Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal
Abstract
:1. Introduction
2. Catalytic Combustion Mechanism of Noble Metal Catalysts
2.1. Kinetic Analysis
2.2. Mechanism Studies
2.2.1. Hydrocarbons
2.2.2. Oxygen-Containing Hydrocarbons
2.2.3. Other Hydrocarbons (Containing Nitrogen and Chlorine)
3. Noble-Metal-Based Catalysts for VOC Oxidation
3.1. Ag-Based Catalysts
3.2. Au-Based Catalysts
3.3. Pd-Based Catalysts
Pd State | Catalyst | Used VOCs | Ref. |
---|---|---|---|
Pd0 | Pd/CeO2 | Propene | [69] |
Pd/Al2O3 | Propene | ||
Pd/MgO-Al2O3 | Toluene | [70] | |
Pd/Co3AlO | Toluene | [73] | |
Pd–CoAlO-Al | Toluene | [74] | |
Pd0, Pd2+ | Pd/HFAU(17) | o-xylene | [66] |
Pd/Ti-SBA-15 | Benzene | [71] | |
Pd/ZSM-5/MCM-48 | Benzene | [72] | |
Pd-U-EG | Toluene | [68] | |
0.5%Pd/SiO2 | Toluene | [75] | |
Pd0, Pd4+ | Pd/CeO2 | Propene | [69] |
3.4. Pt-Based Catalysts
3.5. Rh-Based Catalysts
4. Deactivation and Regeneration
4.1. Catalyst Poisoning and Deactivation
4.2. Catalyst Regeneration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- US EPA. Technical Overview of Volatile Organic Compounds. Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds (accessed on 2 September 2021).
- Liu, Y.; Han, F.; Liu, W.; Cui, X.; Luan, X.; Cui, Z. Process-based volatile organic compound emission inventory establishment method for the petroleum refining industry. J. Clean. Prod. 2020, 263, 121609. [Google Scholar] [CrossRef]
- Meng, L.; Qiang, Z.; Bo, Z.; Dan, T.; Yu, L.; Fei, L.; Chaopeng, H.; Sicong, K.; Liu, Y.; Yuxuan, Z.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar]
- Brown, G.S.; Frankel, A.; Hafner, H.R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- National Air Emission Inventory and Research Center. Emissions by Source Category. 2018. Available online: https://www.air.go.kr/en/jbgg/sub03-1 (accessed on 14 September 2021).
- Park, N.K.; Kwon, B.C.; Kang, D.; Yun, D.; Ryu, J.H.; Kang, S.H. Characteristics of Catalytic Combustion with VOCs Species Emitted in Printing Process. J. Energy Clim. Change 2020, 15, 81–91. [Google Scholar]
- Kim, H.C.; Kim, S.; Kim, B.-U.; Jin, C.-S.; Hong, S.; Park, R.; Son, S.-W.; Bae, C.; Bae, M.; Song, C.-K.; et al. Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 15, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B 2021, 281, 119447. [Google Scholar] [CrossRef]
- Kang, S.W.; Min, B.H.; Suh, S.S. A study on cleaning Process for Benzene Recovery in Activated Carbon bed. J. Kor. Oil Chem. Soc. 2002, 19, 108–116. [Google Scholar]
- Deng, J.; He, S.; Xie, S.; Yang, H.; Liu, Y.; Guo, G.; Dai, H. Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene. Environ. Sci. Technol. 2015, 49, 11089–11095. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, H.; Deng, J.; Xie, S.; Yang, H.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylen. J. Catal. 2014, 309, 408–418. [Google Scholar] [CrossRef]
- Alejo, A.; Esteban, L.F.; Aline, V.; Sebastián, E.C. Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catal. Today 2021, in press. [Google Scholar]
- He, C.; Li, P.; Cheng, J.; Hao, Z.-P.; Xu, Z.-P. A Comprehensive Study of Deep Catalytic Oxidation of Benzene, Toluene, Ethyl Acetate, and their Mixtures over Pd/ZSM-5 Catalyst: Mutual Effects and Kinetics. Water Air Soil Pollut. 2009, 209, 365–376. [Google Scholar] [CrossRef]
- Ren, S.; Liang, W.; Li, Q.; Zhu, Y. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement. Chemosphere 2020, 251, 126382. [Google Scholar] [CrossRef]
- Bedia, J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl. Catal. B Environ. 2010, 94, 8–18. [Google Scholar] [CrossRef]
- Aranzabal, A.; González-Marcos, J.A.; López-Fonseca, R.; Gutiérrez-Ortiz, M.A.; González-Velasco, J.R. Deep catalytic oxidation of chlorinated VOC mixtures from groundwater stripping emissions. Stud. Surf. Sci. Catal. 2000, 130, 1229–1234. [Google Scholar]
- Radic, N.; Grbic, B.; Terlecki-Baricevic, A. Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Platinum crystallite size effect. Appl. Catal. B 2004, 50, 153–159. [Google Scholar] [CrossRef]
- Ordóñez, S.; Bello, L.; Sastre, H.; Rosal, R.; Díez, F.V. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on 𝛾-alumina catalyst. Appl. Catal. B 2002, 38, 139–149. [Google Scholar] [CrossRef]
- Banu, I.; Manta, C.M.; Bercaru, G.; Bozga, G. Combustion kinetics of cyclooctane and its binary mixture with o-xylene over a Pt/γ-alumina catalyst. Chem. Eng. Res. Des. 2015, 102, 399–406. [Google Scholar] [CrossRef]
- Chang, S.; Jia, Y.; Zeng, Y.; Qian, F.; Guo, L.; Wu, S.; Lu, J.; Han, Y. Effect of inter-action between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene ox-idation. J. Rare Earths 2021, in press. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Carabineiro, S.; Chen, X.; Martynyuk, O.; Bogdanchikova, N.; Avalos-Borja, M.; Pestryakov, A.; Tavares, P.; Órfão, J.; Pereira, M.F.; Figueiredo, J. Gold supported on metal oxides for volatile organic compounds total oxidation. Catal. Today 2015, 244, 103–114. [Google Scholar] [CrossRef]
- Gluhoi, A.C.; Bogdanchikova, N.; Nieuwenhuys, B.E. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: Transition metal oxides and ceria. J. Catal. 2005, 229, 154–162. [Google Scholar] [CrossRef]
- Arzamendi, G.; O’Shea, V.A.D.; Álvarez-Galván, M.C.; Fierro, J.L.G.; Arias, P.L.; Gandía, L.M. Kinetics and Selectivity of Methyl-Ethyl-Ketone Combustion in Air over Alumina-Supported PdOx-MnOx Catalysts. J. Catal. 2009, 261, 50–59. [Google Scholar] [CrossRef]
- Jabłońska, M.; Król, A.; Kukulska-Zając, E.; Tarach, K.A.; Girman, V.; Chmielarz, L.; Góra-Marek, K. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration. Appl. Catal. B Environ. 2015, 166–167, 353–365. [Google Scholar] [CrossRef]
- Almukhlifi, H.A.; Burns, R.C. The Complete Oxidation of iso-Butane over CeO2 and Au/CeO2, and the Composite Catalysts MOx/CeO2 and Au/MOx/CeO2 (Mn+ = Mn, Fe, Co and Ni): The Effects of Gold Nanoparticles Obtained from n-Hexanethiolate-Stabilized Gold Nanoparticles. J. Mol. Catal. A Chem. 2016, 415, 131–143. [Google Scholar] [CrossRef]
- Garetto, T.F.; Rincón, E.; Apesteguía, C.R. Deep oxidation of propane on Pt-supported catalysts: Drastic turnover rate enhancement using zeolite supports. Appl. Catal. B Environ. 2004, 48, 167–174. [Google Scholar] [CrossRef]
- Yang, H.L.; Ma, C.Y.; Zhang, X.; Li, Y.; Cheng, J.; Hao, Z.P. Understanding the Active Sites of Ag/Zeolites and Deactivation Mechanism of Ethylene Catalytic Oxidation at Room Temperature. ACS Catal. 2018, 8, 1248–1258. [Google Scholar] [CrossRef]
- Wan, J.; Ran, R.; Li, M.; Wu, X.; Weng, D. Effect of acid and base modification on the catalytic activity of Pt/Al2O3 for propene oxidation. J. Mol. Catal. A Chem. 2014, 383–384, 194–202. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yang, S.M. Complete oxidation of 2-propanol over gold-based catalysts supported on metal oxides. Appl. Catal. A Gen. 2008, 334, 92–99. [Google Scholar] [CrossRef]
- Zhang, C.; He, H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007, 126, 345–350. [Google Scholar] [CrossRef]
- Nikawa, T.; Naya, S.-I.; Kimura, T.; Tada, H. Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermocatalysis of gold nanoparticle-loaded titanium(IV) oxide. J. Catal. 2015, 326, 9–14. [Google Scholar] [CrossRef]
- Yue, L.; He, C.; Zhang, X.Y.; Li, P.; Wang, Z.; Wang, H.L.; Hao, Z.P. Catalytic Behavior and Reaction Routes of MEK Oxidation over Pd/ZSM-5 and Pd-Ce/ZSM-5 Catalysts. J. Hazard. Mater. 2013, 244–245, 613–620. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; He, C.; Dummer, N.F.; Shi, J.W.; Tian, M.J.; Ma, C.Y.; Hao, Z.P.; Taylor, S.H.; Ma, M.D.; Shen, Z.X. Insight into the Efficient Oxidation of Methyl-Ethyl-Ketone over Hierarchically Micro-Mesostructured Pt/K-(Al)SiO2 Nanorod Catalysts: Structure-Activity Relationships and Mechanism. Appl. Catal. B 2019, 226, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Nanba, T.; Masukawa, S.; Uchisawa, J.; Obuchi, A. Effect of Support Materials on Ag Catalysts Used for Acrylonitrile Decomposition. J. Catal. 2008, 259, 250–259. [Google Scholar] [CrossRef]
- Aranzabal, A.; Ayastuy-Arizti, J.L.; González-Marcos, J.A.; González-Velasco, J.R. The Reaction Pathway and Kinetic Mechanism of the Catalytic Oxidation of Gaseous Lean TCE on Pd/Alumina Catalysts. J. Catal. 2003, 214, 130–135. [Google Scholar] [CrossRef]
- Dai, Q.G.; Bai, S.X.; Wang, X.Y.; Lu, G.Z. Catalytic Combustion of Chlorobenzene over Ru-Doped Ceria Catalysts: Mechanism Study. Appl. Catal. B 2013, 129, 580–588. [Google Scholar] [CrossRef]
- Yang, Z.; Yuxi, L.; Shaohua, X.; Haibao, H.; Guangsheng, G.; Hongxing, D.; Jiguang, D. Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335–342. [Google Scholar]
- Baek, S.W.; Kim, J.R.; Ihm, S.K. Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites. Catal. Today 2004, 93–95, 575–581. [Google Scholar] [CrossRef]
- Kim, S.C.; Ryu, J.Y. Properties and performance of silver-based catalysts on the catalytic oxidation of toluene. Environ. Tech. 2011, 32, 561–568. [Google Scholar] [CrossRef]
- Zhou, J.C.; Wu, D.F.; Jiang, W.D.; Li, Y.D. Catalytic combustion of toluene over a copper-manganese-silver mixedoxide catalyst supported on a washcoated ceramic monolith. Chem. Eng. Technol. 2009, 32, 1520–1526. [Google Scholar] [CrossRef]
- Hou, J.; Liu, L.; Li, Y.; Mao, M.; Lv, H.; Zhao, X. Tuning the K+ Concentration in the Tunnel of OMS-2 Nanorods Leads to a Significant Enhancement of the Catalytic Activity for Benzene Oxidation. Environ. Sci. Technol. 2013, 47, 13730–13736. [Google Scholar] [CrossRef]
- Jiang, W.; Feng, Y.; Zeng, Y.; Yao, Y.; Gu, L.; Sun, H.; Ji, W.; Arandiyan, H.; Au, C.-T. Establishing high-performance Au/cobalt oxide interfaces for low-temperature benzene combustion. J. Catal. 2019, 375, 171–182. [Google Scholar] [CrossRef]
- Ma, X.; Xiao, M.; Yang, X.; Yu, X.; Ge, M. Boosting benzene combustion by engineering oxygen vacancy-mediated Ag/CeO2-Co3O4 catalyst via interfacial electron transfer. J. Colloid Interface Sci. 2021, 594, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Minicò, S.; Scirè, S.; Crisafulli, C.; Maggiore, R.; Galvagno, S. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl. Catal. B Environ. 2000, 28, 245–251. [Google Scholar] [CrossRef]
- Centeno, M.A.; Paulis, M.; Montes, M.; Odriozola, J.A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl. Catal. A Gen. 2002, 234, 65–78. [Google Scholar] [CrossRef]
- Scirè, S.M.S.; Minicò, S.; Crisafulli, C.; Satriano, C.; Pistone, A. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B Environ. 2003, 40, 43–49. [Google Scholar] [CrossRef]
- Li, X.; Dai, H.; Deng, J.; Liu, Y.; Xie, S.; Zhao, Z.; Wang, Y.; Guo, G.; Arandiyan, H. Au/3DOMLaCoO3: High performance catalysts for the oxidation of carbon monoxide and toluene. Chem. Eng. J. 2013, 228, 965–975. [Google Scholar] [CrossRef]
- Barakat, T.; Idakiev, V.; Cousin, R.; Shao, G.-S.; Yuan, Z.-Y.; Tabakova, T.; Siffert, S. Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Appl. Catal. B Environ. 2014, 146, 138–146. [Google Scholar] [CrossRef]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. ChemInform Abstract: Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Scirè, S.; Liotta, L.F. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl. Catal. B. Envirn. 2012, 125, 222–246. [Google Scholar] [CrossRef]
- Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A Gen. 2001, 222, 427–437. [Google Scholar] [CrossRef]
- Guan, Y.; Hensen, E.J. Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen. Appl. Catal. A Gen. 2009, 361, 49–56. [Google Scholar] [CrossRef]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Solsona, B.; Garcia, T.; Aylón, E.; Dejoz, A.M.; Vázquez, I.; Agouram, S.; Davies, T.E.; Taylor, S.H. Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chem. Eng. J. 2011, 175, 271–278. [Google Scholar] [CrossRef]
- Kim, K.-J.; Ahn, H.-G. Complete oxidation of toluene over bimetallic Pt–Au catalysts supported on ZnO/Al2O3. Appl. Catal. B Environ. 2009, 91, 308–318. [Google Scholar] [CrossRef]
- Nevanperä, T.K.; Pitkäaho, S.; Keiski, R.L. Oxidation of dichloromethane over Au, Pt, and Pt-Au containing catalysts supported on γ-Al2O3 and CeO2-Al2O3. Molecules 2020, 25, 4644. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.P.; Carabineiro, S.A.C.; Tavares, P.B.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Appl. Catal. B 2010, 99, 198–205. [Google Scholar] [CrossRef]
- Gutiérrez, L.-F.; Hamoudi, S.; Belkacemi, K. Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1, 97–154. [Google Scholar] [CrossRef]
- Gaálová, J.; Topka, P. Gold and Ceria as Catalysts for VOC Abatement: A Review. Catalysts 2021, 11, 789. [Google Scholar] [CrossRef]
- Centeno, M.; Paulis, M.; Montes, M.; Odriozola, J.A. Catalytic combustion of volatile organic compounds on gold/titanium oxynitride catalysts. Appl. Catal. B Environ. 2005, 61, 177–183. [Google Scholar] [CrossRef]
- Zhang, X.; Corma, A. Supported Gold(III) Catalysts for Highly Efficient Three-Component Coupling Reactions. Angew. Chem. 2008, 120, 4430–4433. [Google Scholar] [CrossRef] [Green Version]
- Guisnet, M.; Dégé, P.; Magnoux, P. Catalytic oxidation of volatile organic compounds 1. Oxidation of xylene over a 0.2 wt% Pd/HFAU(17) catalyst. Appl. Catal. B Environ. 1999, 20, 1–13. [Google Scholar] [CrossRef]
- Dégé, P.; Pinard, L.; Magnoux, P.; Guisnet, M. Catalytic oxidation of volatile organic compounds: II. Influence of the physicochemical characteristics of Pd/HFAU catalysts on the oxidation of o-xylene. Appl. Catal. B 2020, 27, 17–26. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Chen, J.-Y.; Peng, Y.-H. Activated carbon fibers impregnated with Pd and Pt catalysts for toluene removal. J. Hazard. Mater. 2013, 256–257, 49–55. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, X.; Chen, J.; Yang, Y.; Wang, Y. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl. Catal. B Environ. 2020, 269, 118767. [Google Scholar] [CrossRef]
- Gil, S.; Garcia-Vargas, J.M.; Liotta, L.F.; Pantaleo, G.; Ousmane, M.; Retailleau, L.; Giroir-Fendler, A. Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn). Catalysts 2015, 5, 671–689. [Google Scholar] [CrossRef]
- Weng, X.; Shi, B.; Liu, A.; Sun, J.; Xiong, Y.; Wan, H.; Zheng, S.; Dong, L.; Chen, Y.-W. Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: Role of basic sites and mechanism insight. Appl. Surf. Sci. 2019, 497, 143747. [Google Scholar] [CrossRef]
- He, C.; Li, P.; Cheng, J.; Li, J.; Hao, Z. Preparation and investigation of Pd/Ti-SBA-15 catalysts for catalytic oxidation of benzene. Environ. Prog. Sustain. Energy 2010, 29, 435–442. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z.P. Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl. Catal. B 2010, 96, 466–475. [Google Scholar] [CrossRef]
- Li, P.; He, C.; Cheng, J.; Ma, C.Y.; Dou, B.J.; Hao, Z.P. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods. Appl. Catal. B Environ. 2011, 101, 570–579. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.; Li, J. Hierarchical Core-Shell Al2O3@Pd-CoAlO Microspheres for Low-Temperature Toluene Combustion. ACS Catal. 2016, 6, 3433–3441. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.; Tian, P.; Zhou, J.; Tang, R.; Wu, S. A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature. Appl. Catal. A Gen. 2017, 529, 60–67. [Google Scholar] [CrossRef]
- Hu, C. Catalytic combustion kinetics of acetone and toluene over Cu0.13Ce0.87Oy catalyst. Chem. Eng. J. 2011, 168, 1185–1192. [Google Scholar] [CrossRef]
- Giraudon, J.-M.; Nguyen, T.B.; Leclercq, G.; Siffert, S.; Lamonier, J.-F.; Aboukaïs, A.; Vantomme, A.; Su, B.-L. Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports. Catal. Today 2008, 137, 379–384. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Morales-Torres, S.; Kapteijn, F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Moreno-Castilla, C.; Moulijn, J.A. Carbon-based monolithic supports for palladium catalysts: The role of the porosity in the gas-phase total combustion of m-xylene. Appl. Catal. B 2008, 77, 272–277. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Yu, Y.; Yue, R.; He, H. Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene. Catal. Today 2015, 242, 294–299. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Liu, Y.; Jia, C.; Yang, P. Ternary PtNiCu self-assembled nanocubes for plasmon-enhanced electrocatalytic hydrogen evolution and methanol oxidation reaction in visible light. Electrochim. Acta 2020, 349, 136366. [Google Scholar] [CrossRef]
- Chen, T.; Rodionov, V.O. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates. ACS Catal. 2016, 6, 4025–4033. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Deng, J.; Xie, S.; Yang, H.; Zhao, X.; Zhang, K.; Lin, H.; Dai, H.; Guo, G. Mesoporous Cr2O3-supported Au-Pd nanoparticles: High-performance catalysts for the oxidation of toluene. Microporous Mesoporous Mater. 2016, 224, 311–322. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, P.; Cheng, Z.; Li, J.; Zuo, S. Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation. Chem. Eng. J. 2019, 356, 255–261. [Google Scholar] [CrossRef]
- Taylor, M.N.; Zhou, W.; Garcia, T.; Solsona, B.; Carley, A.F.; Kiely, C.J.; Taylor, S.H. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. J. Catal. 2012, 285, 103–114. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Deng, J.; Zhao, X.; Yang, J.; Han, Z.; Hou, Z.; Dai, H. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B 2019, 244, 650–659. [Google Scholar] [CrossRef]
- Beauchet, R.; Magnoux, P.; Mijoin, J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts. Catal. Today 2007, 124, 118–123. [Google Scholar] [CrossRef]
- Joung, H.J.; Kim, J.H.; Oh, J.S.; You, D.W.; Park, H.O.; Jung, K.W. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl. Surf. Sci. 2014, 290, 267–273. [Google Scholar] [CrossRef]
- Aksoylu, A.E.; Madalena, M.; Freitas, A.; Pereira, M.F.R.; Figueiredo, J.L. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 2001, 39, 175–185. [Google Scholar] [CrossRef]
- Mao, M.; Lv, H.; Li, Y.; Yang, Y.; Zeng, M.; Li, N.; Zhao, X. Metal Support Interaction in Pt Nanoparticles Partially Confined in the Mesopores of Microsized Mesoporous CeO2 for Highly Efficient Purification of Volatile Organic Compounds. ACS Catal. 2016, 6, 418–427. [Google Scholar] [CrossRef]
- Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. J. Hazard. Mater. 2011, 186, 1445–1454. [Google Scholar] [CrossRef]
- Pitkäaho, S.; Nevanperä, T.; Matejova, L.; Ojala, S.; Keiski, R.L. Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Appl. Catal. B Environ. 2013, 138–139, 33–42. [Google Scholar] [CrossRef]
- Peng, R.; Sun, X.; Li, S.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. 2016, 306, 1234–1246. [Google Scholar] [CrossRef]
- Assal, Z.E.; Ojala, S.; Pitkäaho, S.; Pirault-Roy, L.; Darif, B.; Comparot, J.-D.; Bensitel, M.; Keiski, R.L.; Brahmi, R. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chem. Eng. J. 2017, 313, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Fang, D.; Han, J.; Dang, F.; Yang, M. Study of the use of a Pd-Pt-based catalyst for the catalytic combustion of storage tank VOCs. Int. J. Hydrog. Energy 2020, 45, 22732–22743. [Google Scholar] [CrossRef]
- Shuo, W.; Wangwang, F.; Bowei, W.; Yuyao, Z.; Ligong, C.; Xilong, Y.; Guoyi, B.; Yang, L. Rh1Cu3/ZSM-5 as an efficient bi-functional catalyst/adsorbent for VOCs abatement. Catal. Letters 2021, in press. [Google Scholar]
- Hosokawa, S.; Taniguchi, M.; Utani, K.; Kanai, H.; Imamura, S. Affinity order among noble metals and CeO2. Appl. Catal. A Gen. 2005, 289, 115–120. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhu, T.; Ning, R. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J. Hazard. Mater. 2019, 363, 90–98. [Google Scholar] [CrossRef]
- Song, S.; Zhang, S.; Zhang, X.; Verma, P.; Wen, M. Advances in Catalytic Oxidation of Volatile Organic Compounds over Pd-Supported Catalysts: Recent Trends and Challenges. Front. Mater. 2020, 7, 595667. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Kim, J.H.; Kim, H.S.; Ryu, J.H.; Kang, S.H.; Lee, S.C. Catalytic Combustion Technology Trends for Removal of Volatile Organic Compounds (VOCs). J. Energy Clim. Change 2021, 16, 149–170. [Google Scholar]
- Wang, J.; Liu, X.; Zeng, J.; Zhu, T. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts. Catal. Commun. 2016, 76, 13–18. [Google Scholar] [CrossRef]
- He, F.; Muliane, U.; Weon, S.; Choi, W. Substrate-specific mineralization and deactivation behaviors of TiO2 as an air-cleaning photocatalyst. Appl. Catal. B Environ. 2020, 275, 119145. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, L.; Wang, G.; Deng, W.; Guo, L. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt–Ru supported on hierarchical HZSM-5 zeolite. Microporous Mesoporous Mater. 2020, 308, 110538. [Google Scholar] [CrossRef]
- Aranzabal, A.; González-Marcos, J.A.; Ayastuy, J.L.; González-Velasco, J.R. Kinetics of Pd/alumina catalysed 1,2-dichloroethane gas-phase oxidation. Chem. Eng. Sci. 2006, 61, 3564–3576. [Google Scholar] [CrossRef]
- Cen, W.; Liu, Y.; Wu, Z.; Liu, J.; Wang, H.; Weng, X. Cl Species Transformation on CeO2(111) Surface and Its Effects on CVOCs Catalytic Abatement: A First-Principles Investigation. J. Phys. Chem. C 2014, 118, 6758–6766. [Google Scholar] [CrossRef]
- Zhao, H.; Han, W.; Dong, F.; Tang, Z. Highly-efficient catalytic combustion performance of 1,2-dichlorobenzene over meso-porous TiO2-SiO2 supported CeMn oxides: The effect of acid sites and redox sites. J. Ind. Eng. Chem. 2018, 64, 194–205. [Google Scholar] [CrossRef]
- Dai, Q.; Wu, J.; Deng, W.; Hu, J.; Wu, Q.; Guo, L.; Sun, W.; Zhan, W.; Wang, X. Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: From effects of H2O to distribution of chlorinated by-products. Appl. Catal. B 2019, 249, 9–18. [Google Scholar] [CrossRef]
- Kröcher, O.; Elsener, M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Appl. Catal. B Environ. 2009, 92, 75–89. [Google Scholar] [CrossRef]
- Cao, S.; Fei, X.; Wen, Y.; Sun, Z.; Wang, H.; Wu, Z. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2). Appl. Catal. A Gen. 2018, 550, 20–27. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Hua, W.; Guo, Y.; Lu, G.; Gil, S.; Giroir-Fendler, A. Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Appl. Catal. B Environ. 2016, 186, 173–183. [Google Scholar] [CrossRef]
- Gallastegi-Villa, M.; Aranzabal, A.; Romero-Sáez, M.; Gonzáez-Marcos, J.A.; Gonzáez-Velasco, J.R. Catalytic activity of regenerated catalyst after the oxidation of 1,2-dichloroethane and trichloroethylene. Chem. Eng. J. 2014, 241, 200–206. [Google Scholar] [CrossRef]
- Keav, S.; Martin, A.; Barbier, J.J.; Duprez, D. Deactivation and reactivation of noble metal catalysts tested in the Catalytic Wet Air Oxidation of phenol. Catal. Today 2010, 151, 143–147. [Google Scholar] [CrossRef]
- Ammendola, P.; Chirone, R.; Ruoppolo, G.; Russo, G. Regeneration of spent catalysts in oxy-combustion atmosphere. Exp. Therm. Fluid Sci. 2010, 34, 262–268. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene. J. Hazard. Mater. 2008, 154, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.H.; Belkouch, J.; Ould-Dris, A.; Taouk, B. Removal of hazardous chlorinated VOCs over Mn–Cu mixed oxide based catalyst. J. Hazard. Mater. 2009, 169, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.A.; Lago, R.M.; Fabris, J.D.; Sapag, K. Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation and eactivation studies. Appl. Clay. Sci. 2008, 39, 218–222. [Google Scholar] [CrossRef]
- Gallastegi-Villa, M.; Romero-Sáez, M.; Aranzabal, A.; Marcos, J.A.G.; González-Velasco, J.R. Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-Dichloroethane. Catal. Today 2013, 213, 192–197. [Google Scholar] [CrossRef]
- Cuicui, D.; Shengyong, L.; Qiuling, W.; Alfons, G.B.; Mingjiang, N.; Damien, P.D. A review on catalytic oxidation of chloroaromatics from flue gas. Chem. Eng. J. 2018, 334, 419–544. [Google Scholar]
- Sun, P.; Chen, J.; Zai, S.; Gao, S.; Weng, X.; Wu, Z. Regeneration mechanism of a deactivated zeolite-supported catalyst for the combustion of chlorinated volatile organic compounds. Catal. Sci. Technol. 2021, 11, 923–933. [Google Scholar] [CrossRef]
Catalyst | Support | VOCs | Kinetic Model | Ref. |
---|---|---|---|---|
Ag | Mn2O3 | Toluene | MVK | [11] |
Au | Meso-Co3O4 | Benzene | MVK | [12] |
Pd | CeO2 | Toluene | MVK | [13] |
Pd | ZSM-5 | Benzene | MVK | [14] |
Pd–Ce | γ-Al2O3 | Toluene | MVK | [15] |
Pd | activated-C | Toluene | L–H | [16] |
Pd | Al2O3 | TCE | E–R | [17] |
Pt | γ-Al2O3 | Toluene | MVK | [18] |
Pt | γ-Al2O3 | Benzene | MVK | [19] |
Pt | γ-Al2O3 | Cyclooctane | E–R | [20] |
Pt | Al2O3 | Xylene | L–H | |
Pt | CeO2 | Toluene | L–H | [21] |
Au Content (wt%) | Support | VOCs | Concentration (ppm) | T50 (°C) | Ref. |
---|---|---|---|---|---|
1 | CuO | Toluene | 226 | 264 | [23] |
1 | Fe2O3 | Toluene | 226 | 307 | |
1 | Y2O3 | Toluene | 226 | 367 | |
1.91 | Al2O3 | Benzene | 250 | 188 | [47] |
2.5 | CeO2/Al2O3 | Benzene | 250 | 321 | |
7.63 | 3DOM LaCoO3 | Toluene | 1000 | 345 | [49] |
3 | CeTi | Toluene | 1000 | 130 | [50] |
3.2 | Fe2O3 | Toluene | 7000 | 265 | [46] |
5.0 | CeO2 | Toluene | 7000 | 370 | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-S.; Kim, H.-J.; Kim, J.-H.; Kim, J.-H.; Kang, S.-H.; Ryu, J.-H.; Park, N.-K.; Yun, D.-S.; Bae, J.-W. Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts 2022, 12, 63. https://doi.org/10.3390/catal12010063
Kim H-S, Kim H-J, Kim J-H, Kim J-H, Kang S-H, Ryu J-H, Park N-K, Yun D-S, Bae J-W. Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts. 2022; 12(1):63. https://doi.org/10.3390/catal12010063
Chicago/Turabian StyleKim, Hyo-Sik, Hyun-Ji Kim, Ji-Hyeon Kim, Jin-Ho Kim, Suk-Hwan Kang, Jae-Hong Ryu, No-Kuk Park, Dae-Sik Yun, and Jong-Wook Bae. 2022. "Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal" Catalysts 12, no. 1: 63. https://doi.org/10.3390/catal12010063
APA StyleKim, H. -S., Kim, H. -J., Kim, J. -H., Kim, J. -H., Kang, S. -H., Ryu, J. -H., Park, N. -K., Yun, D. -S., & Bae, J. -W. (2022). Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts, 12(1), 63. https://doi.org/10.3390/catal12010063