An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate
Abstract
:1. Introduction
2. Routes for Glycerol Carbonate Synthesis
3. Phosgene Route
4. Carbonylation by Urea
4.1. Catalyst Application of Urea Route
4.1.1. Metal Salt Catalysts
4.1.2. Ionic Liquid Catalysts
4.1.3. Solid Acid and Basic Catalysts
4.1.4. Zinc-Based Solid Catalysts
4.2. The Future of the Urea Route
5. CO Oxidative Carbonylation Route
5.1. Application of Catalyst for CO Oxidation Carbonylation
5.2. The Future of CO Oxidative Carbonylation Route
5.3. CO2 Direct Carbonylation Route
5.4. The Future of CO2 Direct Carbonylation Route
6. Transesterification Route
6.1. Catalyst-Mediated Transesterification of EC with Glycerol
6.2. Catalyst-Mediated Transesterification of DMC with Glycerol
6.2.1. Alkali Metal Catalysts
6.2.2. Alkaline-Earth Metal Oxide Catalysts
6.2.3. Mixed Oxide Catalyst
6.2.4. Bio-Catalyst
6.2.5. Ionic Liquid Catalyst (ILs)
6.3. The Future of the Transesterification Route
7. Features of the Four Synthetic Routes to GC
8. Conclusions and Prospects for the Synthesis of GC
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yalcin, S.; Konukman, A.E.S.; Midilli, A. A perspective on fossil fuel based flue gas emission reduction technologies. Greenh. Gases Sci. Technol. 2020, 10, 664–677. [Google Scholar] [CrossRef] [Green Version]
- Konur, O. (Ed.) Biodiesel Fuels Based on Edible and Nonedible Feedstocks, Wastes, and Algae: Science, Technology, Health, and Environment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Habib, M.S.; Asghar, O.; Hussain, A.; Imran, M.; Mughal, M.P.; Sarkar, B. A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 2021, 278, 122403. [Google Scholar] [CrossRef]
- Kumar, A.; Tirkey, J.V.; Shukla, S.K. Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India. Renew. Energy 2021, 169, 266–282. [Google Scholar] [CrossRef]
- Pasha, M.K.; Dai, L.; Liu, D.; Guo, M.; Du, W. An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnol. Biofuels 2021, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Global Biofuel Production 2000–2020. N. Sönnichsen. 2021. Available online: https://www.statista.com/statistics/274163/global-biofuel-production-in-oil-equivalent/#statisticContainer (accessed on 3 December 2021).
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Ciriminna, R.; Della Pina, C.; Rossi, M.; Pagliaro, M. Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 2014, 116, 1432–1439. [Google Scholar] [CrossRef]
- Kumar, L.R.; Yellapu, S.K.; Tyagi, R.D.; Zhang, X. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresour. Technol. 2019, 293, 122–155. [Google Scholar] [CrossRef]
- He, Q.; McNutt, J.; Yang, J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renew. Sustain. Energy Rev. 2017, 71, 63–76. [Google Scholar] [CrossRef]
- Ono, Y. Dimethyl carbonate for environmentally benign reactions. Catal. Today 1997, 35, 15–25. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Amigoni, S.; de Givenchy, E.P.T.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2012, 15, 283–306. [Google Scholar] [CrossRef]
- Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.-L.; Lam, M.K.; Chen, W.-H. Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies 2020, 13, 1483. [Google Scholar] [CrossRef] [Green Version]
- Magniont, C.; Escadeillas, G.; Oms-Multon, C.; De Caro, P. The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cem. Concr. Res. 2010, 40, 1072–1080. [Google Scholar] [CrossRef]
- Hülsey, M.J.; Yang, H.Y.; Yan, N. Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustain. Chem. Eng. 2018, 6, 5694–5707. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Ramírez-López, C.; Belsué, M. A Brief Review on Industrial Alternatives for the Manufacturing of Glycerol Carbonate, a Green Chemical. Org. Process. Res. Dev. 2012, 16, 389–399. [Google Scholar] [CrossRef]
- De Caro, P.; Bandres, M.; Urrutigoïty, M.; Cecutti, C.; Thiebaud-Roux, S. Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties. Front. Chem. 2019, 7, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strain, F. Carbonate-Haloformate of Glycerol and Method of Producing Same. U.S. Patent 2446145, 27 July 1948. [Google Scholar]
- Dibenedetto, A.; Angelini, A. Chapter Two-Synthesis of Organic Carbonates. In Advances in Inorganic Chemistry; Aresta, M., van Eldik, R., Eds.; Academic Press: Amsterdam, The Netherlands, 2014; Volume 66, pp. 25–81. ISBN 9780124202214. [Google Scholar] [CrossRef]
- Poliakoff, M.; Licence, P. Green chemistry. Nature 2007, 450, 810–812. [Google Scholar] [CrossRef]
- Singh, G.; Pradhan, G.; Pradhan, S.; Sharma, Y.C. Transformation of Biodiesel waste Glycerol to Value added Glycerol Carbonate. Chem. Sci. Rev. Lett. 2020, 9, 1003–1013. [Google Scholar]
- Meessen, J.H.; Petersen, H. Urea. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000. [Google Scholar]
- Shukla, K.; Srivastava, V.C. Synthesis of organic carbonates from alcoholysis of urea: A review. Catal. Rev. 2017, 59, 1–43. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Calvino-Casilda, V.; Bañares, M.A.; Fernandez, J.F. Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J. Catal. 2010, 275, 288–293. [Google Scholar] [CrossRef]
- Calvino-Casilda, V.; Mul, G.; Fernández, J.; Rubio-Marcos, F.; Bañares, M.A. Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy. Appl. Catal. A Gen. 2011, 409-410, 106–112. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.A.; Dimitratos, N.; Glanville, N.; Kesavan, L.; Hammond, C.; Edwards, J.K.; Carley, A.F.; Kiely, C.J.; Hutchings, G.J. Reactivity studies of Au–Pd supported nanoparticles for catalytic applications. Appl. Catal. A Gen. 2011, 391, 400–406. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Wang, A.; Xu, C.; Yang, S. Progress of Catalytic Valorization of Bio-Glycerol with Urea into Glycerol Carbonate as a Monomer for Polymeric Materials Heng. Adv. Polym. Technol. 2020, 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Choi, J.S.; Woo, S.K.; Lee, S.D.; Cheong, M.; Kim, H.S.; Lee, H. Isolation and characterization of intermediate catalytic species in the Zn-catalyzed glycerolysis of urea. Appl. Catal. A Gen. 2012, 433–434, 35–40. [Google Scholar] [CrossRef]
- Fujita, S.-I.; Yamanishi, Y.; Arai, M. Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction. J. Catal. 2013, 297, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Zuhaimi, N.A.S.; Indran, V.P.; Deraman, M.A.; Mudrikah, N.F.; Maniam, G.P.; Taufiq-Yap, Y.H.; Rahim, M.H.A. Reusable gypsum based catalyst for synthesis of glycerol carbonate from glycerol and urea. Appl. Catal. A Gen. 2015, 502, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, X.; Liu, C.; Cheng, T. Synthesis of glycerol carbonate from glycerol and urea over lanthanum compounds. React. Kinet. Mech. Catal. 2015, 115, 597–609. [Google Scholar] [CrossRef]
- Charate, S.; Shinde, S.; Kondawar, S.; Desai, U.; Wadgaonkar, P.; Rode, C. Role of preparation parameters of Cu–Zn mixed oxide catalyst in solvent free glycerol carbonylation with urea. J. Indian Chem. Soc. 2021, 98, 100090. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Dong, B.; Leng, W.; Huang, J.; Ge, R.; Gao, Y. Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate. Chin. J. Catal. 2015, 36, 336–343. [Google Scholar] [CrossRef]
- Di Gioia, M.L.; Barattucci, A.; Bonaccorsi, P.; Leggio, A.; Minuti, L.; Romio, E.; Temperini, A.; Siciliano, C. Deprotection/reprotection of the amino group in α-amino acids and peptides. A one-pot procedure in [Bmim][BF4] ionic liquid. RSC Adv. 2014, 4, 2678–2686. [Google Scholar] [CrossRef]
- Kim, D.-W.; Park, K.-A.; Kim, M.-J.; Kang, D.-H.; Yang, J.-G.; Park, D.-W. Synthesis of glycerol carbonate from urea and glycerol using polymer-supported metal containing ionic liquid catalysts. Appl. Catal. A Gen. 2014, 473, 31–40. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, M.-J.; Roshith, K.; Kim, M.-I.; Kwak, J.-Y.; Park, D.-W. Comparative catalytic activity of supported ZnBr2-containing ionic liquid catalysts for preparation of glycerol carbonate by glycerolysis of urea. Korean J. Chem. Eng. 2014, 31, 972–980. [Google Scholar] [CrossRef]
- Kim, D.-W.; Park, D.-W. Organic–Inorganic Hybrids of Imidazole Complexes of Zinc (II) for Catalysts in the Glycerolysis of Urea. J. Nanosci. Nanotechnol. 2014, 14, 4632–4638. [Google Scholar] [CrossRef] [PubMed]
- Jagadeeswaraiah, K.; Kumar, C.R.; Prasad, P.S.S.; Lingaiah, N. Incorporation of Zn2+ ions into the secondary structure of heteropoly tungstate: Catalytic efficiency for synthesis of glycerol carbonate from glycerol and urea. Catal. Sci. Technol. 2014, 4, 2969–2977. [Google Scholar] [CrossRef]
- Jagadeeswaraiah, K.; Kumar, C.R.; Prasad, P.S.S.; Loridant, S.; Lingaiah, N. Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. Appl. Catal. A Gen. 2014, 469, 165–172. [Google Scholar] [CrossRef]
- Kumar, C.R.; Jagadeeswaraiah, K.; Prasad, P.S.S.; Lingaiah, N. Samarium-exchanged Heteropoly Tungstate: An Efficient Solid Acid Catalyst for the Synthesis of Glycerol Carbonate from Glycerol and Benzylation of Anisole. ChemCatChem 2012, 4, 1360–1367. [Google Scholar] [CrossRef]
- Babu, M.S.; Srivani, A.; Parameswaram, G.; Veerabhadram, G.; Lingaiah, N. Understanding the Role of Tantalum in Heteropoly Tungstate Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea. Catal. Lett. 2015, 145, 1784–1791. [Google Scholar] [CrossRef]
- Jagadeeswaraiah, K.; Kumar, C.R.; Rajashekar, A.; Srivani, A.; Lingaiah, N. The Role of Tungsten Oxide Species Supported on Titania Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea. Catal. Lett. 2016, 146, 692–700. [Google Scholar] [CrossRef]
- Srikanth, A.; Viswanadham, B.; Kumar, V.P.; Anipindi, N.R.; Chary, K.V.R. Synthesis and characterization of Cs-exchanged heteropolyacid catalysts functionalized with Sn for carbonolysis of glycerol to glycerol carbonate. Appl. Petrochem. Res. 2015, 6, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Mallesham, B.; Rangaswamy, A.; Rao, B.G.; Rao, T.V.; Reddy, B.M. Solvent-Free Production of Glycerol Carbonate from Bioglycerol with Urea Over Nanostructured Promoted SnO2 Catalysts. Catal. Lett. 2020, 150, 3626–3641. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Wang, Y.; Liu, S.; Deng, Y. Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catal. Commun. 2011, 12, 1458–1462. [Google Scholar] [CrossRef]
- Lari, M.G.; de Moura, A.B.L.; Weimann, L.; Mitchell, S.; Mondelli, C.; Pérez-Ramírez, J. Design of a technical Mg-AI mixed oxide catalyst for the continuous manufacture of glycerol carbonate. J. Mat. Chem. A 2017, 5, 16200–16211. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Fan, M.; Dong, Y.; Jiang, P. The value-added utilization of glycerol for the synthesis of glycerol carbonate catalyzed with a novel porous ZnO catalyst. RSC Adv. 2016, 6, 76223–76230. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Manjunathan, P.; Ravishankar, R.; Shanbhag, G.V. Novel bifunctional Zn-Sn composite oxide catalyst for the selective syn-thesis of glycerol carbonate by carbonylation of glycerol with urea. ChemCatChem 2016, 8, 631–639. [Google Scholar] [CrossRef]
- Ahire, J.; Bhanage B., M. Solar energy-controlled shape selective synthesis of zinc oxide nanomaterials and its catalytic appli-cation in synthesis of glycerol carbonate. J. Solid State Chem. 2021, 295, 121927. [Google Scholar] [CrossRef]
- Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. The Chemistry of CO: Carbonylation. Chem 2018, 5, 526–552. [Google Scholar] [CrossRef] [Green Version]
- Ozorio, L.P.; Mota, C.J.A. Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides. ChemPhysChem 2017, 18, 3260–3265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, J.H.; Rieber, N.; Harder, W. Preparation of Glycerol Carbonate. US Patent 5359094A, 1994. [Google Scholar]
- Hu, J.; Li, J.; Gu, Y.; Guan, Z.; Mo, W.; Ni, Y.; Li, T.; Li, G. Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI. Appl. Catal. A Gen. 2010, 386, 188–193. [Google Scholar] [CrossRef]
- Casiello, M.; Monopoli, A.; Cotugno, P.; Milella, A.; Dell’Anna, M.M.; Ciminale, F.; Nacci, A. Copper(II) chloride-catalyzed oxidative carbonylation of glycerol to glycerol carbonate. J. Mol. Catal. A Chem. 2013, 381, 99–106. [Google Scholar] [CrossRef]
- Mizuno, T.; Nakai, T.; Mihara, M. New synthesis of glycerol carbonate from glycerol using sulfur-assisted carbonylation with carbon monoxide. Heteroat. Chem. 2010, 21, 99–102. [Google Scholar] [CrossRef]
- Mizuno, T.; Nakai, T.; Mihara, M. Facile synthesis of glycerol carbonate from glycerol using selenium-catalyzed carbonylation with carbon monoxide. Heteroat. Chem. 2010, 21, 541–545. [Google Scholar] [CrossRef]
- Hu, J.; Gu, Y.; Guan, Z.; Li, J.; Mo, W.; Li, T.; Li, G. An Efficient Palladium Catalyst System for the Oxidative Carbonylation of Glycerol to Glycerol Carbonate. ChemSusChem 2011, 4, 1767–1772. [Google Scholar] [CrossRef]
- Doro, F.; Winnertz, P.; Leitner, W.; Prokofieva, A.; Müller, T.E. Adapting a Wacker-type catalyst system to the palladium-catalyzed oxidative carbonylation of aliphatic polyols. Green Chem. 2011, 13, 292–295. [Google Scholar] [CrossRef]
- Pearson, D.M.; Conley, N.R.; Waymouth, R.M. Palladium-Catalyzed Carbonylation of Diols to Cyclic Carbonates. Adv. Synth. Catal. 2011, 353, 3007–3013. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. J. Chem. Thermodyn. 2011, 43, 731–736. [Google Scholar] [CrossRef]
- Lukato, S.; Kasozi, G.N.; Naziriwo, B.; Tebandeke, E. Glycerol carbonylation with CO2 to form glycerol carbonate: A review of recent developments and challenges. Curr. Res. Green Sustain. Chem. 2021, 4, 100199. [Google Scholar] [CrossRef]
- Na Lim, Y.; Lee, C.; Jang, H.-Y. ChemInform Abstract: Metal-Free Synthesis of Cyclic and Acyclic Carbonates from CO2 and Alcohols. ChemInform 2015, 46. [Google Scholar] [CrossRef]
- Podila, S.; Plasseraud, L.; Cattey, H.; Ballivet-Tkatchenko, D.; Carrera, G.V.S.M.; Nunes Da Ponte, M.; Neuberg, S.; Behr, A. Synthesis of 1,2-glycerol carbonate from carbon dioxide: The role of methanol in fluid phase equilibrium. Indian J. Chem. 2012, 51, 1330–1338. [Google Scholar]
- Li, H.; Gao, D.; Gao, P.; Wang, F.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3–ZnO catalysts. Catal. Sci. Technol. 2013, 3, 2801–2809. [Google Scholar] [CrossRef]
- Zhang, J.; He, D. Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: The role of supports. J. Chem. Technol. Biotechnol. 2015, 90, 1077–1085. [Google Scholar] [CrossRef]
- Zhang, J.; He, D. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. J. Colloid Interface Sci. 2014, 419, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y.; Zhang, B. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. Catal. Sci. Technol. 2015, 5, 989–1005. [Google Scholar] [CrossRef]
- Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95–107. [Google Scholar] [CrossRef]
- Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent. ACS Catal. 2014, 4, 3877–3880. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, P.; Darbha, S. Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies. J. Chem. Sci. 2016, 128, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Y.; Zhang, J.; He, D. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl. Catal. A Gen. 2016, 513, 9–18. [Google Scholar] [CrossRef]
- Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Wang, Y.; Yu, X.; Wu, Z.; Zhao, F. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem. 2017, 19, 1775–1781. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chem. 2020, 22, 4231–4239. [Google Scholar] [CrossRef]
- Collett, C.; Mašek, O.; Razali, N.; McGregor, J. Influence of Biochar Composition and Source Material on Catalytic Performance: The Carboxylation of Glycerol with CO2 as a Case Study. Catalysts 2020, 10, 1067. [Google Scholar] [CrossRef]
- Razali, N.; McGregor, J. Improving Product Yield in the Direct Carboxylation of Glycerol with CO2 through the Tailored Selection of Dehydrating Agents. Catalysts 2021, 11, 138. [Google Scholar] [CrossRef]
- Hu, C.; Yoshida, M.; Chen, H.-C.; Tsunekawa, S.; Lin, Y.-F.; Huang, J.-H. Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst. Chem. Eng. Sci. 2021, 235, 116451. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ma, L.; Liu, J.; He, D. Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3–ZnO catalyst—A case study of the photo-thermal synergism. Catal. Sci. Technol. 2021, 11, 1007–1013. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villarán-Velasco, M.C. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A Gen. 2009, 366, 315–324. [Google Scholar] [CrossRef]
- Sahani, S.; Upadhyay, S.N.; Sharma, Y.C. Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification. Ind. Eng. Chem. Res. 2020, 60, 67–88. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; De Frutos, P.; Iborra, S.; Noy, M.; Velty, A.; Concepción, P. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. J. Catal. 2010, 269, 140–149. [Google Scholar] [CrossRef]
- Cho, H.J.; Kwon, H.M.; Jose, T.; Park, D.W. Synthesis of glycerol carbonate from ethylene carbonate and glycerol using im-mobilized ionic liquid catalysts. J. Ind. Eng. Chem. 2010, 16, 679–683. [Google Scholar] [CrossRef]
- Lanjekar, K.; Rathod, V.K. Utilization of glycerol for the production of glycerol carbonate through greener route. J. Environ. Chem. Eng. 2013, 1, 1231–1236. [Google Scholar] [CrossRef]
- Liu, P.; Derchi, M.; Hensen, E.J. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Appl. Catal. A Gen. 2013, 467, 124–131. [Google Scholar] [CrossRef]
- Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, J.; Fontaine, J.-C.; Kehiaian, H.V. Azeotropic Data for Binary Mixture. In Handbook of Chemistry and Physics; CRC Press LLC: Boca Raton, FL, USA, 2011; Volume 6. [Google Scholar]
- Sandesh, S.; Shanbhag, G.V.; Halgeri, A.B. Transesterification of Glycerol to Glycerol Carbonate Using KF/Al2O3 Catalyst: The Role of Support and Basicity. Catal. Lett. 2013, 143, 1226–1234. [Google Scholar] [CrossRef]
- Bai, R.; Wang, Y.; Wang, S.; Mei, F.; Li, T.; Li, G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Process. Technol. 2013, 106, 209–214. [Google Scholar] [CrossRef]
- Ramesh, S.; Debecker, D.P. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres. Catal. Commun. 2017, 97, 102–105. [Google Scholar] [CrossRef]
- Ramesh, S.; Devred, F.; Biggelaar, L.V.D.; Debecker, D.P. Hydrotalcites Promoted by NaAlO2 as Strongly Basic Catalysts with Record Activity in Glycerol Carbonate Synthesis. ChemCatChem 2018, 10, 1398–1405. [Google Scholar] [CrossRef]
- Rittiron, P.; Niamnuy, C.; Donphai, W.; Chareonpanich, M.; Seubsai, A. Production of Glycerol Carbonate from Glycerol over Templated-Sodium-Aluminate Catalysts Prepared Using a Spray-Drying Method. ACS Omega 2019, 4, 9001–9009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chotchuang, A.; Kunsuk, P.; Phanpitakkul, A.; Chanklang, S.; Chareonpanicha, M.; Seubsai, A. Production of glycerol car-bonate from glycerol over modified sodium-aluminate-doped calcium oxide catalysts. Catal. Today 2020, in press. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. On the deactivation of alkali solid catalysts for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. React. Kinet. Mech. Catal. 2011, 102, 113–126. [Google Scholar] [CrossRef]
- Li, J.; Wang, L. Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Chem. Eng. Process. 2010, 49, 530–535. [Google Scholar] [CrossRef]
- Oprescu, E.E.; Stepan, E.; Rosca, P.; Radu, A.; Enascuta, C.E. Synthesis of glycerol carbonate over hydrotalcite catalyst. Rev. Chem. 2012, 63, 621–625. [Google Scholar]
- Guanhao Liu, G.; Yang, J.; Xu, X. Synthesis of hydrotalcite-type mixed oxide catalysts from waste steel slag for transesterification of glycerol and dimethyl carbonate. Sci. Rep. 2020, 10, 10273. [Google Scholar]
- Granados-Reyes, J.; Salagre, P.; Cesteros, Y. Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate. Appl. Catal. A Gen. 2017, 536, 9–17. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Cai, F.; Pan, D.; Xiao, G. High-efficiency and low-cost Li/ZnO catalysts for synthesis of glycerol carbonate from glycerol transesterification: The role of Li and ZnO interaction. Appl. Catal. A Gen. 2017, 532, 77–85. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Kabir, G.; Hameed, B.H. Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. J. Taiwan Inst. Chem. Eng. 2017, 70, 179–187. [Google Scholar] [CrossRef]
- Algoufi, Y.; Akpan, U.; Kabir, G.; Asif, M.; Hameed, B. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts. Energy Convers. Manag. 2017, 138, 183–189. [Google Scholar] [CrossRef]
- Kaur, A.; Ali, A. Lithium Zirconate as a Selective and Cost-Effective Mixed Metal Oxide Catalyst for Glycerol Carbonate Production. Ind. Eng. Chem. Res. 2020, 59, 2667–2679. [Google Scholar] [CrossRef]
- Arora, S.; Gosu, V.; Kumar, U.A.; Subbaramaiah, V. Valorization of glycerol into glycerol carbonate using the stable heterogeneous catalyst of Li/MCM-41. J. Clean. Prod. 2021, 295, 126437. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Zhu, M.; Yue, C.; Dong, Y.; Leng, Y.; Fan, M.; Jiang, P. Acidic–Basic Bifunctional Magnetic Mesoporous CoFe2O4@(CaO–ZnO) for the Synthesis of Glycerol Carbonate. Catal. Lett. 2020, 150, 2863–2872. [Google Scholar] [CrossRef]
- Praikaew, W.; Kiatkittipong, W.; Aiouache, F.; Najdanovic-Visak, V.; Ngaosuwan, K.; Wongsawaeng, D.; Lim, J.; Lam, S.; Kiatkittipong, K.; Laosiripojana, N.; et al. Process and Energy Intensification of Glycerol Carbonate Production from Glycerol and Dimethyl Carbonate in the Presence of Eggshell-Derived CaO Heterogeneous Catalyst. Energies 2021, 14, 4249. [Google Scholar] [CrossRef]
- Pattanaik, P.P.; Kumar, P.M.; Raju, N.; Lingaiah, N. Continuous Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Dimethyl Carbonate Over Fe–La Mixed Oxide Catalysts. Catal. Lett. 2020, 151, 1433–1443. [Google Scholar] [CrossRef]
- Arora, S.; Gosu, V.; Subbaramaiah, V. One-pot synthesis of glycerol carbonate from glycerol using three-dimensional meso-porous silicates of K/TUD-1 under environmentally benign conditions. Mol. Catal. 2020, 496, 111188. [Google Scholar] [CrossRef]
- Tudorache, M.; Negoi, A.; Tudora, B.; Parvulescu, V.I. Environmental-friendly strategy for biocatalytic conversion of waste glycerol to glycerol carbonate. Appl. Catal. B Environ. 2014, 146, 274–278. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, C.H.; Lee, E.Y. Synthesis of glycerol 1,2-carbonate by transesterification of glycerol with dimethyl carbonate using triethylamine as a facile separable homogeneous catalyst. Bioproc. Biosyst. Eng. 2010, 33, 1059–1065. [Google Scholar] [CrossRef]
- Waghmare, G.V.; Vetal, M.D.; Rathod, V.K. Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Ultrason. Sonochemistry 2015, 22, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, J.; Kong, W.; Zhou, L.; Ma, L.; He, Y.; Huang, Z.; Jiang, Y. Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. ACS Omega 2018, 3, 6642–6650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selva, M.; Perosa, A.; Guidi, S.; Cattelan, L. Ionic liquids as transesterification catalysts: Applications for the synthesis of linear and cyclic organic carbonates. Beilstein J. Org. Chem. 2016, 12, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, P.; Cui, P.; Cheng, W.; Zhang, S. Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids. Chin. J. Chem. Eng. 2017, 25, 1182–1186. [Google Scholar] [CrossRef]
- Simanjuntak, F.S.H.; Choi, S.J.; Lee, G.; Lee, S.D.; Cheong, M.; Kim, S.H.; Lee, H. Synthesis of glycerol carbonate from the transesterification of dimethyl carbonate with glycerol using DABCO and DABCO-anchored Merrifield resin. Appl. Catal. B Environ. 2015, 165, 642–650. [Google Scholar] [CrossRef]
- Yi, Y.; Shen, Y.; Sun, J.; Wang, B.; Xu, F.; Sun, R. Basic ionic liquids promoted the synthesis of glycerol 1,2-carbonate from glycerol. Chin. J. Catal. 2014, 35, 757–762. [Google Scholar] [CrossRef]
- Guzmán-Lucero, D.; Castillo-Acosta, S.; Martínez-Palou, R. Glycerol Carbonate Synthesis Using Poly(1-alkyl-3-vinylimidazolium) Imidazolates as Catalysts. ChemistrySelect 2020, 5, 13694–13702. [Google Scholar] [CrossRef]
Catalyst | Gly% Conversion | GC/% Selectivity | Reaction Conditions | ||
---|---|---|---|---|---|
Temperature | Pressure | Time | |||
ZnO | 69.9 | 84.1 | 150 °C | 2.7 kPa | 2 h |
ZnCl2 | 80.4 | 99.7 | 150 °C | 2.7 kPa | 2 h |
ZnF2 | 76.4 | 68.5 | 150 °C | 2.7 kPa | 2 h |
ZnBr2 | 81.4 | 97.2 | 150 °C | 2.7 kPa | 2 h |
ZnI2 | 80.9 | 94.9 | 150 °C | 2.7 kPa | 2 h |
LaCl3 | 95.4 | 99.9 | 150 °C | 5 kPa | 3 h |
La(OH)3 | 42.3 | 55.6 | 150 °C | 5 kPa | 3 h |
La(NO3)3 | 91.8 | 98.3 | 150 °C | 5 kPa | 3 h |
La(OAc)3 | 90.8 | 97.4 | 150 °C | 5 kPa | 3 h |
Sm0.66TPA | 49.5 | 85.4 | 140 °C | - | 4 h |
Zn1TPA | 69.2 | 99.4 | 140 °C | - | 4 h |
Ta 0.4TPA | 71.0 | 99.9 | 140 °C | - | 4 h |
ILs | 76.0 | 68.4 | 140 °C | - | 4 h |
Au/ZSM-5 | 81.0 | 68.0 | 150 °C | - | 4 h |
Co3O4/ZnO | 69.0 | 97.0 | 150 °C | - | 4 h |
La2O3 | 45.2 | 98.6 | 140 °C | 3 kPa | 1 h |
SnO2/WO3 | 52.1 | 95.3 | 140 °C | - | 4 h |
WO3-TiO2 | 73.0 | 99.9 | 140 °C | - | 4 h |
ZnO/SnO2 | 96.0 | 99.6 | 155 °C | - | 4 h |
MPR-ILs/ZnO | 78.3 | 94.4 | 140 °C | 15 kPa | 3 h |
PS-(Im)2ZnBr2 | 65.8 | 72.3 | 140 °C | 15 kPa | 6 h |
PS-(Im)2ZnI2 | 71.7 | 84.1 | 140 °C | 15 kPa | 6 h |
(HEIm)2ZnCl2 | 92.7 | 93.4 | 140 °C | 15 kPa | 6 h |
Zn/MCM-41 | 75.0 | 98.0 | 145 °C | - | 5 h |
Zn-FAU | 94.6 | 98.0 | 150 °C | - | 3 h |
SiW12/MCM-41 | 75.0 | 77.0 | 150 °C | - | 8 h |
HTc-Zn | 82.0 | 88.0 | 145 °C | 4 kPa | 5 h |
HT(Mg/Zn/Al) | 89.8 | 93.2 | 145 °C | 4 kPa | 5 h |
ZnSn(OH)6 | 98.0 | 99.6 | 165 °C | - | 5 h |
Gypsum | 92.8 | 86.6 | 150 °C | - | 4 h |
Synthetic Route | Material | Representative Catalysts | Advantage | Disadvantage |
---|---|---|---|---|
Phosgene route | Phosgene | - | Low reaction temperature, high yield | Raw materials are highly toxic |
Urea route | Urea | Hydrotalcite catalysts Ionic liquid catalysts Metal salt catalyst Metal oxide catalyst | Easy to obtain raw materials, high yield, high selectivity | Generates NH3, requires decompression conditions, and requires high equipment |
Transesterification route | EC/DMC | Metal oxide catalysts Metal salt catalyst Hydrotalcite catalysts Ionic liquid catalysts | Mild reaction conditions and simple operation | The catalyst is easy to deactivate, the economy is poor |
CO/CO2 | CO + O2 CO2 | Metal salt catalyst Metal oxide catalysts | High yield and easy separation Turn waste into treasure, environmental protection, high selectivity | Raw materials are toxic, have potential safety hazards Low yield, high reaction conditions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procopio, D.; Di Gioia, M.L. An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts 2022, 12, 50. https://doi.org/10.3390/catal12010050
Procopio D, Di Gioia ML. An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts. 2022; 12(1):50. https://doi.org/10.3390/catal12010050
Chicago/Turabian StyleProcopio, Debora, and Maria Luisa Di Gioia. 2022. "An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate" Catalysts 12, no. 1: 50. https://doi.org/10.3390/catal12010050
APA StyleProcopio, D., & Di Gioia, M. L. (2022). An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts, 12(1), 50. https://doi.org/10.3390/catal12010050