---|
BiOCl | 3.20 | −1.32 | 1.88 |
BOC-SOVs | 2.35 | −0.47 | 1.88 |
CaIn2S4 | 1.83 | −0.53 | 1.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, Y.; Han, X.; Guo, L.; Wang, D.; Lv, K. Assembly of CaIn2S4 on Defect-Rich BiOCl for Acceleration of Interfacial Charge Separation and Photocatalytic Phenol Degradation via S-Scheme Electron Transfer Mechanism. Catalysts 2021, 11, 1130. https://doi.org/10.3390/catal11091130
Zhang Z, Zhang Y, Han X, Guo L, Wang D, Lv K. Assembly of CaIn2S4 on Defect-Rich BiOCl for Acceleration of Interfacial Charge Separation and Photocatalytic Phenol Degradation via S-Scheme Electron Transfer Mechanism. Catalysts. 2021; 11(9):1130. https://doi.org/10.3390/catal11091130
Chicago/Turabian StyleZhang, Zhuangzhuang, Yuanyuan Zhang, Xuanxuan Han, Li Guo, Danjun Wang, and Kangle Lv. 2021. "Assembly of CaIn2S4 on Defect-Rich BiOCl for Acceleration of Interfacial Charge Separation and Photocatalytic Phenol Degradation via S-Scheme Electron Transfer Mechanism" Catalysts 11, no. 9: 1130. https://doi.org/10.3390/catal11091130
APA StyleZhang, Z., Zhang, Y., Han, X., Guo, L., Wang, D., & Lv, K. (2021). Assembly of CaIn2S4 on Defect-Rich BiOCl for Acceleration of Interfacial Charge Separation and Photocatalytic Phenol Degradation via S-Scheme Electron Transfer Mechanism. Catalysts, 11(9), 1130. https://doi.org/10.3390/catal11091130