Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation
Abstract
:1. Introduction
2. Data Sources
3. Fenton Process
4. Sulfate Radical Process
5. Coupled Processes
5.1. Electrokinetic Treatment–AOP
5.2. AOP–AOPs
5.3. Surfactants–AOPs
5.4. AOPs–Biological Methods
6. Conclusions and Prospects for the Future
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1; United Nations: New York, NY, USA, 2015; pp. 1–35. [CrossRef] [Green Version]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Piroli, E.; Montanarella, L. Policy instruments for soil protection among the EU member states: A comparative analysis. Land Use Policy 2019, 82, 763–780. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Ji, Y.; Li, W.; Han, Y.; Xu, J.; Sheng, Y.; Shi, Z.; Zhu, L. A Super Typhoon Disturbs Organic Contamination in Agricultural Soils. Environ. Sci. Technol. Lett. 2021, 8, 237–243. [Google Scholar] [CrossRef]
- Biodiversity Strategy for 2030. Available online: https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en#the-business-case-for-biodiversity (accessed on 4 December 2021).
- Duarte, R.M.B.O.; Matos, J.T.V.; Senesi, N. Organic pollutants in soils. In Soil Pollution: From Monitoring to Remediation; Duarte, A.C., Cachada, A., Rocha-Santos, T.A.P., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 5, pp. 103–126. [Google Scholar] [CrossRef]
- Ortiz, I.; Rivero, M.J.; Margallo, M. Advanced Oxidative and Catalytic Processes. In Sustainable Water and Wastewater Processing; Galanakis, C.M., Agrafioti, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–201. [Google Scholar]
- Machulek, A.; Oliveira, S.C.; Osugi, M.E.; Ferreira, V.S.; Quina, F.H.; Dantas, R.F.; Oliveira, S.L.; Casagrande, G.A.; Anaissi, F.J.; Silva, V.O.; et al. Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants. Org. Pollut. Monit. Risk Treat. 2013, 1, 141–166. [Google Scholar] [CrossRef] [Green Version]
- Mousset, E.; Oturan, N.; Oturan, M.A. An unprecedented route of OH radical reactivity evidenced by an electrocatalytical process: Ipso-substitution with perhalogenocarbon compounds. Appl. Catal. B Environ. 2018, 226, 135–146. [Google Scholar] [CrossRef]
- Radha, K.V.; Sirisha, K. Electrochemical Oxidation Processes. In Advanced Oxidation Processes for Waste Water Treatment; Ameta, S.C., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 11, pp. 359–373. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2020, 246, 125726. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Pazos, M.; Rosales, E.; Sanromán, M.Á. Prospects on integrated electrokinetic systems for decontamination of soil polluted with organic contaminants. Curr. Opin. Electro. Chem. 2021, 27, 100692. [Google Scholar] [CrossRef]
- Karim, A.V.; Jiao, Y.; Zhou, M.; Nidheesh, P.V. Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere 2020, 265, 129057. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2019, 362, 436–450. [Google Scholar] [CrossRef]
- Watts, R.J.; Kong, S.; Dippre, M.; Barnes, W.T. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. J. Hazard. Mater. 1994, 39, 33–47. [Google Scholar] [CrossRef]
- Checa-Fernandez, A.; Santos, A.; Romero, A.; Dominguez, C.M. Application of chelating agents to enhance fenton process in soil remediation: A review. Catalysts 2021, 11, 722. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Meijide, J.; Rosales, E.; Pazos, M.; Sanromán, M.A. p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere 2017, 185, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Pazos, M.; Rosales, E.; Alcántara, T.; Gómez, J.; Sanromán, M.A. Decontamination of soils containing PAHs by electroremediation: A review. J. Hazard. Mater. 2010, 177, 1–11. [Google Scholar] [CrossRef]
- Yap, C.L.; Gan, S.; Ng, H.K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 2011, 83, 1414–1430. [Google Scholar] [CrossRef] [PubMed]
- Huddersman, K.; Ekpruke, A.; Asuelimen, L. Application of AOPs in the treatment of OSPAR chemicals and a comparative cost analysis. Crit. Rev. Environ. Sci. Technol. 2019, 49, 277–317. [Google Scholar] [CrossRef]
- Usman, M.; Tascone, O.; Rybnikova, V.; Faure, P.; Hanna, K. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions. Environ. Sci. Pollut. Res. 2017, 24, 14748–14757. [Google Scholar] [CrossRef]
- Rybnikova, V.; Singhal, N.; Hanna, K. Remediation of an aged PCP-contaminated soil by chemical oxidation under flow-through conditions. Chem. Eng. J. 2017, 314, 202–211. [Google Scholar] [CrossRef]
- Chan, C.K.; Tung, K.K.; Pavlović, N.M.; Chan, W. Remediation of aristolochic acid-contaminated soil by an effective advanced oxidation process. Sci. Total Environ. 2020, 720, 137528. [Google Scholar] [CrossRef]
- Lemaire, J.; Mora, V.; Faure, P.; Hanna, K.; Buès, M.; Simonnot, M.O. Chemical oxidation efficiency for aged, PAH-contaminated sites: An investigation of limiting factors. J. Environ. Chem. Eng. 2019, 7, 103061. [Google Scholar] [CrossRef]
- Yoo, J.C.; Lee, C.; Lee, J.S.; Baek, K. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals. J. Environ. Manag. 2017, 186, 314–319. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Z.; Li, Y.; Cao, H.; Su, C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 2019, 226, 483–491. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, F.; Wang, F.; Gao, J.; Fan, G.; Zhou, D.; Fang, G. Comparison of Persulfate Activation and Fenton Reaction in Remediating an Organophosphorus Pesticides-Polluted Soil. Pedosphere 2017, 27, 465–474. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, M.; Wang, R.; Du, J.; Wang, J.; Zhang, Q. Efficiently dedicated oxidation of long-chain crude oil in the soil by inactive SOM-Fe. Chem. Eng. J. 2019, 375, 121913. [Google Scholar] [CrossRef]
- Jalilian Ahmadkalaei, S.P.; Gan, S.; Ng, H.K.; Abdul Talib, S. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil. Environ. Sci. Pollut. Res. 2017, 24, 17779–17789. [Google Scholar] [CrossRef]
- Keum, H.; Kang, G.; Jho, E.H. Optimization of hydrogen peroxide-to-hemoglobin ratio for biocatalytic mineralization of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Chemosphere 2017, 187, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Peluffo, M.; Mora, V.C.; Morelli, I.S.; Rosso, J.A. Persulfate treatments of phenanthrene-contaminated soil: Effect of the application parameters. Geoderma 2018, 317, 8–14. [Google Scholar] [CrossRef]
- Shih, Y.J.; Binh, N.T.; Chen, C.W.; Chen, C.F.; Dong, C. Di Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 2016, 150, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Zhao, L.; Dong, Y.H.; Chen, H.; Zhong, M. Enhanced Fenton degradation of polychlorinated biphenyls in capacitor-oil-contaminated soil by chelating agents. Chem. Eng. J. 2018, 333, 370–379. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Wang, J.; Zhang, Q.; Huang, T. Efficient oxidation of macro-crude oil in soil using oil-absorbing Fe catalyzing H2O2. Chem. Eng. J. 2019, 367, 219–229. [Google Scholar] [CrossRef]
- Xu, J.; Fan, X.; Huang, F.; Li, X. Iron bound to soil organic matter catalyzes H2O2 to oxidize crude oil in soil. J. Hazard. Mater. 2017, 322, 516–524. [Google Scholar] [CrossRef]
- Santos, A.; Firak, D.S.; Emmel, A.; Siedlecki, K.; Lopes, A.; Peralta-Zamora, P. Evaluation of the Fenton process effectiveness in the remediation of soils contaminated by gasoline: Effect of soil physicochemical properties. Chemosphere 2018, 207, 154–161. [Google Scholar] [CrossRef]
- de Souza, D.T.; Benetti, C.N.; Sauer, E.; Paula, V.C.S.; Freitas, A.M.; Tiburtius, E.R.L. Decontamination of pure and ethanol/ gasoline-contaminated soil by Fenton-like process. Water Air Soil Pollut. 2018, 229, 105. [Google Scholar] [CrossRef]
- Ouriache, H.; Arrar, J.; Namane, A.; Bentahar, F. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation. Chemosphere 2019, 232, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Zingaretti, D.; Lominchar, M.A.; Verginelli, I.; Santos, A.; Baciocchi, R. Humic acids extracted from compost as amendments for Fenton treatment of diesel-contaminated soil. Environ. Sci. Pollut. Res. 2020, 27, 22225–22234. [Google Scholar] [CrossRef] [PubMed]
- Zingaretti, D.; Lombardi, F.; Baciocchi, R. Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites. Sci. Total Environ. 2018, 619, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, L.; Teng, Y. Effect of soil type on the degradation of polychlorinated biphenyls in a pyrophosphate-chelated Fenton-like reaction. Chem. Eng. J. 2020, 390, 124574. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Wan, J.; Gong, X.; Zhu, Y. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J. Hazard. Mater. 2016, 312, 184–191. [Google Scholar] [CrossRef]
- Boulangé, M.; Lorgeoux, C.; Biache, C.; Saada, A.; Faure, P. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior. Chemosphere 2019, 224, 437–444. [Google Scholar] [CrossRef]
- Usman, M.; Chaudhary, A.; Biache, C.; Faure, P.; Hanna, K. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils. Environ. Sci Pollut. Res. 2016, 23, 1371–1380. [Google Scholar] [CrossRef]
- Usman, M.; Monfort, O.; Haderlein, S.; Hanna, K. Enhancement of pentachlorophenol removal in a historically contaminated soil by adding ascorbic acid to h2o2/magnetite system. Catalysts 2021, 11, 331. [Google Scholar] [CrossRef]
- Magalhães, V.M.A.; Mendes, G.P.; Costa-Filho, J.D.B.; Cohen, R.; Partiti, C.S.M.; Vianna, M.M.G.R.; Chiavone-Filho, O. Clay-based catalyst synthesized for chemical oxidation of phenanthrene contaminated soil using hydrogen peroxide and persulfate. J. Environ. Chem. Eng. 2020, 8, 103568. [Google Scholar] [CrossRef]
- Bendouz, M.; Dionne, J.; Tran, L.H.; Coudert, L.; Mercier, G.; Blais, J.F. Polycyclic Aromatic Hydrocarbon Oxidation from Concentrates Issued from an Attrition Process of Polluted Soil Using the Fenton Reagent and Permanganate. Water Air Soil Pollut. 2017, 228, 115. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Guo, Y.; Zhang, M.; Huang, T. Novel iron bound to soil organic matter catalyzes H2O2 to oxidize long-chain alkanes effectively in soil. Chem. Eng. J. 2018, 339, 566–574. [Google Scholar] [CrossRef]
- Chen, X.; Murugananthan, M.; Zhang, Y. Degradation of p-Nitrophenol by thermally activated persulfate in soil system. Chem. Eng. J. 2016, 283, 1357–1365. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8, 592056. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Wang, H.; Luo, M. Separation of polyvinylchloride and acrylonitrile-butadiene-styrene combining advanced oxidation by S2O82−/Fe2+ system and flotation. Waste Manag. 2019, 91, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Rybnikova, V.; Usman, M.; Hanna, K. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes. Environ. Sci. Pollut. Res. 2016, 23, 17035–17048. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, W.; Han, X.; Li, X.; Zhang, K.; Qiao, Z. In situ remediation of ortho-nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate). Environ. Sci. Pollut. Res. 2016, 23, 19707–19712. [Google Scholar] [CrossRef] [PubMed]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Malakootian, M.; Ahmadian, M.; Khatami, M. Activation of ultrasound enhanced persulfate oxidation by biogenic nanosilvers for degradation of 4-nitroaniline. Desalin. Water Treat. 2020, 174, 240–247. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of bisphenol a by uv-c/peroxymonosulfate (pms): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Srinivas, M.; ArunaKumari, M.L. Heterogeneous advanced photo- Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process. J. Water Process. Eng. 2016, 13, 117–126. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Comparative study on sulfamethoxazole degradation by Fenton and Fe(II)-activated persulfate process. RSC Adv. 2017, 7, 48670–48677. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hu, X.; Cai, T.; Yang, Y.; Zhao, R.; Liu, C.; Li, A.; Jiang, C. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO). Chem. Eng. J. 2019, 369, 344–352. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chem. Eng. J. 2020, 393, 124646. [Google Scholar] [CrossRef]
- Lominchar, M.A.; Santos, A.; de Miguel, E.; Romero, A. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci. Total Environ. 2018, 622, 41–48. [Google Scholar] [CrossRef]
- Miao, D.; Zhao, S.; Zhu, K.; Zhang, P.; Wang, T.; Jia, H.; Sun, H. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. Chemosphere 2020, 253, 126679. [Google Scholar] [CrossRef] [PubMed]
- Ranc, B.; Faure, P.; Croze, V.; Lorgeoux, C.; Simonnot, M.O. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils. Environ. Sci. Pollut. Res. 2017, 24, 11265–11278. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Mohammadi, F.; Alimohammadi, M.; Mahvi, A.H.; Nazmara, S.; Mazloomi, S.; Aslani, H. Removal of TPHs from soil media using persulfate oxidant in the presence of mineral siderite. Malays. J. Soil Sci. 2016, 20, 67–78. [Google Scholar]
- Liu, M.H.; Hsiao, C.M.; Wang, Y.S.; Chen, W.Y.; Hung, J.M. Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil. Int. Biodeterior. Biodegrad. 2019, 143, 104738. [Google Scholar] [CrossRef]
- Kakosová, E.; Hrabák, P.; Černík, M.; Novotný, V.; Czinnerová, M.; Trögl, J.; Popelka, J.; Kuráň, P.; Zoubková, L.; Vrtoch, Ľ. Effect of various chemical oxidation agents on soil microbial communities. Chem. Eng. J. 2017, 314, 257–265. [Google Scholar] [CrossRef]
- Silva-Rackov, C.K.O.; Aguiar, L.G.; Souza, A.R.; Silva, S.S.O.; Câmara, A.G.; Vianna, M.M.G.R.; Foletto, E.L.; Nascimento, C.A.O.; Chiavone-Filho, O. Remediation of Phenanthrene-Contaminated Soil by Persulfate Activated with Fe-Modified Diatomite: Kinetic and Statistical Approaches. Water Air Soil Pollut. 2017, 228, 271. [Google Scholar] [CrossRef]
- Kang, J.; Wu, W.; Liu, W.; Li, J.; Dong, C. Zero-valent iron (ZVI) Activation of Persulfate (PS) for Degradation of Para-Chloronitrobenzene in Soil. Bull. Environ. Contam. Toxicol. 2019, 103, 140–146. [Google Scholar] [CrossRef]
- Chen, F.; Zeng, S.; Ma, J.; Zhu, Q.; Zhang, S. Degradation of Para-nitrochlorobenzene by the Combination of Zero-valent Iron Reduction and Persulfate Oxidation in Soil. Water Air Soil Pollut. 2018, 229, 333. [Google Scholar] [CrossRef]
- Song, Y.; Fang, G.; Zhu, C.; Zhu, F.; Wu, S.; Chen, N.; Wu, T.; Wang, Y.; Gao, J.; Zhou, D. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study. Chem. Eng. J. 2019, 355, 65–75. [Google Scholar] [CrossRef]
- Pardo, F.; Santos, A.; Romero, A. Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study. Sci. Total Environ. 2016, 566, 480–488. [Google Scholar] [CrossRef]
- Bajagain, R.; Jeong, S.W. Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. Chemosphere 2021, 270, 128627. [Google Scholar] [CrossRef]
- Desalegn, B.; Megharaj, M.; Chen, Z.; Naidu, R. Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil. Environ. Technol. Innov. 2018, 11, 142–152. [Google Scholar] [CrossRef]
- Lei, Y.J.; Tian, Y.; Fang, C.; Zhan, W.; Duan, L.C.; Zhang, J.; Zuo, W.; Kong, X.W. Insights into the oxidation kinetics and mechanism of diesel hydrocarbons by ultrasound activated persulfate in a soil system. Chem. Eng. J. 2019, 378, 122253. [Google Scholar] [CrossRef]
- Lei, Y.J.; Tian, Y.; Sobhani, Z.; Naidu, R.; Fang, C. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chem. Eng. J. 2020, 388, 124215. [Google Scholar] [CrossRef]
- Li, Y.T.; Li, D.; Lai, L.J.; Li, Y.H. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe. Chemosphere 2020, 238, 124657. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Wang, B.; Wang, S.; Liu, M.; Wu, Y.; Lu, L.; Ren, H.; Li, H.; Dong, W.; et al. Degradation of ibuprofen in soil systems by persulfate activated with pyrophosphate chelated Fe(II). Chem. Eng. J. 2020, 379, 122145. [Google Scholar] [CrossRef]
- Fan, G.; Liu, X.; Lin, C.; Li, P. Peroxymonosulfate assisted mechanochemical method for the degradation of phenanthrene in contaminated soils. Emerg. Contam. 2018, 4, 22–31. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Q.; Wu, B.; Peng, C.; Li, N.; Li, F.; Gu, Q. Treatment of PAH-contaminated soil using cement-activated persulfate. Environ. Sci. Pollut. Res. 2018, 25, 887–895. [Google Scholar] [CrossRef]
- Srivastava, V.J.; Hudson, J.M.; Cassidy, D.P. In situ solidification and in situ chemical oxidation combined in a single application to reduce contaminant mass and leachability in soil. J Environ Chem. Eng 2016, 4, 2857–2864. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wu, Y.; Chen, H.; Shi, Y.; Liu, M.; Dong, W. Degradation of ibuprofen by thermally activated persulfate in soil systems. Chem. Eng. J. 2019, 356, 799–810. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, W.; Xu, L.; Fu, R.; Lin, K. Oxidation and mechanism of decabromodiphenyl ether (BDE209) by thermally activated persulfate (TAP) in a soil system. Chem. Eng. J. 2016, 306, 226–232. [Google Scholar] [CrossRef]
- Gou, Y.; Zhao, Q.; Yang, S.; Wang, H.; Qiao, P.; Song, Y.; Cheng, Y.; Li, P. Removal of polycyclic aromatic hydrocarbons (PAHs) and the response of indigenous bacteria in highly contaminated aged soil after persulfate oxidation. Ecotoxicol. Environ. Saf. 2020, 190, 110092. [Google Scholar] [CrossRef]
- Lee, Y.; Cui, M.; Choi, J.; Kim, J.; Khim, J. Treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans contaminated soil using S2O82− with ferrous ion and heat as activating methods. Chem. Eng. J. 2020, 384, 123299. [Google Scholar] [CrossRef]
- Peng, L.; Deng, D.; Ye, F. Efficient oxidation of high levels of soil-sorbed phenanthrene by microwave-activated persulfate: Implication for in situ subsurface remediation engineering. J. Soils Sediments 2016, 16, 28–37. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, W.; Liu, L.; Lin, K. Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil. Chem. Eng. J. 2017, 307, 750–755. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Yang, Y.; Jiang, C.; Bian, C.; Liu, C.; Zhang, M.; Cai, T. Degradation of atrazine and structurally related s-triazine herbicides in soils by ferrous-activated persulfate: Kinetics, mechanisms and soil-types effects. Chem. Eng. J. 2018, 351, 523–531. [Google Scholar] [CrossRef]
- Ferreira, I.D.; Prieto, T.; Freitas, J.G.; Thomson, N.R.; Nantes, I.L.; Bechara, E.J.H. Natural Persulfate Activation for Anthracene Remediation in Tropical Environments. Water Air Soil Pollut. 2017, 228, 146. [Google Scholar] [CrossRef]
- Mendes, G.P.; Magalhães, V.M.A.; Soares, L.C.R.; Aranha, R.M.; Nascimento, C.A.O.; Vianna, M.M.G.R.; Chiavone-Filho, O. Treatability studies of naphthalene in soil, water and air with persulfate activated by iron(II). J. Environ. Sci. 2020, 90, 67–77. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Liu, X.; Lin, C.; Sun, K.; Zhang, H.; Li, X.; Fan, G. Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: Effect, mechanism and ecotoxicity. Chemosphere 2019, 223, 196–203. [Google Scholar] [CrossRef]
- Peluffo, M.; Pardo, F.; Santos, A.; Romero, A. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Sci. Total Environ. 2016, 563, 649–656. [Google Scholar] [CrossRef]
- Satapanajaru, T.; Chokejaroenrat, C.; Sakulthaew, C.; Yoo-iam, M. Remediation and Restoration of Petroleum Hydrocarbon Containing Alcohol-Contaminated Soil by Persulfate Oxidation Activated with Soil Minerals. Water Air Soil Pollut. 2017, 228, 345. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, S.; Chen, D.; Dai, G.; Wei, D.; Shu, Y. Activation of persulfate with biochar for degradation of bisphenol A in soil. Chem. Eng. J. 2020, 381, 122637. [Google Scholar] [CrossRef]
- Ni, M.; Tian, S.; Huang, Q.; Yang, Y. Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil. Environ. Sci. Pollut. Res. 2018, 25, 12159–12168. [Google Scholar] [CrossRef] [PubMed]
- Paixão, I.C.; López-Vizcaíno, R.; Solano, A.M.S.; Martínez-Huitle, C.A.; Navarro, V.; Rodrigo, M.A.; dos Santos, E.V. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. Chemosphere 2020, 248, 126029. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.; Rosales, E.; Sandu, C.; Meijide, J.; Pazos, M.; Lazar, G.; Sanromán, M.A. Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Process. Saf. Environ. Prot. 2017, 108, 99–107. [Google Scholar] [CrossRef]
- Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M.C.; Cárdenas, J.; Teutli, M.; Bustos, E. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater. Phys. Chem. Earth 2016, 91, 68–76. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Ma, J.; Qu, J.; Yang, Y.; Zhang, S. Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process. J. Hazard. Mater. 2019, 369, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Jorfi, S.; Mehrabi, N.; Saeedi, R.; Darvishi Cheshmeh Soltani, R.; Barzegar, G. A novel combination of surfactant addition and persulfate-assisted electrokinetic oxidation for remediation of pyrene-contaminated soil. Chem. BioChem. Eng. Q. 2018, 32, 55–69. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; Cang, L.; Zhou, D. Ion exchange membranes enhance the electrokinetic in situ chemical oxidation of PAH-contaminated soil. J. Hazard. Mater. 2020, 382, 121042. [Google Scholar] [CrossRef]
- Sandu, C.; Popescu, M.; Rosales, E.; Bocos, E.; Pazos, M.; Lazar, G.; Sanromán, M.A. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. Chemosphere 2016, 156, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Suanon, F.; Tang, L.; Sheng, H.; Fu, Y.; Xiang, L.; Herzberger, A.; Jiang, X.; Mama, D.; Wang, F. TW80 and GLDA-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: Does it worth? Chem. Eng. J. 2020, 385, 123934. [Google Scholar] [CrossRef]
- Rocha, I.M.V.; Silva, K.N.O.; Silva, D.R.; Martínez-Huitle, C.A.; Santos, E.V. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Sep. Purif. Technol. 2019, 208, 194–200. [Google Scholar] [CrossRef]
- Mousset, E.; Oturan, M.A.; Van Hullebusch, E.D.; Guibaud, G.; Esposito, G. Soil washing/flushing treatments of organic pollutants enhanced by cyclodextrins and integrated treatments: State of the art. Crit. Rev. Environ. Sci. Technol. 2014, 44, 705–795. [Google Scholar] [CrossRef]
- Miao, Y.; Johnson, N.W.; Gedalanga, P.B.; Adamson, D.; Newell, C.; Mahendra, S. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants. Water Res. 2019, 149, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Bajagain, R.; Park, Y.; Jeong, S.W. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci Total Environ. 2018, 626, 1236–1242. [Google Scholar] [CrossRef]
- Gou, Y.; Yang, S.; Cheng, Y.; Song, Y.; Qiao, P.; Li, P.; Ma, J. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide. Chem. Eng. J. 2019, 356, 524–533. [Google Scholar] [CrossRef]
- Xu, J.; Deng, X.; Cui, Y.; Kong, F. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil. J. Hazard. Mater. 2016, 320, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Du, J.; Li, L.; Zhang, Q.; Chen, Z. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation. Chemosphere 2020, 252, 126622. [Google Scholar] [CrossRef]
- Xu, J.; Kong, F.; Song, S.; Cao, Q.; Huang, T.; Cui, Y. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil. Chemosphere 2017, 180, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Polli, F.; Zingaretti, D.; Crognale, S.; Pesciaroli, L.; D’Annibale, A.; Petruccioli, M.; Baciocchi, R. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil. Chemosphere 2018, 191, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, C.; Wang, D.; Zhou, Z.; Sun, H.; Zhai, S. A novel technology for remediation of PBDEs contaminated soils using tourmaline-catalyzed Fenton-like oxidation combined with P. chrysosporium. Chem. Eng. J. 2016, 296, 319–328. [Google Scholar] [CrossRef]
- Liu, F.; Oturan, N.; Zhang, H.; Oturan, M.A. Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel. Chemosphere 2020, 249, 126176. [Google Scholar] [CrossRef]
- Gharaee, A.; Khosravi-Nikou, M.R.; Anvaripour, B. Hydrocarbon contaminated soil remediation: A comparison between Fenton, sono-Fenton, photo-Fenton and sono-photo-Fenton processes. J. Ind Eng. Chem. 2019, 79, 181–193. [Google Scholar] [CrossRef]
- Monfort, O.; Usman, M.; Soutrel, I.; Hanna, K. Ferrate(VI) based chemical oxidation for the remediation of aged PCB contaminated soil: Comparison with conventional oxidants and study of limiting factors. Chem. Eng. J. 2019, 355, 109–117. [Google Scholar] [CrossRef]
- Qiu, Y.; Xu, M.; Sun, Z.; Li, H. Remediation of PAH-contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process. Int. J. Environ. Res. Public Health 2019, 16, 441. [Google Scholar] [CrossRef] [Green Version]
- Peluffo, M.; Rosso, J.A.; Morelli, I.S.; Mora, V.C. Strategies for oxidation of PAHs in aged contaminated soil by batch reactors. Ecotoxicol. Environ. Saf. 2018, 151, 76–82. [Google Scholar] [CrossRef]
- Medina, R.; David Gara, P.M.; Fernández-González, A.J.; Rosso, J.A.; Del Panno, M.T. Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation. Sci. Total Environ. 2018, 618, 518–530. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.; Huo, J.; Xie, H.; Xu, C.; Liang, S. Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate. Chem. Eng. J. 2020, 382, 123055. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Q.; Chen, F.; Zhu, Q.; Wang, Y.; Liu, G. Remediation of PBDEs-metal co-contaminated soil by the combination of metal stabilization, persulfate oxidation and bioremediation. Chemosphere 2020, 252, 126538. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, W.; Zhu, L. Science of the Total Environment Enhanced microbial degradation of benzo [a] pyrene by chemical oxidation. Sci. Total Environ. 2019, 653, 1293–1300. [Google Scholar] [CrossRef]
- Alcántara, M.T.; Gómez, J.; Pazos, M.; Sanromán, M.A. Electrokinetic remediation of PAH mixtures from kaolin. J. Hazard. Mater. 2010, 179, 1156–1160. [Google Scholar] [CrossRef]
- Annamalai, S.; Santhanam, M.; Selvaraj, S.; Sundaram, M.; Pandian, K.; Pazos, M. “Green technology”: Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. Sci. Total Environ. 2018, 624, 1649–1657. [Google Scholar] [CrossRef]
- Annamalai, S.; Sundaram, M. Electro-bioremediation: An Advanced Remediation Technology for the Treatment and Management of Contaminated Soil. In Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R.N., Saxena, G., Eds.; Springer: Singapore, 2020; pp. 183–214. ISBN 978-981-13-3426-9. [Google Scholar]
- Suanon, F.; Tang, L.; Sheng, H.; Fu, Y.; Xiang, L.; Wang, Z.; Shao, X.; Mama, D.; Jiang, X.; Wang, F. Organochlorine pesticides contaminated soil decontamination using TritonX-100-enhanced advanced oxidation under electrokinetic remediation. J. Hazard. Mater. 2020, 393, 122388. [Google Scholar] [CrossRef] [PubMed]
- Befkadu, A.A.; Chen, Q. Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedosphere 2018, 28, 383–410. [Google Scholar] [CrossRef]
- Mousset, E.; Huguenot, D.; Van Hullebusch, E.D.; Oturan, N.; Guibaud, G.; Esposito, G.; Oturan, M.A. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environ. Pollut. 2016, 211, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Mousset, E.; Pechaud, Y.; Oturan, N.; Oturan, M.A.; Réactions, L.; Cnrs, U.M.R.; De Lorraine, U.; Bp, G. Influence of Initial Organic Load on the Anodic Oxidation and Electro-Fenton Combined Process—On the Way to Electrochemical Cell Design Optimization. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. CEST2017_00747. [Google Scholar]
- Bajagain, R.; Lee, S.; Jeong, S.W. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil. Chemosphere 2018, 207, 565–572. [Google Scholar] [CrossRef] [PubMed]
Process Description | Process Parameters | Contaminant & Concentration | Higher Removal Efficiency (%) | Reference |
---|---|---|---|---|
Fenton | Fe2+3.0 g/kg; H2O2 120 g/kg; (1:67); pH = 3.0–7.1 | Aristolochic acid 500 μg/kg | >97 | [25] |
Fenton | (H2O2):(FeSO4) = 20:1 sequential, four times/day with intervals of 2 h over 5 d. | 16 PAHs 933.9–2155.4 mg/kg | 40–70 | [26] |
Fenton | 0.1 M EDTA 3% H2O2 | Diesel 3300 mg/kg | 70 | [27] |
Fenton | 30% H2O2 = 1.2 mmol/g; FeSO4,7H2O = 0.2, 0.4 mmol/g | 16 PAHs gas plant 263.6 ± 73.3 mg/kg; coking plant 385.2 ± 39.6 mg/kg | 60–85.4 | [28] |
Fenton | Fe2+:H2O2 1:5; H2O2 0.8 mol/L | Chlorpyrifos (CP) 11,000 mg/kg; 4-bromo-2-chlorophenol (BCP) 10,000 mg/kg. | CP 92; BCP 97 | [29] |
Fenton | ZVI 0.25 g/g and H2O2 2 M | Polychlorobiphenyls (PCB 18-PCB 194) 450.2 ± 31.8 mg/kg | PCB 28 90; PCB 118 49 | [24] |
Fenton + iron inside oil | H2O2 900 mM/oil-absorbing Fe 0.25–0.35 mg oil/mg Fe | short and long-chain alkanes 3937 mg/kg and 1490 mg/kg, respectively | 62–74 | [30] |
Fenton + ethyl lactate (EL) | H2O2 0.5 M, Fe2+ 0.05 M, EL% = 25% | TPH 5000 mg/kg | 96.74 | [31] |
Fenton + haemoglobin (Hb) | H2O2:Hb = 3 | 16 PAHs 259 ± 5.5 mg/kg; benzo(a)pyrene (BaP) 10 mg kg | PAHs 89; BaP 85 | [32] |
Fenton + EDTA | H2O2 129.5 mL/kg; FeSO4·7H2O 14.6 g/kg; EDTA 16.2 g/kg | Pyrene 1200 ± 200 mg/kg | ~20 | [33] |
Fenton + EDTA | H2O2/Fe(II)/PAH (102–105/102/1). | PAH 4.23 mg/kg | ~30 | [34] |
Fenton + sodium pyrophosphate (SP)-chelated | Fe2+:SP:H2O2 (1:1:20) | PCBs 63.9–739.0 mg/kg | 87.5 and 77.1 | [35] |
Fenton + iron inside soil organic matter | H2O2 900 mM/Fe chelated with SOM S/L 5 g/60 mL | TPH 9068 mg/kg | 67 | [36] |
Fenton + iron inside soil organic matter | H2O2 900 mM Fe-SOM 837 mg/kg | TPH ~4500 mg/kg | 66.8 | [37] |
Fenton + flow system | H2O2 600 mM; FeII 60 mM | β-HCH 45 mg/kg; lindane 25 mg/kg | β-HCH ~70; lindane ~90 | [23] |
Fenton like | H2O2 = 1.5 mol/L | Gasoline 10 g/kg | ~60–90 | [38] |
Fenton like | H2O2 = 2.8% | BTX 0.05–80 mg/kg | Benzene ~99; toluene ~86; xylene ~74 | [39] |
Fenton-like + flow system | Endogenous Fe 9.8 g/kg; H2O2 4 mmol; L/S = 20/1 | Pentachlorophenol 6 mg/kg | 27 | [24] |
Fenton-like + ZVI + EDTA | 30% H2O2/endogenous Fe/EDTA 20/1/1 | TPH 30.51 ± 0.46 g/kg | 80 | [40] |
Fenton-like + humic acids | Humic acids (from organic wastes, 10 g/L) and KH2PO4 (8.2 g/L); H2O2 30%; Fe = 20 g/kg | Diesel-HC > 12 5500 ± 1000 mg/kg | 90 | [41] |
Fenton-like + humic acids | Humic acids 5 L/Kg; H2O2 6% v/v; Fe = 29.7 g/kg | 3-chlorophenol | >90 | [42] |
Fenton-like + pyrophosphate-chelated | Fe:Pyrophosphate:H2O2 (1:1:10) | PCB 70.67–80.00 mg/kg | 79.4–91.4 | [43] |
Fenton-like + steel converter slag (SCS) | SCS 80 g/kg; 20 g soil; H2O2 solution (15% w/w) 20 mL; | Antrazine 617.5 mg/kg | 93.70 | [44] |
Fenton-like + magnetite | 1200 mL H2O2 30%; 6 g magnetite; 6 g soil | 16 PAHs 1210 μg/g | 80 | [45] |
Fenton-like + magnetite + preheating | H2O2 10% + magnetite (20:1); pre-heating 150 °C | 16 PAHs 1089–1121 mg/kg | ~50 | [46] |
Fenton-like + magnetite + ascorbic acid (AA) | Magnetite/AA/H2O2 25 g/kg/125 mM/500 mM | Pentachlorophenol 6 mg/kg | 95 | [47] |
Fenton + clay catalyst | Fe clay catalyst = 1.5 g; 30% H2O2 | Phenanthrene 200 mg/kg | 83 | [48] |
Fenton + KMnO4 | (H2O2):(Fe2+) = 10:1, followed by KMnO4 0.4 M, T = 60 °C | 27 PAHs 3090 ± 104 mg/kg | 71 | [49] |
Process Description | Process Parameters | Contaminant & Concentration | Removal Efficiency (%) | Reference |
---|---|---|---|---|
PS | PS 43.0 g/kg | Phenanthrene 110 ± 20 mg/kg | 36 | [33] |
Preheating + PS | T = 60 °C; PS 1.5 stoichiometric oxidant demand/g | PAH 14.9 g/kg | >50 | [67] |
Thermally activated PS | PS 18.8 mM; T 50 °C | TCS 50 mg/kg | >88 | [63] |
Thermally activated PS | PS 60 mmol/kg; T 80 °C | p-Nitrophenol 93 (±2) mg/kg | 100 | [51] |
Thermally activated PS | PS 20 mM; T 60 °C | Ibuprofen 1–10 mg/kg | 92–95 | [86] |
Thermally activated PS | PS 0.5 M; T = 50 °C; | Decabromodiphenyl ether (BDE209) 20 mg/kg | 52.8 | [87] |
Thermally activated PS | PS 2.1 M; T = 60 °C | 6 PAHs 497.47 ± 18.71 mg/kg | 38.28–79.97 | [88] |
Thermally activated PS + Fe | PS:Fe2+ 1:2; T = 60 °C | Polychlorinated dibenzo-p-dioxins (PCDDs) 1350.543 pg/g; dibenzofurans (PCDFs) 2152.601 pg/g | 98.3 | [89] |
Thermally activated PS + Fe + EDTA | PS 267 g/kg; FeSO4·7H2O 14.6 g/kg; EDTA 16.2 g/kg; T = 65 °C | Phenanthrene 1200 ± 200 mg/kg; pyrene 1200 ± 200 mg/kg | 91 and 96 | [33] |
Microwave-activated PS | PS 1.0 M; T = 60 °C | Ethyl-parathion 60 mg/kg | 90 | [66] |
Microwave-activated PS | PS 50 g/L; T = 80 °C | Phenanthrene ~1000 mg/kg | 99 | [90] |
PS activation by Fe | PS 60 g/kg; Fe3+ 17 g/kg | PEH C10-C14 60.2 g/kg | 78 | [71] |
PS activation by Fe | PS 0.2 mol/L; Fe(II)/SP 0.5/1 M | Decabromodiphenyl ether 10 mg/kg | 66 | [91] |
PS activation by Fe | Fe2+:PS 1:1 M; Fe2+ 8.3 mM; PS 8.3 mM | Atrazine 100 mg/kg | 80 | [92] |
PS activation by Fe | PS 20 g/L; Fe(II) 0.78 g/L | Anthracene 1.87 mmol/kg | >99.9 | [93] |
PS activation by Fe | PS 18.37 g/L; FeSO4 4.25 g/L | Naphthalene 80 mg/kg | 62 | [94] |
PS activation by pyrophosphatechelated Fe(II) | Fe(II) = 10 mM/kg; PS = 100 mM/kg | Ibuprofen 48.4 μM/kg | 72.10 | [82] |
PS activation by diatomite-supported iron | PS:diatomite-supported Fe 1:1 | Phenanthrene 200 mg/kg | 98 | [72] |
PS activation by ZVI | ZVI 1.0 mmol/g; PS 4.0 mmol/g | para-chloronitrobenzene (p-CNB) 425.0 mg/kg | 90.1 | [73] |
ZVI + PS two stage process | ZVI 0.8 mmol/g; PS 5.0 mmol/g | para-nitrochlorobenzene (pNCB) 2.87 mmol/kg | 94.1 | [74] |
PS activation by mango peel-nZVI | nZVI 5 g/L; PS 0.5 M | PEH 6.41 (0.17) g/Kg | >90 | [78] |
PS activation by ZVI flow system | PS 0.2 mmol/cm3; Fe3+ 0.0558 mg/cm3; nZV 0.0558 mg/cm3 | Anthracene 5.75 mg/kg; anthraquinone 97.7 mg/kg; phenantrene 137.7 mg/kg; pyrene 125.5 mg/kg; BaP 112.9 mg/kg | BaP 100 | [76] |
PS activation by nZVI | nZVI 0.03 g/g; T= 30 °C; n(SMX)/n(PDS) = 1:75 | Sulfamethoxazole 20 mg/kg | 96.1 | [95] |
PS activation by nZVI | PS 50,000 mg/L; nZVI 1 mM | Anthracene 97 mg/kg; pyrene 3 mg/kg; benzo(a)pyrene 102 mg/kg; phenanthrene 89 mg/kg | All 100 except phenantrene (80) | [96] |
PS activation by ZVI in an in situ pilot-scale study | nZVI 3.5 g/L; PS 30 g/L; | PAHs ∼17 mg/kg | 62.78–82.21 | [75] |
PS activated by Fe3O4 nanoparticles | PS 180 mM; Fe3O4 0.25 g/g | Polychlorobiphenyls (PCB 18-PCB 194) 450.2 ± 31.8 mg/kg | PCB 28:99; PCB 118:90 | [55] |
PS activation by Fe and citric acid | PS 2 mmol/L; FeSO4 0.2 mmol/g; citric acid 0.04 mmol/g; | 16 PAHs 263.6 ± 73.3 and 385.2 ± 39.6 mg/kg | 81.5–86.54 | [28] |
PS activated by magnetite | 1% magnetite; 5.5% PS | PEH 4200 ± 124 mg/kg | 95 | [97] |
PS activated by siderite | PS 400 mM; siderite 0.4 g; T = 60 °C; PS:Fe (II) 400:1 | PEH 5000 mg/kg | 41 | [69] |
PS activation by US | US 104 W; PS = 50 g/L; DHC 6500 mg/kg, | Diesel hydrocarbons 3250–16,250 mg/kg | 23.29–92.56 | [79] |
PS activation by US | US 20 kHz; (PS)0 = 5, 50 g/L | PFAS 0.045 mg/kg | 62–71 | [80] |
PS activation by US/Fe | PS 1 M; US 200 W; Fe0 = 0.28 g | PEH 19,850 mg/kg | 82.23 | [81] |
PS activation by biochar | PS 8 mM; biochar 4 wt% | Bisphenol A 31.93 mg/kg | ~99 | [98] |
PMS activation by nZVI | 0.3% PMS; 0.2% nZVI | TPH 6625 ± 115 mg/kg. | >96 | [77] |
PMS activation by ball-mill | PMS:soil 10:1; mass ratio of ball to material 30:1 | Phenantrene 200 mg/kg | 98 | [83] |
PS activation by alkaline | PS 100 g/L; NaOH:PS 4:1 | PEH 5000 mg/kg | 98 | [65] |
PS activation by alkaline | PS 400 mmol/L; NaOH 200 mol/L | Chlorinated organic compounds (COCs) 3060–9822 mg/kg | 96–70 | [64] |
Cement-activated PS | PS 19.20 mmol/kg; Portland cement 10% | PAHs 214.4 mg/kg | 57.3 | [84] |
Cement-activated PS | Portland cement:PS 2:1; PS 1.5% | BTEX 2,685–6836 mg/kg; 17 PAHs 54,001–30,372 mg/kg; naphthalene 23,140 ± 1673–13,445 ± 976 mg/kg | BTEX 91.1; PAHs 33.3; naphthalene 81.1 | [85] |
Process Description | Contaminant & Concentration | Removal Efficiency (%) | Reference |
---|---|---|---|
EK–Fenton | Organochlorine pesticides: hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT) 7.79–14,025.2 mg/kg | 71.5–82.6 | [99] |
EK–Fenton | Petroleum 10,000 mg/kg | 89 | [100] |
EK–Fenton | Rhodamine B 0.16 g dye/kg; PEH 80.4 mg/kg | Dye:54.4; Petroleum:58.2 | [101] |
EK–Fenton pilot level | Gasoline 1126 mg/kg | 80 | [102] |
EK–PS | Decabromodiphenyl ether (BDE-209) 50 mg/kg | BDE:209 85.6 | [103] |
EK–PS | Pyrene 200 mg/kg | 100 | [104] |
EK–PS | PAHs 4.88 mg/kg | 93.1 | [105] |
EK–Fenton–surfactants | THP Spanish soil 80,356.42 mg/kg; THP Romanian soil 45,557.10 mg/kg | Spanish soil 25.7–81.8; Romanian soil 15.1–71.6 | [106] |
EK–PS–surfactants | Organochlorine pesticides (OCPs) 462.08 to 20,335.09 ng/g | 88.05 | [107] |
EK–Fenton–phytoremediation | PEH 8956 mg/kg | >85 | [108] |
Fenton–KMnO4 | 16 PAHs 1210 and 1136 μg/g | 80 and 84 | [45] |
Fenton–KMnO4 | 27 PAH 3090 ± 104 mg/kg | 71 | [49] |
Fenton–HPCD surfactant | 16 PAH listed by USEPA 1090 mg/kg | 99 | [109] |
Fenton–bioremediation | 16 PAHs 263.6 ± 73.3 and 385.2 ± 39.6 mg/kg | 5–6 rings 78–90; 2–4 rings 52–85 | [28] |
Fenton–bioremediation | 1,4-dioxane | 100 | [110] |
Fenton–bioremediation | Lubricants 10,000 mg/kg | 99.2 | [70] |
Fenton–bioaugmentation serial foam | PEH 7470 mg/kg | 92 | [111] |
Fenton–anoxic–biodegradation | 16 PAHs 350.07 mg/kg | 33.2–95.9 | [112] |
Fenton–pre-oxidation–bioremediation | PEH 12,178 ± 390 mg/kg | 42 ± 1.43 | [113] |
Fenton–pre-oxidation–bioremediation | Macro crude oil (C19–C29 and C17–C29) 8853 mg/kg-S1 11.719 mg/kg-S2 | 57.1 and 64.4 | [114] |
Fenton–pre-oxidation–bioremediation | Crude oil 23,440 ± 390 mg/kg | 53 | [115] |
Fenton-like treatment–bioremediation | Diesel 700–2600 mg/kg | 75 | [116] |
Fenton-like reaction combined with Phanerochaete chrysosporium | Polybrominated diphenyl ethers 18.70 ± 0.08 ng/g | 55.5 ± 6.0–72.6 ± 3.6 | [117] |
Tween 80 surfactant–electro–Fenton | Diesel 50 g/kg | 87.2 | [118] |
Sono–photo–Fenton | TPH 15 g/kg | 99 | [119] |
PMS in presence of Fe (V) | PCB > 1000 mg/kg | 40 | [120] |
PS–H2O2 | o-NCB 400 mg/kg | ~80 | [56] |
PS-SDS surfactant | PAHs 100 mg/kg | 34–75 | [121] |
PS–bioremediation | Phenanthrene 1200 ± 200 mg/kg; pyrene 1200 ± 200 mg/kg | 90 | [122] |
PS–bioremediation | PAHs 214 ± 21 mg/kg | 66 | [123] |
PS–bioremediation | PEH 7996.86 ± 1173.40 mg/kg | 62.61 ± 1.23 | [124] |
PS–bioremediation | PBDEs 53.8 ± 0.5 mg/kg | 94.60 | [125] |
PS–anoxic–bioremediation | 16 PAHs-562.81 ± 10.29 and sterilized soil 481.35 ± 6.63 | 36.37–94.91 | [88] |
PS–pre-oxidation–bioremediation | BaP 0.7 mg/kg | 98.7 | [126] |
PS–bioaugmentation serial foam spraying technique | PEH 100 mL/kg | 80 | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calenciuc, C.; Fdez-Sanromán, A.; Lama, G.; Annamalai, S.; Sanromán, A.; Pazos, M. Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts 2022, 12, 64. https://doi.org/10.3390/catal12010064
Calenciuc C, Fdez-Sanromán A, Lama G, Annamalai S, Sanromán A, Pazos M. Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts. 2022; 12(1):64. https://doi.org/10.3390/catal12010064
Chicago/Turabian StyleCalenciuc, Crina, Antía Fdez-Sanromán, Gabriela Lama, Sivasankar Annamalai, Angeles Sanromán, and Marta Pazos. 2022. "Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation" Catalysts 12, no. 1: 64. https://doi.org/10.3390/catal12010064
APA StyleCalenciuc, C., Fdez-Sanromán, A., Lama, G., Annamalai, S., Sanromán, A., & Pazos, M. (2022). Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts, 12(1), 64. https://doi.org/10.3390/catal12010064