Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes
Abstract
:1. Introduction
2. Components for the Formation of Nanostructured Catalysts, Oxidants, and Extractants for Oxidative Desulfurization of Liquid Fuels
Liquid Fuel | NC | NC Size (nm) | Conditions of ODS | * S0, ODS Efficiency | Ref. |
---|---|---|---|---|---|
Model oil with one sulfur containing compound | α-Fe2O3 | - | 1 h, H2O2/CH3COOH | 500 ppm, DBT 99.5% | [59] |
MoO3/Si/PVA | 48 | 60 °C, 2.5 h, H2O2 | 500 ppm, DBT~93.7% | [71] | |
CoMo/rGO | - | 60 °C, 1 h, H2O2 | 500 ppm, DBT 99.0% | [72] | |
WO3/few layer g-C3N4-composite | - | 50 °C, 1 h, 800 rpm, H2O2 | 500 ppm, 100%, the oxidative reactivity order DBT > 4-MDBT > 4,6-DMDBT > 3-MBT | [73] | |
[Bmin 1]3PMo12O40/g-C3N4 | - | 40 °C, 2 h, H2O2, 250 W high-pressure sodium lamp | 1000 ppm, DBT ~95.0%, 4,6-DMDBT ~85.0% or BT ~70.0% | [74] | |
Mo/Al-SBA15 2 | - | 60°C, 30 min, H2O2 | 500 ppm, the oxidative reactivity order 4-methyl phenyl sulfide = dibenzyl sulfide = DBT > 4,6-DMDBT > methylDBT > BT > 5- methylBT | [69] | |
Model oil with mixture of sulfur containing compounds | PMo/HKUST-1 3 | - | 65 C, 2 h, H2O2 | 500, 250 and 250 ppm, respectively, DBT—95.0%, methyl phenyl sulfide (MPS)—98.0% and TH—90.0% | [61] |
PW11Zn 4/MIL-101 5 | 50–400 | 50 °C, 2–3 h, H2O2 | 500 ppm, ~100% from of each, the oxidative reactivity order DBT > 4,6-DMDBT > BT | [64] | |
Gasoil | ((n-C4H9)4N)4 [PW11Fe(H2O)O39/PbO | 62 | 60 °C, 2 h, CH3COOH/H2O2 | 97.0% | [27] |
Ni/SiO2/PWA 6 | 25–45 | Microwave 400 W, 4 min, 70 °C, H2O2 | 510 ppm, 92.1% | [65] | |
Crude oil | H5PMo10V2O40/Fe3O4/g-C3N4 | 23 | 80 °C, 200 min, H2O2 | 500 and 1,900 ppm, 24.3% and 29.8%, respectively | [75] |
Gas condensate | 2D-porous MoS2 | 75 °C, 2 h, 600 rpm, H2O2 | 2,850 ppm, 93.4% | [76] | |
Commercial diesel fuel | MnO2, nanoflowers | 40 | 60 °C, 35 min, 900 rpm, t-BuOOH | 550 ppm, 81.9% | [43] |
3. The Choice of NCs, Extractants, and Oxidants for Use in Hybrid Chemical-Biocatalytic ODS Processes
3.1. Choosing Reagents Ensuring a High Desulfurization Efficiency and Compliant with the Green Chemistry Principles
3.2. Choosing Reagents with the Minimal Inhibiting Effect on the BCs and with the Potential of Bioconversion
4. The Perspectives of Creating Hybrid Processes Based on ODS, Involving Microbial Biocatalysts, and Producing Substances Valuable for C-1 Chemistry
4.1. Chemical Conversion of the Sulfur-Containing Compounds during Oxidative or Reductive BDS
4.2. Advantages and Features of Applying IBCs for Desulfurization of Liquid Fuels
4.3. IBC-Induced Biotransformation of Oxidized Forms of Sulfur-Containing Compounds under Anaerobic Conditions
4.4. Specialized Adaptive and Complex Approaches to Involving IBCs in Hybrid ODS Processes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms
AS | anaerobic sludge |
AN | acetonitrile |
BC | biocatalyst |
BTC | 1,3,5-benzen-tricarboxylate |
BDS | biodesulfurization |
BNT | sodium activated bentonite |
Bmin | 1-butyl-3-methylimidazolium |
BT | benzothiophene |
BTC | benzene 1,3,5-tricarboxylate |
BTO2 | benzothiophene sulfone |
CH3CN | acetonitrile |
CH3COOH | acetic acid |
CS | chitosan |
CTAB | cetyltrimethylammonium bromide |
DBT | dibenzothiophene |
DBTO2 | dibenzothiophene sulfone |
4,6-DMDBT | 4, 6-dimethyl dibenzothiophene |
DMF | dimethylformamide |
DMFA | N,N-dimethylformamide |
Fe2W18Fe4 | tetranuclear sandwich-type polyoxometalate |
(Na9K[(FeW9O34)2Fe4(H2O)2]·32H2O | |
GO | graphene oxide |
HDS | |
hydrodesulfurization | |
HKUST-1 | (Cu3(BTC)2 |
H2O2 | |
hydrogen peroxide | |
H2SO4 | sulphuric acid |
HPA | hetero Poly Acid |
IBC | immobilized biocatalyst |
IMID | imidazolium C3H4N2 |
ISCM | initial sulfur-containing medium |
KTHPA | Keggin-type heteropolyanion [PW12O40] |
mGO | |
modified graphene oxide | |
MIL-101 | MOF based on polymeric terephthalate |
MMT | |
montmorillonite | |
MOF | |
metal-organic frameworks | |
NC | |
Nanocatalyst | |
N-MP | N-methylpyrrolidone |
ODS | |
chemical oxidative desulfurization | |
OBDS | oxidative biodesulfurization |
PMo | |
H3PMo12O40 | |
PMo/HKUST-1 | (Cu3(1,3,5-benzen-tricarboxylate)2H3PMo12O40, |
POM | polyoxometalate |
PTA | phosphotungstic acid, |
PVA | polyvinyl alcohol |
PWA | phosphotungstic acid |
PW11Zn | TBA4.2H0.8[PW11Zn(H2O)O39]·5H2O |
PW | H3PW12O40 |
RRM | renewable raw materials |
SBA-15 | Mesoporous Silica Molecular Sieve SBA-15 |
S0 | initial sulfur concentration |
SiW | H3SiW12O40 |
SOx | sulfur oxides |
SO2 | sulfur dioxide |
T | desulfurization duration, |
TBA | tetrabutylammonium (n-C4H9)4N |
TH | thiophene |
t-B.PWFe | [n-C4H9]4N)4H[PW11FeO39] |
TBA-SiWMn | Silicotungstate polyoxometalate ((n-C4H9)4N)7H5Si2W18Mn4O68 |
Vs | desulfurization rate |
References
- Prajapati, R.; Kohli, K.; Maity, S.K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review. Fuel 2021, 228, 119686. [Google Scholar] [CrossRef]
- Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egypt. J. Pet. 2018, 27, 715–730. [Google Scholar] [CrossRef]
- Akhmadova, K.K.; Makhmudova, L.S.; Abdulmezhidova, Z.A.; Krasnikov, P.E.; Idrisova, E.U.; Magomadova, M.K. Oxidative methods of desulfurization of diesel fuels: Results, problems, perspective. Adv. Eng. Res. 2018, 177, 422–431. [Google Scholar]
- Saleh, T.A. Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends Environ. Anal. Chem. 2020, 25, e00080. [Google Scholar] [CrossRef]
- Houda, S.; Lancelot, C.; Blanchard, P.; Poinel, L.; Lamonier, C. Oxidative desulfurization of heavy oils with high sulfur content: A review. Catalysts 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, M.; Vyrides, I.; Agapiou, A. Oil biodesulfurization: A review of applied analytical techniques. J. Chromatogr. B 2021, 1171, 122602. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Chai, J.; Wu, K.; Xiang, Y.; Jia, S.; Li, Q. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater. Environ. Technol. 2019, 40, 2715–2725. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shaterian, M.; Aghmasheh, M. Catalytic oxidative desulphurization of gasoline using amphiphilic polyoxometalate@ polymer nanocomposite as an efficient, reusable, and green organic–inorganic hybrid catalyst. Environ. Technol. 2020, 41, 1219–1231. [Google Scholar] [CrossRef]
- Fallah, R.N.; Azizian, S.; Dwivedi, A.D.; Sillanpää, M. Adsorptive desulfurization using different passivated carbon nanoparticles by PEG-200. Fuel Process. Technol. 2015, 130, 214–223. [Google Scholar] [CrossRef]
- Kulsing, C.; Rawson, P.; Webster, R.L.; Evans, D.J.; Marriott, P.J. Group-type analysis of hydrocarbons and sulfur compounds in thermally stressed merox jet fuel samples. Energy Fuels. 2017, 31, 8978–8984. [Google Scholar] [CrossRef]
- Kadijani, J.A.; Zolfaghari, A. Examining a catalyst sample for demercaptanization process. Petrol. Sci. Technol. 2019, 37, 2391–2396. [Google Scholar] [CrossRef]
- Motahari, K.; Abdollahi-Moghaddam, M.; Rashidi, A. Mechanism study and determination kinetic of catalytic oxidation of mercaptans in Merox process. S. Afr. J. Chem. Eng. 2020, 33, 116–124. [Google Scholar] [CrossRef]
- Li, M.; Zhang, M.; Wei, A.; Zhu, W.; Xun, S.; Li, Y.; Li, H.; Li, H. Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization. J. Mol. Catal. A Chem. 2015, 406, 23–30. [Google Scholar] [CrossRef]
- Shen, L.; Lei, G.; Fang, Y.; Cao, Y.; Wang, X.; Jiang, L. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization. Chem. Comm. 2018, 54, 2475–2478. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jiang, B.; Sun, Y.; Zhang, L.; Sun, Z.; Wang, J.; Tantai, X. Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 2017, 317, 32–41. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shaterian, M.; Akbarzadeh, F.; Khandan, S. Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chem. Eng. J. 2018, 333, 537–544. [Google Scholar] [CrossRef]
- Eseva, E.; Akopyan, A.; Schepina, A.; Anisimov, A.; Maximov, A. Deep aerobic oxidative desulfurization of model fuel by Anderson-type polyoxometalate catalysts. Catal. Commun. 2021, 149, 106256. [Google Scholar] [CrossRef]
- Sinhmar, P.S.; Gogate, P.R. Ultra-deep desulfurization of crude sulfated turpentine using oxidation, adsorption and novel combination approach. Environ. Technol. Innov. 2020, 18, 100682. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Asli, M.A.N.; Oveisi, M.; Babaei, R.; Qasemi, K.; Khandan, S. An organic–inorganic hybrid based on an Anderson-type polyoxometalate immobilized on PVA as a reusable and efficient nanocatalyst for oxidative desulphurization of gasoline. RSC Adv. 2016, 6, 53069–53079. [Google Scholar] [CrossRef]
- Hossain, M.N.; Park, H.C.; Choi, H.S. A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Campos-Martin, J.M.; Capel-Sanchez, M.C. Catalytic oxidative desulfurization of liquid fuels. In Catalytic and Noncatalytic Upgrading of Oils; Dalai, A.K., Dadyburjor, D.B., Zheng, Y., Duan, A., Roberts, W.L., Nanda, S., Eds.; American Chemical Society: Washington, DC, USA, 2021; pp. 143–174. [Google Scholar]
- Rajendran, A.; Cui, T.Y.; Fan, H.X.; Yang, Z.F.; Feng, J.; Li, W.Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Khalafi, N. Synthesis of a new nanocomposite based on sandwich-type silicotungstate and polyvinyl alcohol with superior catalytic activity for deep desulfurization of real/thiophenic mode fuel. J. Coord. Chem. 2020, 73, 3395–3411. [Google Scholar] [CrossRef]
- Maslova, O.; Senko, O.; Stepanov, N.; Gladchenko, M.; Gaydamaka, S.; Akopyan, A.; Polikarpova, P.; Lysenko, S.; Anisimov, A.; Efremenko, E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. Bioresour. Technol. 2021, 319, 124248. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Hadi, M.; Rezvani, H. Synthesis of new nanocomposite based on ceramic and heteropolymolybdate using leaf extract of Aloe vera as a high-performance nanocatalyst to desulfurization of real fuel. Appl. Organomet. Chem. 2021, 35, e6176. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shaterian, M.; Shokri Aghbolagh, Z.; Babaei, R. Oxidative desulfurization of gasoline catalyzed by IMID@PMA@CS nanocomposite as a high-performance amphiphilic nanocatalyst. Environ. Prog. Sustain. Energy 2018, 37, 1891–1900. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Khandan, S.; Sabahi, N. Oxidative desulfurization of gas oil catalyzed by (TBA)4PW11Fe@PbO as an efficient and recoverable heterogeneous phase-transfer nanocatalyst. Energy Fuels 2017, 31, 5472–5481. [Google Scholar] [CrossRef]
- Weh, R.; de Klerk, A. Thermochemistry of sulfones relevant to oxidative desulfurization. Energy Fuels 2017, 31, 6607–6614. [Google Scholar] [CrossRef] [Green Version]
- Rankin, J.; Litz, K.; Briggs, S.; McCaskill, T.; Scudder, M.; Khalid, S.; Budhani, R. Selective desulfonylation of oxidized sulfur compounds in crude oil by alcohol-mediated nucleophilic attack studied by XANES and XRF spectroscopy. Preprints 2016, 2016090075. [Google Scholar] [CrossRef] [Green Version]
- Sundararaman, R.; Song, C. Oxidative desulfurization of crude oil incorporating sulfone decomposition by alkaline earth metal oxides. Energy Fuels 2013, 27, 6372–6376. [Google Scholar] [CrossRef]
- Hansen, É.; Rodrigues, M.A.S.; Aragão, M.E.; de Aquim, P.M. Water and wastewater minimization in a petrochemical industry through mathematical programming. J. Clean. Prod. 2018, 172, 1814–1822. [Google Scholar] [CrossRef]
- Ghimire, N.; Wang, S. Biological treatment of petrochemical wastewater. In Petroleum Chemicals—Recent Insight; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2018; pp. 55–74. [Google Scholar]
- Ding, P.; Chu, L.; Wang, J. Advanced treatment of petrochemical wastewater by combined ozonation and biological aerated filter. Environ. Sci. Pollut. Res. 2018, 25, 9673–9682. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ahmadmoazzam, M.; Saeedi, R.; Abtahi, M.; Ghafari, S.; Jorfi, S. Biological treatment of a saline and recalcitrant petrochemical wastewater by using a newly isolated halo-tolerant bacterial consortium in MBBR. Desalin. Water Treat. 2019, 167, 84–95. [Google Scholar] [CrossRef]
- Martínez, I.; Mohamed, M.E.S.; Santos, V.E.; García, J.L.; García-Ochoa, F.; Díaz, E. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. J. Biotechnol. 2017, 262, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.M.; Ferreira, P.; Neves, R.P.; Ramos, M.J.J.; Fernandes, P.A. The bacterial 4S pathway—A benign and economic alternative for crude oil desulphurization. Green Chem. 2020, 22, 7604–7621. [Google Scholar] [CrossRef]
- Sampanthar, J.T.; Xiao, H.; Dou, J.; Nah, T.Y.; Rong, X.; Kwan, W.P. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel. Appl. Catal. B 2006, 63, 85–93. [Google Scholar] [CrossRef]
- Kairbekov, Z.K.; Myltykbaeva, Z.K.; Muktaly, D.; Nysanova, B.; Anisimov, A.V.; Akopyan, A.V. Peroxide oxidative desulfurization of a diesel fuel. Theor. Found. Chem. Eng. 2018, 52, 677–680. [Google Scholar] [CrossRef]
- Abro, R.; Abdeltawab, A.A.; Al-Deyab, S.S.; Yu, G.; Qazi, A.B.; Gao, S.; Chen, X. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Adv. 2014, 4, 35302–35317. [Google Scholar] [CrossRef]
- Julião, D.; Gomes, A.C.; Pillinger, M.; Valença, R.; Ribeiro, J.C.; Gonçalves, I.S.; Balula, S.S. Desulfurization of liquid fuels by extraction and sulfoxidation using H2O2 and [CpMo(CO)3R] as catalysts. Appl. Catal. B 2018, 230, 177–183. [Google Scholar] [CrossRef]
- Wang, D.H.; Qian, E.W.H.; Amano, H.; Okata, K.; Ishihara, A.; Kabe, T. Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Appl. Catal. A 2003, 253, 91–99. [Google Scholar] [CrossRef]
- Noyori, R. Pursuing practical elegance in chemical synthesis. Chem. Comm. 2005, 14, 1807–1811. [Google Scholar] [CrossRef]
- Alheety, M.A.; Al-Jibori, S.A.; Karadağ, A.; Akbaş, H.; Ahmed, M.H. A novel synthesis of MnO2, nanoflowers as an efficient heterogeneous catalyst for oxidative desulfurization of thiophenes. Nano-Struct. Nano-Objects 2019, 20, 100392. [Google Scholar] [CrossRef]
- Anisimov, A.V.; Tarakanova, A.V. Oxidative desulfurization of hydrocarbon raw materials. Russ. J. Gen.Chem. 2009, 79, 1264–1273. [Google Scholar] [CrossRef]
- Senko, O.; Maslova, O.; Gladchenko, M.; Gaydamaka, S.; Efremenko, E. Biogas production from biomass of microalgae Chlorella vulgaris in the presence of benzothiophene sulfone. IOP Conf. Ser. Mater. Sci. Eng. 2019, 525, 012089. [Google Scholar]
- Maslova, O.; Senko, O.; Stepanov, N.; Efremenko, E. Perspective approaches with the use of biocatalysts for improving the processes of polyaspartic acid production from oil benzene fraction after oxidative desulfurization. IOP Conf. Ser. Mater. Sci. Eng. 2019, 525, 012037. [Google Scholar] [CrossRef]
- Senko, O.; Maslova, O.; Gladchenko, M.; Gaydamaka, S.; Akopyan, A.; Lysenko, S.; Anisimov, A.; Efremenko, E. Prospective approach to the anaerobic bioconversion of benzo-and dibenzothiophene sulfones to sulfide. Molecules 2019, 24, 1736. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.A.; Aghbolagh, Z.S.; Monfared, H.H.; Khandan, S. Mono Mn(II)-substituted phosphotungstate@modified graphene oxide as a high-performance nanocatalyst for oxidative demercaptanization of gasoline. J. Ind. Eng. Chem. 2017, 52, 42–50. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Asli, M.A.; Khandan, S.; Mousavi, H.; Aghbolagh, Z.S. Synthesis and characterization of new nanocomposite CTAB-PTA@CS as an efficient heterogeneous catalyst for oxidative desulphurization of gasoline. Chem. Eng. J. 2017, 312, 243–251. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Khandan, S. Synthesis and characterization of a new nanocomposite (FeW11V@ CTAB-MMT) as an efficient heterogeneous catalyst for oxidative desulfurization of gasoline. Appl. Organomet. Chem. 2018, 32, e4524. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Maleki, Z. Facile synthesis of inorganic–organic Fe2W18Fe4@NiO@CTS hybrid nanocatalyst induced efficient performance in oxidative desulfurization of real fuel. Appl. Organomet. Chem. 2019, 33, e4895. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Fereyduni, M. Synthesis of organic−inorganic hybrid nanocomposite polyoxometalate/metal oxide/CS Polymer(PMnW11@TiO2@CS): Nanocatalyst for oxidative desulfurization of real fuel. Chem. Sel. 2019, 4, 11467–11474. [Google Scholar]
- Rezvani, M.A.; Shaterian, M.; Khalafi, N. Synthesis and characterization of TBA-PV2Mo10@PVA as an efficient and reusable heterogeneous catalyst for oxidative desulfurization of gasoline. J. Nanostruct. 2019, 9, 349–364. [Google Scholar]
- Rezvani, M.A.; Khandan, S. Synthesis and characterization of new sandwich-type polyoxometalate/nanoceramic nanocomposite, Fe2W18Fe4@FeTiO3, as a highly efficient heterogeneous nanocatalyst for desulfurization of fuel. Solid State Sci. 2019, 98, 106036. [Google Scholar] [CrossRef]
- Rezvani, A.M.; Aghmasheh, M. Synthesis of a nanocomposite based on chitosan and modified heteropolyanion as a nanocatalyst for oxidative desulfurization of real and thiophenic model fuels. J. Coord. Chem. 2020, 73, 1407–1424. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Afshari, P.; Aghmasheh, M. Deep catalytic oxidative desulfurization process catalyzed by TBA-PWFe@NiO@BNT composite material as an efficient and recyclable phase-transfer nanocatalyst. Mater. Chem. Phys. 2021, 267, 124662. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Aghmasheh, M. Synthesis of t-B.PWFe/NiO nanocomposite as an efficient and heterogeneous green nanocatalyst for catalytic oxidative-extractive desulfurization of gasoline. Environ. Prog. Sustain. Energy 2021, 40, e13616. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Imani, A. Ultra-deep oxidative desulfurization of real fuels by sandwich-type polyoxometalate immobilized on copper ferrite nanoparticles, Fe6W18O70⊂CuFe2O4, as an efficient heterogeneous nanocatalyst. J. Environ. Chem. Eng. 2021, 9, 105009. [Google Scholar] [CrossRef]
- Alenazi, B.; Alsalme, A.; Alshammari, S.G.; Khan, R.; Siddiqui, M.R.H. Ionothermal synthesis of metal oxide-based nanocatalysts and their application towards the oxidative desulfurization of dibenzothiophene. J. Chem. 2020, 3894804. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.A.; Hadi, M.; Mirsadri, S.A. Synthesis of new nanocomposite based on nanoceramic and mono substituted polyoxometalate, PMo11Cd@MnFe2O4, with superior catalytic activity for oxidative desulfurization of real fuel. Appl. Organomet. Chem. 2020, 34, e5882. [Google Scholar] [CrossRef]
- Rafiee, E.; Nobakht, N. Keggin type heteropoly acid, encapsulated in metal-organic framework: A heterogeneous and recyclable nanocatalyst for selective oxidation of sulfides and deep desulfurization of model fuels. J. Mol. Catal. A Chem. 2015, 398, 17–25. [Google Scholar] [CrossRef]
- Banisharif, F.; Dehghani, M.R.; Capel-Sanchez, M.C.; Campos-Martin, J.M. Extractive-oxidative removals of dibenzothiophene and quinoline using vanadium substituted Dawson emulsion catalyst and ionic liquid based solvents. J. Ind. Eng. Chem. 2017, 47, 348–359. [Google Scholar] [CrossRef]
- Ren, X.; Miao, G.; Xiao, Z.; Ye, F.; Li, Z.; Wang, H.; Xiao, J. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel 2016, 174, 118–125. [Google Scholar] [CrossRef]
- Julião, D.; Gomes, A.C.; Pillinger, M.; Cunha-Silva, L.; de Castro, B.; Gonçalves, I.S.; Balula, S.S. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101(Cr) encapsulated) conditions. Fuel Proces. Technol. 2015, 131, 78–86. [Google Scholar] [CrossRef]
- Kareem, Y.S.; Ammar, S.H.; Darwash, R.A. Microwave-induced catalytic oxidative desulfurization of gasoil fraction over phosphotungstic acid-based magnetic silica (Ni@SiO2\PWA) nanocatalyst. Catal. Commun. 2020, 136, 105926. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Synthesis of silica@C-dots/phosphotung states core-shell microsphere for effective oxidative-adsorptive desulfurization of dibenzothiophene with less oxidant. Appl. Catal. B Environ. 2018, 234, 247–259. [Google Scholar] [CrossRef]
- Venkateshwar, T.R.; Sain, B.; Kafola, S.; Sharma, Y.K.; Nanoti, S.M.; Garg, M.O. Oxidative desulfurization of HDS diesel using the aldehyde/molecular oxygen oxidation system. Energy Fuels 2007, 21, 3420–3424. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, D.; Li, K. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid. Energy Fuels 2010, 24, 2527–2534. [Google Scholar] [CrossRef]
- Akopyan, A.; Polikarpova, P.; Gul, O.; Anisimov, A.; Karakhanov, E. Catalysts based on acidic SBA-15 for deep oxidative desulfurization of model fuels. Energy Fuels 2020, 34, 14611–14619. [Google Scholar] [CrossRef]
- Kemei, M.C.; Barton, P.T.; Moffitt, S.L.; Gaultois, M.W.; Kurzman, J.A.; Seshadri, R.; Suchomer, M.R.; Kim, Y.I. Crystal structures of spin-Jahn–Teller-ordered MgCr2O4 and ZnCr2O4. J. Phys. Condens. Matter 2013, 25, 326001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamel, L.; Anbia, M. Composite beads of molybdenum oxide supported on textured silicon as an oxidative desulfurization nanocatalyst. Silicon 2020, 12, 1325–1336. [Google Scholar] [CrossRef]
- Hasannia, S.; Kazemeini, M.; Rashidi, A.; Seif, A. The oxidative desulfurization process performed upon a model fuel utilizing modified molybdenum based nanocatalysts: Experimental and density functional theory investigations under optimally prepared and operated conditions. Appl. Surf. Sci. 2020, 527, 146798. [Google Scholar] [CrossRef]
- Ma, R.; Guo, J.; Wang, D.; He, M.; Xun, S.; Gu, J.; Zhu, W.; Li, H. Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 250–258. [Google Scholar]
- Li, X.; Yang, X.; Zhou, F.; Zhang, J.; Yang, H.; Wang, Y.; Zhao, Y.; Yuan, X.; Ju, J.; Hu, S. Construction of novel amphiphilic [Bmin]3PMo12O40/g-C3N4 heterojunction catalyst with outstanding photocatalytic oxidative desulfurization performance under visible light. J. Taiwan Inst. Chem. Eng. 2019, 100, 210–219. [Google Scholar] [CrossRef]
- Rafiee, E.; Khodayari, M. Synthesis and characterization of PMoV/Fe3O4/g-C3N4 from melamine: An industrial green nanocatalyst for deep oxidative desulfurization. Chin. J. Catal. 2017, 38, 458–468. [Google Scholar] [CrossRef]
- Mahmoudabadi, Z.S.; Rashidi, A.; Yousefi, M. Synthesis of 2D-porous MoS2 as a nanocatalyst for oxidative desulfurization of sour gas condensate: Process parameters optimization based on the Levenberg–Marquardt algorithm. J. Environ. Chem. Eng. 2021, 9, 105200. [Google Scholar] [CrossRef]
- Karakhanov, E.; Akopyan, A.; Golubev, O.; Anisimov, A.; Glotov, A.; Vutolkina, A.; Maximov, A. Alkali earth catalysts based on mesoporous MCM-41 and Al-SBA-15 for sulfone removal from middle distillates. ACS Omega 2019, 4, 12736–12744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akopyan, A.V.; Shlenova, A.O.; Cherednichenko, K.A.; Polikarpova, P.D. Immobilized multifunctional ionic liquids for highly efficient oxidation of sulfur-containing compounds in model fuels. Energy Fuels 2021, 35, 6755–6764. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Oveisi, M.; Asli, M.A.N. Phosphotungestovanadate immobilized on PVA as an efficient and reusable nano catalyst for oxidative desulphurization of gasoline. J. Mol. Catal. A Chem. 2015, 410, 121–132. [Google Scholar] [CrossRef]
- Moeinifard, B.; Chermahini, A.N. Mono lacunary phosphomolybdate supported on mesoporous graphitic carbon nitride: An eco-friendly and efficient catalyst for oxidative desulfurization of the model and real fuels. J. Environ. Chem. Eng. 2021, 9, 105430. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.M.; Yang, X.F.; Jiao, M.G.; Zhou, Z.; Zhang, M.H.; Wang, D.X.; Bu, X.H. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization. Appl.Catal. B 2018, 238, 263–273. [Google Scholar] [CrossRef]
- Chen, M.L.; Zhou, S.Y.; Xu, Z.; Ding, L.; Cheng, Y.H. Metal-organic frameworks of MIL-100 (Fe, Cr) and MIL-101 (Cr) for aromatic amines adsorption from aqueous solutions. Molecules 2019, 24, 3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meman, N.M.; Zarenezhad, B.; Rashidi, A.; Hajjar, Z.; Esmaeili, E. Application of palladium supported on functionalized MWNTs for oxidative desulfurization of naphtha. J. Ind. Eng. Chem. 2015, 22, 179–184. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, I. Mechanisms of desulfurization by nanomaterials. In Nanotechnology in Oil and Gas Industries; Saleh, T.A., Ed.; Springer: Cham, Switzerland, 2018; pp. 211–243. [Google Scholar]
- Maciuca, A.L.; Ciocan, C.E.; Dumitriu, E.; Fajula, F.; Hulea, V. V-, Mo-and W-containing layered double hydroxides as effective catalysts for mild oxidation of thioethers and thiophenes with H2O2. Catal. Today 2008, 138, 33–37. [Google Scholar] [CrossRef]
- Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.; Ishihara, A.; Imai, T.; Kabe, T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels 2000, 14, 1232–1239. [Google Scholar] [CrossRef]
- Pal, S.; Saha, B.; Sengupta, S. Oxidative desulphurization of model fuel by metal impregnated Ti-β catalysts. Int. Res. J. Eng. Technol. 2017, 4, 2376–2381. [Google Scholar]
- Margeta, D.; Grčić, I.; Papić, S.; Sertić-Bionda, K.; Foglar, L. Impact of ultrasound application on oxidative desulphurization of diesel fuel and on treatment of resulting wastewater. Environ. Technol. 2016, 37, 293–299. [Google Scholar] [CrossRef]
- Haruna, S.Y.; Faruq, U.; Zubairu, A.Y.; Liman, M.; Riskuwa, M.L. Comparative studies on reduction of sulphur content of heavy crude oil using KMnO4+ H2O2/CH3COOH and KMnO4+ H2O2/HCOOH via oxidative desulphurization (ODS). Am. J. Appl. Chem. 2018, 6, 15–24. [Google Scholar] [CrossRef]
- Dinamarca, M.A.; Ibacache-Quiroga, C.; Baeza, P.; Galvez, S.; Villarroel, M.; Olivero, P.; Ojeda, J. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresour. Technol. 2010, 101, 2375–2378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, M.; Jones, I.; Zhang, Z.; Zhang, D. Desulfurization of spent tire pyrolysis oil and its distillate via combined catalytic oxidation using H2O2 with formic acid and selective adsorption over Al2O3. Energy Fuels 2020, 34, 6209–6219. [Google Scholar] [CrossRef]
- Qiu, L.; Cheng, Y.; Yang, C.; Zeng, G.; Long, Z.; Wei, S.; Zhao, K.; Luo, L. Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. RSC Adv. 2016, 6, 17036–17045. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Sobati, M.A.; Nazem, M.A. Oxidative desulfurization of non-hydrotreated kerosene using hydrogen peroxide and acetic acid. Chin. J. Chem. Eng. 2009, 17, 869–874. [Google Scholar] [CrossRef]
- Al-Shafei, E.N.; Hamad, E.Z. Selective Liquid-Liquid Extraction of Oxidative Desulfurization Reaction Products. U.S. Patent No. 10,947,461B2, 16 March 2021. [Google Scholar]
- Komintarachat, C.; Trakarnpruk, W. Oxidative desulfurization using polyoxometalates. Ind. Eng. Chem. Res. 2006, 45, 1853–1856. [Google Scholar] [CrossRef]
- Choi, G.G.; Oh, S.J.; Kim, J.S. Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy 2017, 141, 2234–2241. [Google Scholar] [CrossRef]
- Ghahremani, H.; Nasri, Z.; Eikani, M.H. Ultrasound-assisted oxidative desulfurization (UAOD) of Iranian heavy crude oil: Investigation of process variables. J. Pet. Sci. Eng. 2021, 204, 108709. [Google Scholar] [CrossRef]
- Akopyan, A.V.; Fedorov, R.A.; Andreev, B.V.; Tarakanova, A.V.; Anisimov, A.V.; Karakhanov, E.A. Oxidative desulfurization of hydrocarbon feedstock. Russ. J. Appl. Chem. 2018, 91, 529–542. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, X.; Li, Y.; Chen, J.; Wang, H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Appl. Catal. B Environ. 2017, 209, 98–109. [Google Scholar] [CrossRef]
- Lu, P.; Zhao, Y.; Dong, J.; Mei, B.B.; Du, X.L.; Jiang, Z.; Lui, Y.M.; He, H.Y.; Wang, Y.D.; Duan, X.Z.; et al. Direct and efficient synthesis of clean H2O2 from CO-assisted aqueous O2 reduction. ACS Catal. 2020, 10, 13993–14005. [Google Scholar] [CrossRef]
- Garrigues, L.; Maignien, L.; Lombard, E.; Singh, J.; Guillouet, S.E. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor. New Biotechnol. 2020, 56, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Ávila, M.; Rochón, E.; Lareo, C. Improvements in the formulation of sugarcane-sweet sorghum juices fermentation media for enhanced isopropanol and butanol production. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R. Towards sustainable production of formic acid. Chem. Sustain. Chem. 2018, 11, 821–836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, S.; Hou, M.; Yang, G.; Han, B. Continuous-flow formic acid production from the hydrogenation of CO2 without any base. Green Chem. 2021, 23, 1978–1982. [Google Scholar] [CrossRef]
- Vashisht, A.; Thakur, K.; Kauldhar, B.S.; Kumar, V.; Yadav, S.K. Waste valorization: Identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace. Sci. Total Environ. 2019, 690, 956–964. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Wang, D.; Chen, Y.; Yang, Q.; Chen, Y.; Hu, X.; Xu, Q.; Fu, Q.; Du, C. Iron electrodes activating persulfate enhances acetic acid production from waste activated sludge. Chem. Eng. J. 2020, 390, 124580. [Google Scholar] [CrossRef]
- Verbeeck, K.; Gildemyn, S.; Rabaey, K. Membrane electrolysis assisted gas fermentation for enhanced acetic acid production. Front. Energy Res. 2018, 6, 88. [Google Scholar] [CrossRef]
- Fazzino, F.; Mauriello, F.; Paone, E.; Sidari, R.; Calabrò, P.S. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere 2021, 271, 129602. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, S.; Li, G.; Zhao, F.; Feng, Z.; Chen, X.; Zhu, Z.; Wang, Y.; Gao, J. Process design and comprehensive analysis of the ethanol amination process to improve acetonitrile production. Ind. Eng. Chem. Res. 2020, 59, 5047–5055. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Stepanov, N.A.; Nikolskaya, A.B.; Senko, O.V.; Spiricheva, O.V.; Varfolomeev, S.D. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal. Ind. 2011, 3, 41–46. [Google Scholar] [CrossRef]
- Lammens, T.M.; Gangarapu, S.; Franssen, M.C.; Scott, E.L.; Sanders, J.P. Techno-economic assessment of the production of bio-based chemicals from glutamic acid. Biofuel. Bioprod. Biorefin. 2012, 6, 177–187. [Google Scholar] [CrossRef]
- Bi, Q.Y.; Lin, J.D.; Liu, Y.M.; Xie, S.H.; He, H.Y.; Cao, Y. Partially reduced iridium oxide clusters dispersed on titania as efficient catalysts for facile synthesis of dimethylformamide from CO2, H2 and dimethylamine. Chem. Commun. 2014, 50, 9138–9140. [Google Scholar] [CrossRef]
- Van Bennekom, J.G.; Venderbosch, R.H.; Assink, D.; Lemmens, K.P.J.; Heeres, H.J. Bench scale demonstration of the Supermethanol concept: The synthesis of methanol from glycerol derived syngas. Chem. Eng. J. 2012, 207, 245–253. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2010; 2040p. [Google Scholar]
- Yokoi, H.; Hirose, M.S.; Hayashi, S. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg. 2002, 22, 389–395. [Google Scholar] [CrossRef]
- Somerville, H.J.; Mason, J.R.; Ruffell, R.N. Benzene degradation by bacterial cells immobilized in polyacrylamide gel. Eur. J. Appl. Microbiol. Biotechnol. 1977, 4, 75–85. [Google Scholar] [CrossRef]
- Hallaji, S.M.; Siami, S.; Aminzadeh, B. Improvement of anaerobic digestion of sewage sludge, using combined hydrogen peroxide and thermal pre-treatment. Pollution 2019, 5, 487–499. [Google Scholar]
- Ambrose, H.W.; Philip, L.; Suraishkumar, G.K.; Karthikaichamy, A.; Sen, T.K. Anaerobic co-digestion of activated sludge and fruit and vegetable waste: Evaluation of mixing ratio and impact of hybrid (microwave and hydrogen peroxide) sludge pre-treatment on two-stage digester stability and biogas yield. J. Water Process. Eng. 2020, 37, 101498. [Google Scholar] [CrossRef]
- Song, Z.L.; Yag, G.H.; Feng, Y.Z.; Ren, G.X.; Han, X.H. Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J. Integr. Agric. 2013, 12, 1258–1266. [Google Scholar] [CrossRef]
- Ksibi, M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 2006, 119, 161–165. [Google Scholar] [CrossRef]
- Park, E.S. Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams. J. Appl. Polym. Sci. 2008, 110, 1723–1729. [Google Scholar] [CrossRef]
- Mei, X.; Ding, Y.; Li, P.; Xu, L.; Wang, Y.; Guo, Z.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. A novel system for zero-discharge treatment of high-salinity acetonitrile-containing wastewater: Combination of pervaporation with a membrane-aerated bioreactor. Chem. Eng. J. 2020, 384, 123338. [Google Scholar] [CrossRef]
- Kong, Z.; Li, L.; Kurihara, R.; Kubota, K.; Li, Y.Y. Anaerobic treatment of N, N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum. Water Res. 2018, 139, 228–239. [Google Scholar] [CrossRef]
- Kong, Z.; Li, L.; Wu, J.; Zhang, T.; Li, Y.Y. Insights into the methanogenic degradation of N,N-dimethylformamide: The functional microorganisms and their ecological relationships. Bioresour. Technol. 2019, 271, 37–47. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Jiang, X.; Zhang, L.; Hou, C.; Su, G.; Wang, L.; Mu, Y.; Shen, J. Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and genomic characterization. Bioresour. Technol. 2019, 294, 122185. [Google Scholar] [CrossRef]
- Senko, O.; Gladchenko, M.; Maslova, O.; Efremenko, E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts 2019, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Malani, R.S.; Batghare, A.H.; Bhasarkar, J.B.; Moholkar, V.S. Kinetic modeling and process engineering aspects of biodesulfurization of liquid fuels: Review and analysis. Bioresour. Technol. Rep. 2021, 14, 100668. [Google Scholar] [CrossRef]
- Lateef, S.A.; Ajumobi, O.O.; Onaizi, S.A. Enzymatic desulfurization of crude oil and its fractions: A mini review on the recent progresses and challenges. Arab. J. Sci. Eng. 2019, 44, 5181–5193. [Google Scholar] [CrossRef]
- Bachmann, R.T.; Johnson, A.C.; Edyvean, R.G. Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad. 2014, 86, 225–237. [Google Scholar] [CrossRef]
- Rossi, G. The microbial desulfurization of coal. In Geobiotechnology II; Schippers, A., Glombitza, F., Sand, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 147–167. [Google Scholar]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabi, M.; Kamyab, H.; Janalizadeh, N.; Huyop, F.Z. Bacterial desulfurization of organic sulfur compounds exist in fossil fuels. J. Pure Appl. Microbiol. 2012, 6, 717–729. [Google Scholar]
- Gupta, N.; Roychoudhury, P.K.; Deb, J.K. Biotechnology of desulfurization of diesel: Prospects and challenges. Appl. Microbiol. Biotechnol. 2005, 66, 356–366. [Google Scholar] [CrossRef]
- Martínez, I.; Mohamed, M.E.S.; Rozas, D.; García, J.L.; Díaz, E. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab. Eng. 2016, 35, 46–54. [Google Scholar] [CrossRef]
- Nuhu, A.A. Bio-catalytic desulfurization of fossil fuels: A mini review. Rev. Environ. Sci. Biotechnol. 2013, 12, 9–23. [Google Scholar] [CrossRef]
- Xu, P.; Feng, J.; Yu, B.; Li, F.; Ma, C. Recent developments in biodesulfurization of fossil fuels. Adv. Biochem Eng Biotechnol. 2009, 113, 255–274. [Google Scholar]
- Gallagher, J.R.; Olson, E.S.; Stanley, D.C. Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway. FEMS Microbiol. Lett. 1993, 107, 31–35. [Google Scholar] [CrossRef]
- Aggarwal, S.; Karimi, I.A.; Kilbane, J.J., II; Lee, D.Y. Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. Mol. Biosys. 2012, 8, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.A.; Pogrebinsky, O.S.; Mrachko, G.T.; Xi, L.; Monticello, D.J.; Squires, C.H. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 1996, 14, 1705–1709. [Google Scholar] [CrossRef]
- Javadli, R.; De Klerk, A. Desulfurization of heavy oil. Appl. Petrochem. Res. 2012, 1, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, S.; Dong, B.; Dai, X. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds. Chemosphere 2020, 244, 125466. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Endo, T.; Nakamura, H.; Yagi, T.; Tamiya, N. Decomposition of some organic sulfur compounds in petroleum by anaerobic bacteria. J. Gen. Appl. Microbiol. 1971, 17, 185–198. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, H.Y.; Kim, T.S.; Park, D.H. Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Process. Technol. 1995, 43, 87–94. [Google Scholar] [CrossRef]
- Efremenko, E.N. Immobilized Cells: Biocatalysts and Processes; RIOR: Moscow, Russia, 2018; 500p. [Google Scholar]
- Maslova, O.V.; Senko, O.V.; Stepanov, N.A.; Efremenko, E.N. Lactic acid production using free cells of bacteria and filamentous fungi and cells immobilized in polyvinyl alcohol cryogel: A comparative analysis of the characteristics of biocatalysts and processes. Catal. Ind. 2016, 8, 280–285. [Google Scholar] [CrossRef]
- Lalov, I.G.; Krysteva, M.A.; Phelouzat, J.L. Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresour. Technol. 2001, 79, 83–85. [Google Scholar] [CrossRef]
- Chauhan, A.; Ogram, A. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochem. Biophys. Res. Commun. 2005, 327, 884–893. [Google Scholar] [CrossRef]
- Naito, M.; Kawamoto, T.; Fujino, K.; Kobayashi, M.; Maruhashi, K.; Tanaka, A. Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl. Microbiol. Biotechnol. 2001, 55, 374–378. [Google Scholar] [CrossRef]
- Li, Y.G.; Gao, H.S.; Li, W.L.; Xing, J.M.; Liu, H.Z. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour. Technol. 2009, 100, 5092–5096. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Rhee, S.K.; Chang, Y.K.; Chang, H.N. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol. Prog. 1998, 14, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wen, J. Modeling of DBT biodesulfurization by resting cells of Gordonia sp. WQ-01A immobilized in alginate gel beads in an oil-water-immobilization system. Chem. Biochem. Eng. Q 2010, 24, 85–94. [Google Scholar]
- Li, Y.G.; Xing, J.M.; Xiong, X.C.; Li, W.L.; Gao, H.S.; Liu, H.Z. Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J. Ind. Microbiol. Biotechnol. 2008, 35, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Kong, Y.; Yang, J.; Zhang, J.; Shi, D.; Xin, W. Biodesulfurization of dibenzothiophene by immobilized cells of Pseudomonas stutzeri UP-1. Fuel 2005, 84, 1975–1979. [Google Scholar] [CrossRef]
- Gunam, I.B.W.; Sitepu, A.; Antara, N.S.; Triani, I.G.A.L.; Arnata, I.W.; Setiyo, Y. Bacterial desulfurization of dibenzothiophene by Pseudomonas sp. strain KWN5 immobilized in alginate beads. J. Teknol. 2021, 83, 107–115. [Google Scholar] [CrossRef]
- Chiroma, T.M.; Kareem, S.A.; Hayatuddeen, A.; Sokwa, T. Kinetics of biodesulfurizaton of diesel using immobilized cells. Niger. J. Eng. Sci. Technol. Res. 2020, 6, 6–12. [Google Scholar]
- Dinamarca, M.A.; Rojas, A.; Baeza, P.; Espinoza, G.; Ibacache-Quiroga, C.; Ojeda, J. Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel 2014, 116, 237–241. [Google Scholar] [CrossRef]
- Zhang, H.; Shan, G.; Liu, H.; Xing, J. Surface modification of γ-Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization. Surf. Coat. Technol. 2007, 201, 6917–6921. [Google Scholar] [CrossRef]
- Chang, J.H.; Chang, Y.K.; Ryu, H.W.; Chang, H.N. Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol. Lett. 2000, 182, 309–312. [Google Scholar] [CrossRef]
- Gunam, I.B.; Yamamura, K.; Sujaya, I.N.; Antara, N.S.; Aryanta, W.R.; Tanaka, M.; Tomiko, F.; Sone, T.; Asano, K. Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J. Microbiol. Biotechnol. 2013, 23, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Dinamarca, M.A.; Orellana, L.; Aguirre, J.; Baeza, P.; Espinoza, G.; Canales, C.; Ojeda, J. Biodesulfurization of dibenzothiophene and gas oil using a bioreactor containing a catalytic bed with Rhodococcus rhodochrous immobilized on silica. Biotechnol. Lett. 2014, 36, 1649–1652. [Google Scholar] [CrossRef]
- Maslova, O.V.; Senko, O.V.; Efremenko, E.N. Aspartic and glutamic acids polymers: Preparation and applications in medicinal chemistry and pharmaceutics. Russ. Chem. Bull. 2018, 67, 614–623. [Google Scholar] [CrossRef]
- Shan, G.B.; Xing, J.M.; Luo, M.F.; Liu, H.Z.; Chen, J.Y. Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol. Lett. 2003, 25, 1977–1981. [Google Scholar] [CrossRef]
- Guobin, S.; Jianmin, X.; Chen, G.; Huizhou, L.; Jiayong, C. Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads. Lett. Appl. Microbiol. 2005, 40, 30–36. [Google Scholar]
- Dai, Y.; Shao, R.; Qi, G.; Ding, B.B. Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane–water biphasic system. Appl. Biochem. Biotechnol. 2014, 174, 2236–2244. [Google Scholar]
- Humphries, A.C.; Nott, K.P.; Hall, L.D.; Macaskie, L.E. Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol. Bioeng. 2005, 90, 589–596. [Google Scholar] [CrossRef]
- Worthington, M.J.; Kucera, R.L.; Chalker, J.M. Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748–2761. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhnyi, S.; Gladchenko, M.; Mulder, A.; Versprille, B. Comparison of quasisteady-state performance of the DEAMOX process under intermittent and continuous feeding and different nitrogen loading rates. Biotechnol. 2007, 2, 894–900. [Google Scholar] [CrossRef]
- Kalyuzhnyi, S.; Gladchenko, M.; Mulder, A.; Versprille, B. DEAMOX—New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res. 2006, 40, 3637–3645. [Google Scholar] [CrossRef] [PubMed]
- Kalyuzhnyi, S.V.; Gladchenko, M.A.; Kang, H.; Mulder, A.; Versprille, A. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents. Water Sci. Technol. 2008, 57, 323–328. [Google Scholar] [CrossRef]
- Majolagbe, O.N.; Oloke, J.K.; Adegunlola, G.A.; Adebayo, E.A.; Oyeyiola, A.G.; Ola, I.O. Biodesulphurization of crude-oil using immobilized spores of Rhizopus nigricans. Adv. Nat. Appl. Sci. 2010, 4, 29–33. [Google Scholar]
- Efremenko, E.N.; Maslova, O.V.; Kholstov, A.V.; Senko, O.V.; Ismailov, A.D. Biosensitive element in the form of immobilized luminescent photobacteria for detecting ecotoxicants in aqueous flow-through systems. Luminescence 2016, 31, 1283–1289. [Google Scholar] [CrossRef]
- Senko, O.; Stepanov, N.; Maslova, O.; Akhundov, R.; Ismailov, A.; Efremenko, E. Immobilized luminescent bacteria for the detection of mycotoxins under discrete and flow-through conditions. Biosensors 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Senko, O.V.; Maslova, O.V.; Efremenko, E.N. Optimization potential of anaerobic biocatalytic processes using intracellular ATP concentration as the main criterion for decision making. IOP Conf. Ser. Mater. Sci. Eng. 2020, 848, 012080. [Google Scholar] [CrossRef]
- Efremenko, E.; Maslova, O.; Stepanov, N.; Ismailov, A. Using cholinesterases and immobilized luminescent photobacteria for the express-analysis of mycotoxins and estimating the efficiency of their enzymatic hydrolysis. Toxins 2021, 13, 34. [Google Scholar] [CrossRef]
- Maslova, O.; Stepanov, N.; Senko, O.; Efremenko, E. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). Bioresour. Technol. 2019, 272, 1–9. [Google Scholar] [CrossRef]
- Bhasarkar, J.B.; Dikshit, P.K.; Moholkar, V.S. Ultrasound assisted biodesulfurization of liquid fuel using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552: A mechanistic investigation. Bioresour. Technol. 2015, 187, 369–378. [Google Scholar] [CrossRef]
- Derikvand, P.; Etemadifar, Z. Improvement of biodesulfurization rate of alginate immobilized Rhodococcus erythropolis R1. Jundishapur J. Microbiol. 2014, 7, e9123. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shan, A.; Zhang, D.; Lou, Z.; Yuan, H.; Huang, X.; Zhu, N.; Hu, X. Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. Bioresour. Technol. 2015, 189, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Intanoo, P.; Rangsanvigit, P.; Malakul, P.; Chavadej, S. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour. Technol. 2014, 173, 256–265. [Google Scholar] [CrossRef]
NCs | NC Size (nm) | Conditions of ODS | ODS Efficiency (%) | Ref. |
---|---|---|---|---|
(C4H9)4N)6Mo7O24/PVA 1 | 67 | 40 °C, 2 h, 500 rpm, H2O2/CH3COOH, * mr = 1 | 97.0 | [19] |
K5PMo11CuO39- MgCu2O4@PVA | 35–38 | 35 °C, 1 h, 600 rpm, H2O2/CH3COOH, mr = 1 | 97.6 | [16] |
PMnW11/mGO 2 | 45 | 35 °C, 1 h, H2O2/CH3COOH, mr = 2 | 97.2 | [48] |
CTAB 3-PTA 4/CS 5 | 36 | 35 °C, 1 h, 500 rpm, H2O2/CH3COOH, mr = 0.5 | 94.9 | [49] |
FeW11V/CTAB-MMT 6 | 50 | 35 °C, 1 h, 700 rpm, H2O2/CH3COOH, mr = 0.5 | 96.6 | [50] |
IMID 7/PMA/CS | 65 | 35 °C, 1 h, H2O2/CH3COOH, mr = 0.5 | 96.4 | [26] |
Fe2W18Fe4/NiO/CS | 46.5 | 35 °C, 1 h, 700 rpm, H2O2/CH3COOH, mr = 0.5 | 97.1 | [51] |
PMnW11/TiO2/CS | 21 | 30–35 °C, 1 h, H2O2/CH3COOH, mr = 0.5 | 97.0 | [52] |
TBA 8-PV2Mo10/PVA | 21 | 35 °C, 2 h, 500 rpm, H2O2/CH3COOH, mr = 1 | 97.0 | [53] |
Fe2W18Fe4 9/FeTiO3 | 40–50 | 35 °C, 1 h, 700 rpm, H2O2/CH3COOH, mr = 0.5 | 98.0 | [54] |
IMID-KTHPA 10/CS | 61 | 35 °C, 1 h, 500 rpm, H2O2/CH3COOH, mr = 0.5 | 97.0 | [55] |
TBASi2W18Cd4/PVA | 33 | 35 °C, 1 h, H2O2/CH3COOH, mr = 0.5 | 96.7 | [23] |
TBA-PWFe/NiO/BNT 11 | 32 | 35 °C, 1 h, H2O2/CH3COOH, mr = 0.5 | 98.0 | [56] |
t-B.PWFe 12/NiO | 10–100 | 35 °C, 1 h, 600 rpm, H2O2/CH3COOH, mr = 0.5 | 97.0 | [57] |
PMo12O40/MnFe2O40 with Aloe vera leaf extract | 70.5 | 35 °C, 1 h, H2O2/CH3COOH, mr = 0.5 | 98.0 | [25] |
TBA-SiWMn 13/PVA | 33 | 35 °C, 2 h, 1500 rpm, H2O2/CH3COOH, mr = 0.5 | 96.9 | [8] |
[(FeW9O34)2Fe4(H2O)2]−10 (Fe6W18O70) | 17 | 35 °C, 1 h, 500 rpm, H2O2/CH3COOH, mr = 0.5 | 98.0 | [58] |
Support (Carrier) for Catalysts | Oxidation of Sulphur-Containing Compounds | Biodestruction and Anaerobic Reduction of Sulphur-Containing Compounds | Green Bioconversion of Nitrogen-Containing Compounds |
---|---|---|---|
Chemical Catalysts (NCs) | |||
Mesoporous oxides (GO, TiO2, SiO2, PbO, Al2O3, etc.) Ceramic materials Mesostructured silicates (MCM-41, SBA-15, etc.) Natural microporous materials (zeolites, bentonites, montmorillonite, etc.) Polymeric organic supports (polyvinyl alcohol (PVA), chitosan (CS), etc.) Metal-organic frameworks (MOFs) Magnetic particles (Fe3O4, etc.) | Metals (Pd, Au, etc.) Metal oxides Polyoxometalates (POMs) Other chemical compound types (molybdenum disulfide, etc.) | - | - |
MicroBioCatalysts (BCs) | |||
Supports based on various polymers (PVA, CS, Ca-alginate gel, agar, K-carrageenan, etc.) Natural microporous materials (celite, zeolite, etc.) Photocurable resins (ENT-4000 and ENTP-4000, etc.) Magnetic particles (Fe3O4 modified with oleate, etc.) | Pseudomonas sp. Rhodococcus sp. Gordonia sp. Nocardia sp. Brevibacterium lutescens | Adapted anaerobic sludge Sulphate-reducing bacteria (such as Desulfovibrio vulgaris) H2-producing bacteria (such as Clostridium acetobutylicum) | Adapted anaerobic sludge Anammox bacteria (such as Candidatus rocadia sinica) |
Liquid Fuel | IBCs | Carrier/IBC Creation Technique | Process Conditions | OBDS Efficiency, Vs, T, [Ref.] |
---|---|---|---|---|
0.54 mM DBT in tetradecane (17 mg S/L) | Rhodococcuserythropolis KA2-5-2 | Photocurable resins (ENT-4000 and ENTP-4000)/Inclusion | 10 mL n-tetradecane + DBT (0.54 mM) + IBC, 30 °C, 20 h, 120 rpm | 100%,0.85 mg S/L/h 900 h [148] |
2.5 mM DBT in dodecane (80 mg S/L) | Rhodococcus erythropolis LSSE8-1 | Magnetic nanoparticles of Fe3O4 modified with oleate/Adsorption | 20 mL water media with 10 g/L glycerin + 0.19 g IBC + 5 mL ISCM, 30 °C, 20 h, 180 rpm | 100%, 4 mg S/L/h, 140 h (14 cycles) [149] |
10 mM DBT in hexadecane (320 mg S/L) | Gordonia sp. CYKS1 or Nocardia sp. CYKS2 | Celite/Adsorption | 20 mL minimal salt water medium with 5 g/L glucose and IBC (50 vol %) + 1 mL ISCM, 24 h | 40–78%, 5–10 mg S/L/h, 168–192 h (7–8 cycles) [150] |
0.5–5 mM DBT in dodecane (16–160 mg S/L) | Gordonia sp. WQ-01A | Ca-alginate gel/Inclusion | 4 l 9 mass % solution NaCl + DBT + IBC, 30 °C, 40–100 h, 200 rpm | 100%, 0.4–1.6 mg S/L/h, 40–100 h [151] |
3 mM (thiophene and DBT = 1:1) in m-octane (96 mg S/L) | Pseudomonas delafieldii R-8 | Ca-alginate gel/Inclusion | 2 mL of NaCl solution + 8 g IBC + 10 ml ISCM, 30 °C, 24 h, 180 rpm | 25–40%, 2.4–3.8 mg S/L/h, 450 h (15 cycles) [152] |
2.7 mM DBT in dodecane (86.4 mg S/L) | Pseudomonas stutzeri UP-1 | Ca-alginate gel/Inclusion | 40 mL of 0.9% solution of NaCl + 10 g IBC + 1 mL Tween 80 + 10 mL ISCM, 31 °C, 24 h, 200 rpm | 74%, 2.7 mg S/L/h, 600 h [153] |
2.7 mM DBT (86.4 mg S/L) | Pseudomonas stutzeri UP-1 | Ca-alginate gel/Inclusion | 50 mL water medium + 10 g IBC + DBT in 200 µL DMFA, 31 °C, 24 h, 200 rpm | 65%, 2.3 mg S/L/h, 600 h [153] |
0.88 mM DBT (28 mg S/L) | Pseudomonas stutzeri | Ca-alginate gel/Inclusion | 100 mL model diesel +10 g IBC + 9 mL of phosphate buffer, 35 °C, 48 h, 120 rpm | 82%, 0.48 mg S/L/h, 48 h [154] |
0.54 mM DBT in tetradecane (17 mg S/L) | Pseudomonas sp. strain KWN5 | Ca-alginate gel/Inclusion | 17.5 mL saline solution + 2.5 mL ISCM, 37 °C, 24 h, 160 rpm | 100%, 0.7 mg S/L/h, 24 h [155] |
Extract Containing Oxidized Sulfur; IBC | Process Conditions | Vs,mg S/L/h | T, h | Methano-Genesis Efficiency, % | CH4 Content, [Ref.] |
---|---|---|---|---|---|
0.15 mM BTO2 in ethanol (48 mg S/L), AS | 0.1 M K-phosphate buffer (pH 7.2) + BTO2 + glucose (1 g/L) + IBC, 35 °C, 8 days | 0.6 | 192 | 100 | 66% [47] |
0.45 mM DBTO2 in ethanol (14.4 mg S/L), AS | 0.1 M K-phosphate buffer (pH 7.2) + DBTO2 + glucose (1 g/L) + IBC, 35°C, 18 days | 0.8 | 432 | 100 | 65% [47] |
0.45 mM DBTO2 in ethanol (14.4 mg S/L), 80% AS III + 10% D. vulgaris + 10% C. acetobutilycum | 0.1 M K-phosphate buffer (pH 7.2) + DBTO2 + glucose (1 g/L) + IBC, 35 °C, 8 days | 1.8 | 576 (3 cycles) | 100 | 82% [47] |
Methiocarb sulfone (0.4 mg S/L), AS | 0.1 M K-phosphate buffer (pH 7.2) + Methiocarb sulfone + hydrolysate of Jerusalem artichoke stems (3 g COD/L) + IBC, 35 °C, 19 days | - | 456 | 87 | 73% [126] |
0.15 mM BTO2 in ethanol (4.8 mg S/L), 80% AS + 10% D. vulgaris + 10% C. acetobutilycum | 0.1 M K-phosphate buffer (pH 7.2) + BTO2 + glucose + IBC, 35 °C | - | - | 99 | 63% [45] |
0.1 M K-phosphate buffer (pH 7.2) + BTO2 + hydrolysates of C. vulgaris biomass + IBC, 35 °C | - | - | 98 | 64%, [45] | |
Naphtha ODS extract in ethanol (2 mg S/L), 80% AS + 10% D. vulgaris + 10% C. acetobutilycum | 0.1M K-phosphate buffer (pH 7.2) + Naphtha + glucose (3 g COD/L) + IBC, 35 °C | 0.2 | 240 | 30.0 | 74% [24] |
Naphtha + wheat straw (3 g COD/L) + IBC, 35 °C | 0.2 | 240 | 29.4 | 72% [24] | |
Naphtha + aspen sawdust (3 g COD/L) + IBC, 35 °C | 0.2 | 240 | 19.8 | 77% [24] | |
Naphtha + Chlorella vulgaris biomass (3 g COD/L) + IBC, 35 °C | 0.2 | 240 | 20.2 | 62% [24] |
Process Desulfurization of Liquid Fuels | Advantages | Disadvantages |
---|---|---|
Chemical process of Hydrodesulfurization (HDS) |
|
|
Chemical process of Chemical oxidative desulfurization (ODS) with NCs |
|
|
Biocatalyst process of Oxidative biodesulfurization (OBDS) |
|
|
Hybrid chemical-biocatalyst redox processes |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslova, O.; Senko, O.; Akopyan, A.; Lysenko, S.; Anisimov, A.; Efremenko, E. Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts 2021, 11, 1131. https://doi.org/10.3390/catal11091131
Maslova O, Senko O, Akopyan A, Lysenko S, Anisimov A, Efremenko E. Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts. 2021; 11(9):1131. https://doi.org/10.3390/catal11091131
Chicago/Turabian StyleMaslova, Olga, Olga Senko, Argam Akopyan, Sergey Lysenko, Alexander Anisimov, and Elena Efremenko. 2021. "Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes" Catalysts 11, no. 9: 1131. https://doi.org/10.3390/catal11091131
APA StyleMaslova, O., Senko, O., Akopyan, A., Lysenko, S., Anisimov, A., & Efremenko, E. (2021). Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts, 11(9), 1131. https://doi.org/10.3390/catal11091131