Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Procedure for Catalyst Recovery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khong, S.N.; Xie, C.; Wang, X.; Tan, H.; Kwon, O. Chiral aminophosphines derived from hydroxyproline and their application in allene–imine [4+2] annulation. J. Antibiot. 2019, 72, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, L.; Li, Z.; Liu, H.; Wang, B.; Xiao, Y.; Guo, H. Phosphine-catalyzed [4+2] cycloaddition of sulfamate-derived cyclic imines with allenoates: Synthesis of sulfamate-fused tetrahydropyridines. Tetrahedron 2014, 70, 340–348. [Google Scholar] [CrossRef]
- Zalewska, K.; Santos, M.M.; Cruz, H.; Branco, L.C. Photo-Organocatalysis, Photo-Redox, and Electro- Organocatalysis Processes. In Recent Advances in Organocatalysis; Karamé, I., Srour, H., Eds.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc. 2000, 122, 4243–4244. [Google Scholar] [CrossRef]
- Zalewska, K.; Branco, L.C. Organocatalysis with chiral ionic liquids. Mini Rev. Org. Chem. 2014, 11, 141–153. [Google Scholar] [CrossRef]
- Xiang, S.-H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 2020, 11, 3786–3790. [Google Scholar] [CrossRef] [PubMed]
- Press Release: The Nobel Prize in Chemistry 2021. NobelPrize.org. Nobel Prize Outreach AB 2021. Sat. 13 Nov 2021. 2021. Available online: https://www.nobelprize.org/prizes/chemistry/2021/press-release/ (accessed on 14 November 2021).
- Krištofíková, D.; Modrocká, V.; Mečiarová, M.; Šebesta, R. Green Asymmetric Organocatalysis. ChemSusChem 2020, 13, 2828–2858. [Google Scholar] [CrossRef]
- Antenucci, A.; Dughera, S.; Renzi, P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem 2021, 14, 2785–2853. [Google Scholar] [CrossRef] [PubMed]
- List, B.; Lerner, R.A.; Barbas, C.F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. [Google Scholar] [CrossRef]
- Gröger, H.; Wilken, J. The Application of L-Proline as an Enzyme Mimic and Further New Asymmetric Syntheses Using Small Organic Molecules as Chiral Catalysts. J. Angew. Chem. Int. Ed. 2001, 40, 529–532. [Google Scholar] [CrossRef]
- Brown, S.P.; Brochu, M.P.; Sinz, C.J.; MacMillan, D.W.C. The Direct and Enantioselective Organocatalytic α-Oxidation of Aldehydes. J. Am. Chem. Soc. 2003, 125, 10808–10809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Jha, V.; Gonnade, R. Proline-Catalyzed Asymmetric Synthesis of syn- and anti-1,3-Diamines. J. Org. Chem. 2013, 78, 11756–11764. [Google Scholar] [CrossRef]
- Juaristi, E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron 2021, 88, 132143–132176. [Google Scholar] [CrossRef]
- List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 2002, 58, 5573–5590. [Google Scholar] [CrossRef]
- Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 1974, 39, 1615–1621. [Google Scholar] [CrossRef]
- Heravi, M.M.; Zadsirjan, V.; Dehghani, M.; Hosseintash, N. Current applications of organocatalysts in asymmetric aldol reactions: An update. Tetrahedron Asymmetry 2017, 28, 587–707. [Google Scholar] [CrossRef]
- Karaoglu, M.; Aydogan, F.; Yolacan, C. Pro-Phe Derivatives as Organocatalysts in Asymmetric Aldol Reaction. Lett. Org. Chem. 2021, 18, 233–239. [Google Scholar] [CrossRef]
- Shams, F.; Mokhtari, J.M.; Rouhani, M. Asymmetric cross-aldol reaction of isatin and ketones catalyzed by crude earthworm extract as efficient biocatalyst. Green Chem. Lett. Rev. 2020, 13, 258–264. [Google Scholar] [CrossRef]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.R.; Kar, M.; Pringle, J.M. Fundamentals of Ionic Liquids: From Chemistry to Applications; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Bica, K.; Gaertner, P. Applications of chiral ionic liquids. Eur. J. Org. Chem. 2008, 19, 3235–3250. [Google Scholar] [CrossRef]
- Ding, J.; Armstrong, D.W. Chiral ionic liquids: Synthesis and applications. Chirality 2005, 17, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Feder-Kubis, J.; Tatarczak-Michalewska, M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Se-lected Separation Techniques. Int. J. Mol. Sci. 2020, 21, 4253. [Google Scholar] [CrossRef] [PubMed]
- Karimi, B.; Tavakolian, M.; Akbari, M.; Mansouri, F. Ionic Liquids in Asymmetric Synthesis: An Overall View from Reaction Media to Supported Ionic Liquid Catalysis. ChemCatChem 2018, 10, 3173–3205. [Google Scholar] [CrossRef]
- Miao, W.; Chan, T.H. Ionic-Liquid-Supported Organocatalyst: Efficient and Recyclable Ionic-Liquid-Anchored Proline for Asymmetric Aldol Reaction. Adv. Synth. Catal. 2006, 348, 1711–1718. [Google Scholar] [CrossRef]
- Siyutkin, D.E.; Kucherenko, A.S.; Zlotin, S.G. Hydroxy-α-amino acids modified by ionic liquid moieties: Recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron 2009, 65, 1366–1372. [Google Scholar] [CrossRef]
- Yang, S.D.; Wu, L.Y.; Yan, Z.Y.; Pan, Z.L.; Liang, Y.M. A novel ionic liquid supported organocatalyst of pyrrolidine amide: Synthesis and catalyzed Claisen–Schmidt reaction. J. Mol. Catal. A 2007, 268, 107–111. [Google Scholar] [CrossRef]
- Porcar, R.; García-Verdugo, E.; Altava, B.; Burguete, M.I.; Luis, S.V. Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules 2021, 26, 4190. [Google Scholar] [CrossRef]
- Kucherenko, A.S.; Perepelkin, V.V.; Zhdankina, G.M.; Kryshtal, G.V.; Srinivasan, E.; Inanib, H.; Zlotin, S.G. Ionic liquid supported 4-HO-Pro-Val derived organocatalysts for asymmetric aldol reactions in the presence of water. Mendeleev Commun. 2016, 26, 388–390. [Google Scholar] [CrossRef]
- Gauchot, V.; Schmitzer, A.R. Asymmetric Aldol Reaction Catalyzed by the Anion of an Ionic Liquid. J. Org. Chem. 2012, 77, 4917–4923. [Google Scholar] [CrossRef]
- Wu, C.; Fu, X.; Li, S. A Highly Efficient, Large-Scale, Asymmetric Direct Aldol Reaction Employing Simple Threonine Derivatives as Recoverable Organocatalysts in the Presence of Water. Eur. J. Org. Chem. 2011, 7, 1291–1299. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Z. (R)- or (S)-Bi-2-naphthol assisted, L-proline catalyzed direct aldol reaction. Tetrahedron Asymmetry 2006, 17, 1671–1677. [Google Scholar] [CrossRef]
- Li, L.; Gou, S.; Liu, F. Highly stereoselective anti-aldol reactions catalyzed by simple chiral diamines and their unique application in configuration switch of aldol products. Tetrahedron Lett. 2013, 54, 6358–6362. [Google Scholar] [CrossRef]
- Wagner, M.; Contie, Y.; Ferroud, C.; Revial, G. Enantioselective Aldol Reactions and Michael Additions Using Proline Derivatives as Organocatalysts. Int. J. Org. Chem. 2014, 4, 55–67. [Google Scholar] [CrossRef] [Green Version]
Entry | Ketone/Benzaldehyde [a] (Product) | Catalyst [b] | dr (anti: syn) [c] | Yield [%] [d] | ee% [e] |
---|---|---|---|---|---|
1 | Acetone/2-Nitro (1) | 1 | - | 89 | 89 |
2 | Acetone/4-Nitro (2) | 1 | - | 90 | 91 |
3 | Acetone/2-Nitro (1) | 2 | - | no reaction | -- |
4 | Acetone/4-Nitro (2) | 2 | - | no reaction | -- |
5 | Acetone/2-Nitro (1) | 3a | - | 70 | 53 |
6 | Acetone/4-Nitro (2) | 3a | - | 79 | 70 |
7 | Acetone/2-Nitro (1) | 3b | - | 42 | 37 |
8 | Acetone/2-Nitro (1) | 4a | - | no reaction | -- |
9 | Acetone/2-Nitro (1) | 4b | - | 40 | 66 |
10 | Acetone/4-Nitro (2) | 4c | - | 77 | 68 |
11 | Acetone/2-Nitro (1) | 5a | - | no reaction | -- |
12 | Cyclohexanone/2-Nitro (3) | 1 | 94:6 | 63 | 76 |
13 | Cyclohexanone/4-Nitro (4) | 1 | 98:2 | 68 | 84 |
14 | Cyclohexanone/2-Nitro (3) | 2 | - | no reaction | -- |
15 | Cyclohexanone/4-Nitro (4) | 2 | - | no reaction | -- |
16 | Cyclohexanone/2-Nitro (3) | 3a | 89:11 | 63 | 88 |
17 | Cyclohexanone/4-Nitro (4) | 3a | 89:11 | 73 | 90 |
18 | Cyclohexanone/2-Nitro (3) | 3b | - | no reaction | -- |
19 | Cyclohexanone/2-Nitro (3) | 4c | - | no reaction | -- |
20 | Cyclohexanone/2-Nitro (3) | 5a | 91:9 | 21 | n.d. [f] |
Entry [a] | Catalyst [b] | Ketone | Substituted Benzaldehyde | Yield [%] [c] | dr (anti: syn) [d] | ee% [e] |
---|---|---|---|---|---|---|
1 | 1 | Acetone | Benzaldehyde (5) | 68 | - | 84 |
2 | 3a | Acetone | Benzaldehyde (5) | 73 | - | 90 |
3 | 1 | Cyclohexanone | Benzaldehyde (6) | 69 | 98:2 | 82 |
4 | 3a | Cyclohexanone | Benzaldehyde (6) | 70 | 90:10 | 85 |
5 | L-PRO | Acetone | 4-hydroxy-3-nitro (7) | 67 | - | 92 |
6 | 3a | Acetone | 4-hydroxy-3-nitro (7) | 76 | - | 95 |
7 | L-PRO | Acetone | 2-hydroxy-5-nitro (8) | 70 | - | 95 |
8 | 3a | Acetone | 2-hydroxy-5-nitro(8) | 58 | - | 96 |
9 | L-PRO | Acetone | 2-hydroxy-3-metoxy-5-nitro (9) | 41 | - | 94 |
10 | 3a | Acetone | 2-hydroxy-3-metoxy-5-nitro (9) | 76 | - | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewska, K.; Zakrzewska, M.E.; Branco, L.C. Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts 2022, 12, 47. https://doi.org/10.3390/catal12010047
Zalewska K, Zakrzewska ME, Branco LC. Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts. 2022; 12(1):47. https://doi.org/10.3390/catal12010047
Chicago/Turabian StyleZalewska, Karolina, Małgorzata E. Zakrzewska, and Luis C. Branco. 2022. "Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction" Catalysts 12, no. 1: 47. https://doi.org/10.3390/catal12010047
APA StyleZalewska, K., Zakrzewska, M. E., & Branco, L. C. (2022). Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts, 12(1), 47. https://doi.org/10.3390/catal12010047