Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Catalytic Behavior in A3-Coupling Reactions
3. Biological Activities
3.1. Antibacterial Activity
3.2. Anticancer Activity
4. Experimental Design
4.1. Materials and Methods
4.2. Synthesis
4.2.1. General Procedure for Synthesis of N-Heterocyclic Carbene Proligands (S3 and S4)
4.2.2. Synthesis of Iodo [N-(2-Hydroxyethyl)-N′-(2-Hydroxy-2-Phenyl) Ethyl-Imidazole-2-Ylidene] (S3)
4.2.3. Synthesis of Iodo [4,5-Dichloro N-(2-Hydroxyethyl) -N′-(2-Hydroxy-2-Phenyl) Ethyl-Imidazole-2-Ylidene] (S4)
4.2.4. General Procedure for the Synthesis of Silver(I) N-Heterocyclic Carbene Complexes (3a and 4a)
4.2.5. Synthesis of Iodo [N-(2-Hydroxyethyl)-N′-(2-Hydroxy-2-Phenyl)Ethyl-Imidazole-2-Yliden] Silver(I) (3a)
4.2.6. Synthesis of Iodo [4,5-Dichloro N-(2-Hydroxyethyl) -N′-(2-Hydroxy-2-Phenyl) Ethyl-Imidazole-2-Yliden] Silver(I) (4a)
4.2.7. General Procedure for the Synthesis of Gold(I) N-Heterocyclic Carbene Complexes (3b and 4b)
4.2.8. Synthesis of Chloro [N-(2-Hydroxyethyl)-N′-(2-Hydroxy-2-Phenyl)Ethyl-Imidazole-2-Yliden] Gold(I) (3b)
4.2.9. Synthesis of Chloro [4,5-Dichloro (N-(2-Hydroxyethyl)-N′-(2-Hydroxy-2-Phenyl) Ethyl-Imidazole)-2-Yliden] Gold(I) (4b)
4.3. General Procedure for A3 Coupling (Aldehyde, Amine, Alkyne) Reaction: General Procedure of A3 Coupling Reaction Promoted by M-NHC Catalysts
4.4. Antibacterial Activity
Microbiological Assays and Bacterial Strains
4.5. Anticancer Activity
4.5.1. Cell Culture
4.5.2. MTT Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, S.P. N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Hopkinson, M.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature Cell Biol. 2014, 510, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and coordinantion chemisry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172. [Google Scholar] [CrossRef] [PubMed]
- Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 2009, 109, 3612–3676. [Google Scholar] [CrossRef]
- Liu, W.; Gust, R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs. Coord. Chem. Rev. 2016, 329, 191–213. [Google Scholar] [CrossRef]
- Patil, S.A.; Patil, S.A.; Patil, R.; Keri, R.S.; Budagumpi, S.; Balakrishna, G.R.; Tacke, M. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs. Future Med. Chem. 2015, 7, 1305–1333. [Google Scholar] [CrossRef]
- Hindi, K.M.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. The medicinal applications of imidazolium carbene−metal complexes. Chem. Rev. 2009, 109, 3859–3884. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Lopez, S.; Couce-Rios, A.; Sciortino, G.; Lledos, A.; Ujaque, G. Mechanistic Insight on the hydration of terminal and interanal allenes catalyzed by [(NHC)Au]+. Organometallics 2018, 37, 3543–3551. [Google Scholar] [CrossRef]
- Coberàn, R.; Ramirez, J.; Poyatos, M.; Peris, E.; Fernàdez, E. Coinage metal complexes with N-heterocyclic carbene ligands as selective catalysts in diboration reaction. Tetrahedron Asymmetry 2006, 17, 1759–1762. [Google Scholar] [CrossRef]
- Ibáñez, S.; Poyatos, M.; Peris, E. Gold catalysts with polyaromatic-NHC ligands. Enhancement of activity by addition of pyrene. Organometallics 2017, 36, 1447–1451. [Google Scholar] [CrossRef]
- Lòpez, S.; Herrero-Gòmez, E.; Pèrez-Galàn, P.; Nieto-Oberhuber, C.; Echavarren, A.M. Gold(I)-catalyzed intermolecular cyclopropanation of enymes with alkenes: Trapping of two different gold carbenes. Angew. Chem. Int. Ed. 2006, 45, 6029–6032. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, G.; Szostak, M.; Nolan, S.P. N-Heterocyclic carbene complexes in C–H activation reactions. Chem. Rev. 2020, 120, 1981–2048. [Google Scholar] [CrossRef]
- Lin, J.C.Y.; Huang, R.T.W.; Lee, C.S.; Bhattacharyya, A.; Hwang, W.S.; Lin, I.J.B. Coinage metal—N-heterocyclic carbene complexes. Chem. Rev. 2009, 109, 3561–3598. [Google Scholar] [CrossRef]
- Wang, H.M.J.; Lin, I.J.B. Facile synthesis of silver(I)-carbene complexes. useful carbene transfer agents. Organometallics 1998, 17, 972–975. [Google Scholar] [CrossRef]
- Wang, Z.; Tzouras, N.V.; Nolan, S.P.; Bi, X. Silver N-heterocyclic carbenes: Emerging powerful catalysts. Trends Chem. 2021, 3, 674–685. [Google Scholar] [CrossRef]
- Ramírez, J.; Corberán, R.; Sanaú, M.; Peris, E.; Fernandez, E. Unprecedented use of silver(I) N-heterocyclic carbene complexes for the catalytic preparation of 1,2-bis(boronate) esters. Chem. Commun. 2005, 24, 3056–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias-Sigüenza, J.; Ros, A.; Díez, E.; Magriz, A.; Vázquez, A.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. C2-Symmetric S/C/S ligands based on N-heterocyclic carbenes: A new ligand architecture for asymmetric catalysis. Dalton Trans. 2009, 40, 8485–8488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietro, A.; Fructos, M.R.; Diaz-Requejo, M.M.; Perez, P.J.; Perez-Galan, P.; Delmont, N.; Echavarren, A.M. Gold-catalyzed olefin cyclopropanation. Tetrahedron 2009, 65, 1790–1793. [Google Scholar]
- Liu, Q.X.; Hu, Z.L.; Yu, S.C.; Zhao, Z.X.; Wei, D.C.; Li, H.L. NHC Pd (II) and Ag (I) complexes: Synthesis, structure and catalytic activity in three types of C-C coupling reactions. ACS Omega 2018, 3, 4035–4047. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.K.; Herrmann, W.A.; Herdtweck, E. Synthesis of the first gold(I) carbene complex with a gold-oxygen bond—First catalytic application of gold(I) complexes bearing N-heterocyclic carbenes. Z. Anorg. Allg. Chem. 2003, 629, 2363–2370. [Google Scholar] [CrossRef]
- Gatto, M.; Belanzoni, P.; Belpassi, L.; Biasiolo, L.; Del Zotto, A.; Tarantelli, F.; Zuccaccia, D. Solvent-, silver-, and acid-free NHC-Au-X catalyzed hydration of alkynes. The pivotal role of the counterion. ACS Catal. 2016, 6, 7363–7376. [Google Scholar] [CrossRef]
- Gatto, M.; Baratta, W.; Belanzoni, P.; Belpassi, L.; Del Zotto, A.; Tarantelli, F.; Zuccaccia, D. Hydration and alkoxylation of alkynes catalyzed by NHC–Au–OTf. Green Chem. 2018, 20, 2125–2134. [Google Scholar] [CrossRef]
- Peshkov, V.A.; Pereshivko, O.P.; Nechaev, A.A.; Peshkov, A.A.; Van der Eycken, E.V. Reactions of secondary propargylamines with heteroallenes for the synthesis of diverse heterocycles. Chem. Soc. Rev. 2018, 47, 3861–3898. [Google Scholar] [CrossRef] [PubMed]
- Bayrakdar, T.A.C.A.; Nahra, F.; Davis, J.V.; Gamage, M.M.; Captain, B.; Temprado, M.; Marazzi, M.; Saab, M.; Van Hecke, K.; Ormerod, D.; et al. Dinuclear gold(I) complexes bearing alkyl-bridged bis(N-heterocyclic carbene) ligands as catalysts for carboxylative cyclization of propargylamine: Synthesis, structure, and kinetic and mechanistic comparison to the mononuclear complex [Au(IPr)Cl]. Organometallics 2020, 39, 2907–2916. [Google Scholar] [CrossRef]
- Malka, M.; Gimeno, M.C.; Visbal, R. Recent review on biological role of Au-NHC complexes: Recent advances in gold-NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar]
- Johnson, N.A.; Southerland, M.R.; Youngs, W.J. Recent review on medicinal application of Ag-NHC: Recent developments in the medicinal applications of silver-nhc complexes and imidazolium salts. Molecules 2017, 22, 1263. [Google Scholar] [CrossRef] [PubMed]
- Barillo, D.J.; Marx, D.E. Silver in medicine: A brief history BC335 to present. Burns 2014, 40, S3–S8. [Google Scholar] [CrossRef]
- Balfourier, A.; Kolosnjaj-Tabi, J.; Luciani, N.; Carn, F.; Gazeau, F. Gold-based therapy: From past to present. Proc. Natl. Acad. Sci. USA 2020, 117, 22639–22648. [Google Scholar] [CrossRef]
- McNally, J.J.; Youngman, M.A.; Dax, S.L. Mannich reactions of resins-bound substrates: 2. A versatile three-component solid-phase organic synthesis methodology. Tetrahedron Lett. 1998, 39, 967–970. [Google Scholar] [CrossRef]
- Dyatkin, A.B.; Rivero, R.A. The solid phase synthesis of complex propargylamines using the combination of Sonogashira and Mannich reactions. Tetrahedron Lett. 1998, 39, 3647–3650. [Google Scholar] [CrossRef]
- Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev. 2012, 41, 3790–3807. [Google Scholar] [CrossRef] [PubMed]
- Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 2017, 117, 14091–14200. [Google Scholar] [CrossRef] [Green Version]
- Baranyi, M.; Porceddu, P.F.; Gölöncsér, F.; Kulcsár, S.; Otrokocsi, L.; Kittel, Á.; Pinna, A.; Frau, L.; Huleatt, P.B.; Khoo, M.-L.; et al. Novel (hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease. Mol. Neurodegener. 2016, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Carmo Carreiras, M.; Ismaili, L.; Contelles, J.M. Propargylamine-derived multi-target directed ligands for Alzheimer’s disease therapy. Biorg. Med. Chem. Lett. 2020, 30, 126880–126895. [Google Scholar] [CrossRef]
- Hickey, J.L.; Ruhayel, R.A.; Bamard, P.J.; Baker, M.V.; Berners-Price, S.J.; Filipovska, A. Mitochondria-targeted chemotherapeutics: The rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc. 2008, 130, 12570–23571. [Google Scholar] [CrossRef] [PubMed]
- Mariconda, A.; Sirignano, M.; Costabile, C.; Longo, P. New NHC-silver and gold complexes active in A3-coupling (aldehyde-alkyne-amine) reaction. Mol. Catal. 2020, 480, 110570. [Google Scholar] [CrossRef]
- Saturnino, C.; Barone, I.; Iacopetta, D.; Mariconda, A.; Sinicropi, M.S.; Rosano, C.; Campana, A.; Catalano, S.; Longo, P.; Andò, S. N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression. Future Med. Chem. 2016, 8, 2213–2229. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Rosano, C.; Sirignano, M.; Mariconda, A.; Ceramella, J.; Ponassi, M.; Saturnino, C.; Sinicropi, M.S.; Longo, P. Is the way to fight cancer paved with gold? Metal-based carbene complexes with multiple and fascinating biological features. Pharmaceuticals 2020, 13, 91. [Google Scholar] [CrossRef]
- Napoli, M.; Saturnino, C.; Cianciulli, E.I.; Varcamonti, M.; Zanfardino, A.; Tommonaro, G.; Longo, P. Silver(I) N-heterocyclic carbene complexes: Synthesis, characterization and antibacterial activity. J. Organomet. Chem. 2013, 725, 46–53. [Google Scholar] [CrossRef]
- Arnold, P.L.; Rodden, M.; Davis, K.; Scarisbrick, A.C.; Blake, A.; Wilson, C. Asymmetric lithium(I) and copper(II) alkoxy-N-heterocylic carbene complexes; crystallographic characterization and Lewis acid catalysis. Chem. Commun. 2004, 14, 1612–1613. [Google Scholar] [CrossRef]
- Arnold, P.L.; Liddle, S.T. F-block N-heterocyclic carbene complexes. Chem. Comm. 2006, 38, 3959–3971. [Google Scholar] [CrossRef]
- Iacopetta, D.; Mariconda, A.; Saturnino, C.; Caruso, A.; Palma, G.; Ceramella, J.; Muià, N.; Perri, M.; Sinicropi, M.S.; Caroleo, M.C.; et al. Novel gold and silver carbene complexes exert antitumor effects triggering the reactive oxygen species dependent intrinsic apoptotic pathway. Chem. Med. Chem. 2017, 12, 2054–2065. [Google Scholar] [CrossRef] [PubMed]
- Garrison, J.C.; Youngs, W.J. Ag(I) N-heterocyclic carbene complexes: Synthesis, structure, and application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef] [PubMed]
- Mariconda, A.; Grisi, F.; Costabile, C.; Falcone, S.; Bertolasi, V.; Longo, P. Synthesis characterization and catalytic behavior of palladium bearing a hydroxy-functionalized N-heterocyclic carbene ligand. New J. Chem. 2014, 38, 762–769. [Google Scholar] [CrossRef]
- Costabile, C.; Mariconda, A.; Sirignano, M.; Crispini, A.; Scarpelli, F.; Longo, P. A green approach for A3-coupling reactions: An experimental and theorical study on NHC silver and gold catalysts. New J. Chem. 2021, 45, 18509–18517. [Google Scholar] [CrossRef]
- Abbiati, G.; Rossi, E. Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem. 2014, 10, 481–513. [Google Scholar] [CrossRef] [Green Version]
- Document M07; National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard. 11th ed. CLSI: Wayne, PA, USA, 2011.
- Vigliotta, G.; Giordano, D.; Verdino, A.; Caputo, I.; Martucciello, S.; Soriente, A.; Marabotti, A.; De Rosa, M. New compounds for a good old class: Synthesis of two β-lactam bearing cephalosporins and their evaluation with a multidisciplinary approach. Bioorg. Med. Chem. 2020, 28, 115302. [Google Scholar] [CrossRef]
Run a | Catalyst | Aldehyde | Products | Yield b (%) |
---|---|---|---|---|
1 | 3a | p-formaldehyde | PAA1 | 25 |
2 | cyclohexanecarboxaldehyde | PAA2 | 47 | |
3 | benzaldehyde | PAA3 | 23 | |
4 | 4a | p-formaldehyde | PAA1 | 65 |
5 | cyclohexanecarboxaldehyde | PAA2 | 52 | |
6 | benzaldehyde | PAA3 | 36 | |
7 | 3b | p-formaldehyde | PAA1 | 86 |
8 | cyclohexanecarboxaldehyde | PAA2 | 65 | |
9 | benzaldehyde | PAA3 | 60 | |
10 | 4b | p-formaldehyde | PAA1 | 99 |
11 | cyclohexanecarboxaldehyde | PAA2 | 99 | |
12 | benzaldehyde | PAA3 | 60 |
Complex | MIC (Minimal Inhibitory Concentration) µg/mL (µM) a | |
---|---|---|
E. Coli (Gram Negative) | S. Aureus (Gram Positive) | |
1a b | 6.5 (14.9) | >150 (>343.2) |
2a | 10 (19.8) | >150 (>296.4) |
3a | 15 (32.1) | 50 (107.0) |
4a | 15 (27.9) | >150 (>279.8) |
1b | >150 (>345.1) | 40 (92.0) |
2b | 75 (148.9) | 0.5 (0.99) |
3b | 100 (215.2) | 25 (53.8) |
4b | 75 (140.7) | 2.5 (4.7) |
IC50 (µM) | |||||
---|---|---|---|---|---|
Sample | MDA-MB-231 | MCF-7 | HeLa | MCF-10A | Hek-293 |
S3 | >200 | >200 | >200 | >200 | >200 |
S4 | >200 | >200 | >200 | >200 | >200 |
3a | >200 | 20.3 ± 1.1 | 12.2 ± 1.0 | >200 | >200 |
3b | >200 | >200 | >200 | >200 | >200 |
4a | >200 | 19.5 ± 0.9 | 11.9 ± 0.4 | >200 | >200 |
4b | 49.5 ± 0.7 | 12.2 ± 1.2 | >200 | >200 | >200 |
Cisplatin | 28.9 ± 0.7 | 36.2 ± 1.0 | 16.2 ± 1.1 | 80.7 ± 1.0 | 16.1 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirignano, M.; Mariconda, A.; Vigliotta, G.; Ceramella, J.; Iacopetta, D.; Sinicropi, M.S.; Longo, P. Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms. Catalysts 2022, 12, 18. https://doi.org/10.3390/catal12010018
Sirignano M, Mariconda A, Vigliotta G, Ceramella J, Iacopetta D, Sinicropi MS, Longo P. Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms. Catalysts. 2022; 12(1):18. https://doi.org/10.3390/catal12010018
Chicago/Turabian StyleSirignano, Marco, Annaluisa Mariconda, Giovanni Vigliotta, Jessica Ceramella, Domenico Iacopetta, Maria Stefania Sinicropi, and Pasquale Longo. 2022. "Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms" Catalysts 12, no. 1: 18. https://doi.org/10.3390/catal12010018
APA StyleSirignano, M., Mariconda, A., Vigliotta, G., Ceramella, J., Iacopetta, D., Sinicropi, M. S., & Longo, P. (2022). Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms. Catalysts, 12(1), 18. https://doi.org/10.3390/catal12010018