Glycerol and Catalysis by Waste/Low-Cost Materials—A Review
Abstract
:1. Introduction
2. Glycerol Conversion Processes
2.1. Clay
2.2. Fly Ash
2.3. Urban Waste
2.4. Industrial Waste
2.5. Red Mud
2.6. Activated Carbon
2.7. Lignocellulosic Biomass
2.8. Glycerol
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Len, C.; Luque, R. Continuous flow transformations of glycerol into valuable products: An overview. Sustain. Chem. Processes 2014, 2, 1. [Google Scholar] [CrossRef]
- Saeidabad, N.G.; No, Y.S.; Eslami, A.A.; Song, H.T.; Kim, H.D.; Fazeli, A.; Moon, D.J. A review of the development of catalysts for steam reforming of glycerol derived from biodiesel; promoters and supports. Catalysts 2020, 10, 910. [Google Scholar] [CrossRef]
- Moreira, R.; Bimbela, F.; Gandia, L.M.; Ferreira, A.; Sanchez, J.L.; Portugal, A. Glycerol steam oxidative reform. A review. Renew. Sustain. Energy Rev. 2021, 148, 111299. [Google Scholar] [CrossRef]
- Gnaneswar Gude, V.; Patil, P.; Martinez-Guerra, E.; Deng, S.; Nirmalakhandan, N. Microwave energy potential for biodiesel production. Sustain. Chem. Processes 2013, 1, 5. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Prospects OECD-FAO 2021–2030; OECD Publishing: Paris, France, 2021; ISBN 978-92-5-134608-2. [Google Scholar]
- Okoye, P.U.; Wang, S.; Xu, L.; Li, S.; Wang, J.; Zhang, L. Promotional effect of calcination temperature on the structural evolution, basicity and activity of the catalyst derived from the bunch of empty oil palm fruits for the synthesis of glycerol carbonate. Energy Convers. Manag. 2019, 179, 192–200. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Pandey, A.; Vo, D.V.N. Technological perspectives for the use of residual glycerol for the production of biofuels: A review. Environ. Technol. Innov. 2021, 24, 101902. [Google Scholar] [CrossRef]
- Varma, R.S.; Len, C. Valorization of glycerol under continuous flow conditions-recent advances. Curr. Opin. Green Sustain. Chem. 2019, 15, 83–90. [Google Scholar] [CrossRef]
- Esposito, R.; Raucci, U.; Cucciolito, M.E.; Di Guida, R.; Scamardella, C.; Rega, N.; Ruffo, F. Iron(III) Complexes for Highly Efficient and Sustainable Ketalization of Glycerol: A Combined Experimental and Theoretical Study. ACS Omega 2019, 4, 688–698. [Google Scholar]
- Amri, S.; Gómez, J.; Balea, A.; Merayo, N.; Srasra, E.; Besbes, N.; Ladero, M. Green Production of glycerol ketals with a clay-based heterogeneous acid catalyst. Appl. Sci. 2019, 9, 4488. [Google Scholar] [CrossRef]
- Zhou, C.H.; Beltramini, J.N.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source into valuable chemicals. Chem. Soc. Rev. 2008, 37, 527–549. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, M.N.; Panchenko, V.N.; Krupskaya, V.V.; Gil, A.; Vicente, M.A. Effect of nitric acid modification of montmorillonite clay on solketal synthesis from glycerol and acetone. Catal. Commun. 2017, 90, 65–69. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, L.; Li, X.; Chen, P.; Hou, Z. Hydrogenolysis of glycerol to 1,2-propanediol on Cu-based catalysts: A brief review. Catal. Today 2020, 355, 84–95. [Google Scholar] [CrossRef]
- Dodekatos, G.; Schünemann, S.; Tüysüz, H. Recent Advances in Thermo-, Photo- and Electrocatalytic Glycerol Oxidation. ACS Catal. 2018, 8, 6301–6333. [Google Scholar] [CrossRef]
- Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A. Comparative study of glycerol hydrogenolysis on Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chem. Eng. J. 2015, 262, 326–333. [Google Scholar] [CrossRef]
- Goncalves, M.; Souza, V.C.; Galhardo, T.S.; Mantovani, M.; Figueiredo, F.C.A.; Mandelli, D.; Carvalho, W.A. Conversion of glycerol catalyzed by carbons prepared from agro-industrial residues. Res. Ind. Eng. Chem. 2013, 52, 2832–2839. [Google Scholar] [CrossRef]
- Tao, M.L.; Guan, H.Y.; Wang, X.H.; Liu, Y.C.; Louh, R.F. Manufacture of sulfonated carbon catalyst from biomass residues and its use for glycerol esterification. Fuel Processing Technol. 2015, 138, 355–360. [Google Scholar] [CrossRef]
- Goncalves, M.; Rodrigues, R.; Galhardo, T.S.; Carvalho, W.A. Highly selective glycerol acetalization with acetone to solketal over carbon-based acid catalysts from biodiesel residues. Fuel 2016, 181, 46–54. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Irmawati, R.; Muhammad, E.N.; Azri, N.; Ishak, N.S.; Yahaya, M.; Taufiq-Yap, Y.H. Carbon derived from biomass functionalized with organosulfonic acid as a catalyst for glycerol optimization and acetylation studies via response surface methodology. J. Taiwan Inst. Chem. Eng. 2021, 118, 355–370. [Google Scholar] [CrossRef]
- Zacharopoulou, V.; Lemonidou, A.A. New process for producing propylene from biomass: Catalytic hydrodeoxygenation of glycerol. Mater. Today Processes 2018, 5, 27511–27516. [Google Scholar] [CrossRef]
- Barros, F.J.S.; Moreno-Tost, R.; Cecilia, J.A.; Ledesma-Muñoz, A.L.; de Oliveira, L.C.C.; Luna, F.M.T.; Vieira, R.S. Production of glycerol oligomers by etherification using calcined eggshell as catalyst. Mol. Catal. 2017, 433, 282–290. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, B.; Yi, C.; Lei, Z.; Xu, J. Etherification of glycerol with isobutylene to produce oxygenate additive using sulfonated peanut shell catalyst. Ind. Eng. Chem. Res. 2010, 49, 12399–12404. [Google Scholar] [CrossRef]
- Chandrakala, U.; Prasad, R.B.N.; Prabhavathi Devi, B.L.A. Valorization of glycerol as an additive for biofuels, employing a solid carbon-based acid catalyst derived from glycerol. Ind. Eng. Chem. Res. 2014, 53, 16164–16169. [Google Scholar] [CrossRef]
- Zahid, I.; Ayoub, M.; Bin Abdullah, B.; Nazir, M.H.; Zulqarnain; Kaimkhani, M.A.; Sher, F. Activation of Nano Kaolin Clay for Conversion of Bioglycerol to a Valuable Fuel Additive. Sustainability 2021, 13, 2631. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Chen, M.; Liang, D.; Cheng, W.; Li, C.; Yang, Z.; Wang, J. Understanding the relationship of sepiolite structure adaptation and catalytic behaviors in the steam reforming of glycerol on the co-phyllosilicate catalyst derived from Co/sepiolite. Renew. Energy 2022, 183, 304–320. [Google Scholar] [CrossRef]
- Minor, M.; Sayas, S.; Chica, A. Natural sepiolite promoted with Ni as a new and efficient catalyst for sustainable hydrogen production by steam reforming of glycerol biodiesel by-products. Fuel 2017, 193, 351–358. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Kabir, G.; Hameed, B.H. Synthesis of glycerol carbonate from glycerol by-product of biodiesel on calcined dolomite. J. Taiwan Inst. Chem. Eng. 2017, 70, 179–187. [Google Scholar] [CrossRef]
- Azri, N.; Ramli, I.; Nda-Umar, U.I.; Shamsuddin, M.R.; Saiman, M.I.; Taufiq-Yap, Y.H. Copper-dolomite as an effective catalyst for hydrogenolysis of glycerol to 1,2-propanediol. J. Taiwan Inst. Chem. Eng. 2020, 112, 34–51. [Google Scholar] [CrossRef]
- Azri, N.; Irmawati, R.; Nda-Umar, U.I.; Saiman, M.I.; Taufiq-Yap, Y.H. Promotional effect of transition metals (Cu, Ni, Co, Fe, Zn)–supported on dolomite for hydrogenolysis of glycerol to 1,2-propanediol. Arab. J. Chem. 2021, 14, 103047. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Hameed, B.H. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate on K-zeolite derived from coal fly ash. Fuel Processing Technol. 2014, 126, 5–11. [Google Scholar] [CrossRef]
- Khanday, W.A.; Okoye, P.U.; Hameed, B.H. Biodiesel by-product glycerol upgraded to glycerol carbonate on lithium oil palm ash zeolite. Energy Convers. Manag. 2017, 151, 472–480. [Google Scholar] [CrossRef]
- Arara, S.; Gosu, V.; Subbaramaiah, V.; Hameed, B.H. Lithium-loaded coal fly ash as a sustainable and effective catalyst for the synthesis of glycerol carbonate from glycerol. J. Environ. Chem. Eng. 2021, 9, 105999. [Google Scholar] [CrossRef]
- Pradhan, G.; Jaiswal, S.; Sharma, Y.C. Environmentally economical benign synthesis of glycerol carbonate from biowaste glycerol using industrial waste pond ash catalyst. Environ. Technol. Innov. 2021, 23, 101568. [Google Scholar] [CrossRef]
- Indran, V.P.; Syuhada Zuhaimi, N.A.; Deraman, M.A.; Maniam, G.P.; Yusoff, M.M.; Yun Hin, T.Y.; Mohd, M.H. An accelerated route of formation of glycerol carbonate from glycerol using boiler ash as a catalyst. RSC Adv. 2014, 4, 25257–25267. [Google Scholar] [CrossRef]
- Okoye, P.U.; Wang, S.; Khanday, W.A.; Li, S.; Tang, T.; Zhang, L. Box-Behnken Optimization of the transesterification reaction of glycerol to glycerol carbonate on catalyst derived from calcined palm oil ash. Renew. Energy 2020, 146, 2676–2687. [Google Scholar] [CrossRef]
- Delesma, C.; Okoye, P.; Castellanos-Lopez, M.; Longoria, A.; Muñiz, J. Understanding the heterogeneous catalytic mechanisms of glycerol carbonate synthesis on the surface of palm ash: An approach to density functional theory. Fuel 2022, 307, 121874. [Google Scholar] [CrossRef]
- Gao, K.; Sahraei, O.A.; Iliuta, M.C. Development of a nickel catalyst supported by residual coal fly ash for H2 production via glycerol steam reforming. Appl. Catal. B Environ. 2021, 291, 119958. [Google Scholar] [CrossRef]
- Gao, K.; Sahraei, O.A.; Iliuta, M.C. Ni-based catalysts supported on acid/alkali activated carbon fly ash residue to improve glycerol steam reforming. Appl. Catal. B Environ. 2022, 301, 120791. [Google Scholar] [CrossRef]
- Shikhaliyev, K.; Okoye, P.U.; Hameed, B.H. Transesterification of biodiesel by-product glycerol and dimethyl carbonate on porous biochar derived from pyrolysis of fish waste. Energy Convers. Manag. 2018, 165, 794–800. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Sol, P.; Xu, L.; Okoye, P.U.; Li, S.; Zhang, L.; Guo, A.; Zhang, J.; Zhang, A. Disposable baby diapers, waste-derived catalyst to synthesize glycerol carbonate by transesterification of glycerol with dimethyl carbonate. J. Clean. Prod. 2019, 211, 330–341. [Google Scholar] [CrossRef]
- Roschat, W.; Phewphong, S.; Kaewpuang, T.; Promarak, V. Synthesis of glycerol carbonate from transesterification of glycerol with CaO-catalyzed dimethylcarbonate from natural sources as a green and economical catalyst. Mater. Today Processes 2018, 5, 13909–13915. [Google Scholar] [CrossRef]
- Jaffar, M.M.; Nahil, M.A.; Williams, P.T. Production of synthetic natural gas from three steps (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of residual biomass. Fuel Processing Technol. 2020, 208, 106515. [Google Scholar] [CrossRef]
- Mohd Arif, N.N.; Abidin, S.Z.; Osazuwa, O.R.; Vo, D.V.N.; Azizan, M.T.; Taufiq-Yap, Y.H. Hydrogen production via dry CO2 reforming of glycerol over Re[sbnd]Ni/CaO catalysts. Int. J. Hydrogen Energy 2019, 44, 20857–20871. [Google Scholar] [CrossRef]
- Roslan, N.A.; Abidin, S.Z.; Osazuwa, O.R.; Chin, S.Y.; Taufiq-Yap, Y.H. H2-rich synthesis gas from dry reforming of glycerol on Ni-based catalysts supported on aluminum slag alumina. Int. J. Hydrogen Energy 2021, 46, 30959–30975. [Google Scholar] [CrossRef]
- Sahraei, O.A.; Desgagnes, A.; Larachi, F.; Iliuta, M.C. A comparative study on the performance of catalysts driven by metallurgical residues promoted by M (Rh, Ru, Ni) for the production of H2 by steam reforming of glycerol. Int. J. Hydrogen Energy 2021, 46, 32017–32035. [Google Scholar] [CrossRef]
- Sahraei, O.A.Z.; Larachi, F.; Abatzoglou, N.; Iliuta, M.C. Hydrogen production by steam reforming of glycerol catalyzed by metallurgical residues containing Fe/Mg promoted by Ni. Appl. Catal. B Ambient. 2017, 219, 183–193. [Google Scholar] [CrossRef]
- Sahraei, O.A.; Desgagnes, A.; Larachi, F.; Iliuta, M.C. Ni-Fe catalyst derived from mixed oxides from metallurgical residues containing Fe/Mg for hydrogen production by steam reforming of biodiesel by-product: Investigation of catalyst synthesis parameters and temperature dependence of the reaction network. Appl. Catal. B Environ. 2020, 279, 119330. [Google Scholar] [CrossRef]
- Desgagnes, A.; Iliuta, M.C. Kinetic study of the steam reforming of glycerol catalyzed by a metallurgical residue promoted by Ni. Chem. Eng. J. 2022, 429, 10–12. [Google Scholar] [CrossRef]
- Aissaoui, M.; Zadeh Sahraei, O.A.; Yancheshmeh, M.S.; Iliuta, M.C. Development of a CaO/NiO hybrid sorbent-catalyst catalyst containing Fe/Mg-containing metallurgical residues for high purity H2 production by sorption-enhanced glycerol steam reforming. Int. J. Hydrogen Energy 2020, 45, 18452–18465. [Google Scholar] [CrossRef]
- Okoye, P.U.; Abdullah, A.Z.; Hameed, B.H. Stabilized ladle furnace steel slag for synthesis of glycerol carbonate via transesterification reaction of glycerol with dimethyl carbonate. Energy Convers. Manag. 2017, 133, 477–485. [Google Scholar] [CrossRef]
- Goncalves, M.; Castro, C.S.; Oliveira, L.C.A.; Carvalho, W.A. Green acid catalyst obtained from industrial waste for glycerol etherification. Fuel Processing Technol. 2015, 138, 695–703. [Google Scholar] [CrossRef]
- Das, B.; Mohanty, K. The green and easy production of waste red mud catalysts for the synthesis of a pot of glycerol carbonate from glycerol. J. Environ. Chem. Eng. 2019, 7, 102888. [Google Scholar] [CrossRef]
- Das, B.; Mohanty, K. Exploring the promotional effects of K, Sr and Mg on the catalytic stability of red mud for the synthesis of glycerol carbonate from renewable glycerol. Res. Ind. Eng. Chem. 2019, 58, 15803–15817. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Hernandez, D.L.; Moreno, J.A.; Mondragon, F.; Fernández, J.J. Alternative carbon-based acid catalyst for selective esterification of glycerol to acetylglycerols. Appl. Catal. A Gen. 2011, 405, 55–60. [Google Scholar] [CrossRef]
- Costa, A.; Pires, L.; Padrón Rodríguez, B.; Balu, A.M.; Rocha Filho, G.; Luque, R.; Nascimento, L. Recent advances in catalytic deoxygenation of waste for bio-oil production: An overview. Mol. Catal. 2022, 518, 112052. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Okoye, P.U.; Chen, S.; Li, X.; Duan, L.; Zhou, H.; Li, S.; Tang, T.; Zhang, L.; et al. Application of a corn cob-derived catalyst in the transesterification of glycerol with dimethyl carbonate to synthesize glycerol carbonate. BioResources 2020, 15, 142–158. [Google Scholar] [CrossRef]
- Domínguez-Barroso, V.; Herrera, C.; Larrubia, M.Á.; González-Gil, R.; Cortes-Reyes, M.; Alemany, L.J. Continuous flow process for converting glycerol to solketal using a carbon-based catalyst functionalized with brönsted acid. Catalysts 2019, 9, 609. [Google Scholar] [CrossRef]
- Malaika, A.; Ptaszyńska, K.; Kozłowski, M. Conversion of renewable raw materials into biocarbons dedicated to the production of green fuel additives from glycerol. Fuel 2021, 288, 119609. [Google Scholar] [CrossRef]
- Changmai, B.; Laskar, I.B.; Rokhum, L. Microwave-assisted synthesis of glycerol carbonate by the transesterification of glycerol with dimethyl carbonate using Musa acuminata bark ash catalyst. J. Taiwan Inst. Chem. Eng. 2019, 102, 276–282. [Google Scholar] [CrossRef]
- Galhardo, T.S.; Simone, N.; Goncalves, M.; Figueiredo, F.C.A.; Mandelli, D.; Carvalho, W.A. Preparation of sulfonated carbons from rice husk and its application in the catalytic conversion of glycerol. ACS Sustain. Chem. Eng. 2013, 1, 1381–1389. [Google Scholar] [CrossRef]
- Mantovani, M.; Aguiar, E.M.; Carvalho, W.A.; Mandelli, D.; Gonçalves, M. Utilization of biodiesel residue for the preparation of acid carbon with high catalytic activity in the etherification reaction of glycerol. Química Nova 2015, 38, 526–532. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.A.F.d.; de Oliveira, A.d.N.; Esposito, R.; Len, C.; Luque, R.; Noronha, R.C.R.; Rocha Filho, G.N.d.; Nascimento, L.A.S.d. Glycerol and Catalysis by Waste/Low-Cost Materials—A Review. Catalysts 2022, 12, 570. https://doi.org/10.3390/catal12050570
Costa AAFd, de Oliveira AdN, Esposito R, Len C, Luque R, Noronha RCR, Rocha Filho GNd, Nascimento LASd. Glycerol and Catalysis by Waste/Low-Cost Materials—A Review. Catalysts. 2022; 12(5):570. https://doi.org/10.3390/catal12050570
Chicago/Turabian StyleCosta, Ana Alice Farias da, Alex de Nazaré de Oliveira, Roberto Esposito, Christophe Len, Rafael Luque, Renata Coelho Rodrigues Noronha, Geraldo Narciso da Rocha Filho, and Luís Adriano Santos do Nascimento. 2022. "Glycerol and Catalysis by Waste/Low-Cost Materials—A Review" Catalysts 12, no. 5: 570. https://doi.org/10.3390/catal12050570
APA StyleCosta, A. A. F. d., de Oliveira, A. d. N., Esposito, R., Len, C., Luque, R., Noronha, R. C. R., Rocha Filho, G. N. d., & Nascimento, L. A. S. d. (2022). Glycerol and Catalysis by Waste/Low-Cost Materials—A Review. Catalysts, 12(5), 570. https://doi.org/10.3390/catal12050570