Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterisation
2.2. Catalytic Tests
2.2.1. Noble Metal Catalysts
2.2.2. Transition Metal Catalysts
2.2.3. Catalyst Stability
3. Discussion
Comparison to Internal Combustion Engines
4. Materials and Methods
4.1. Catalyst Preparation and Reactor Assembly
4.2. Catalytic Testing
4.3. Catalyst Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miola, A.; Ciuffo, B. Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources. Atmos. Environ. 2011, 45, 2242–2251. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- CAIT. World Resources Institute. Historical Emissions Data; World Resources Institute: Washington, DC, USA, 2017. [Google Scholar]
- International Maritime Organization. Initial IMO Strategy on Reduction of GHG Emissions from Ships; International Maritime Organization: London, UK, 2018. [Google Scholar]
- Stambouli, A.B.; Traversa, E. Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 2002, 6, 295–304. [Google Scholar] [CrossRef]
- Xu, Q.; Kobayashi, T. Advanced Materials for Clean Energy; CRC Press: Boca Raton, FL, USA, 2019; ISBN 1482205807. [Google Scholar]
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059. [Google Scholar] [CrossRef]
- Wojcik, A.; Middleton, H.; Damopoulos, I. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 2003, 118, 342–348. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A.; Di Trolio, P.; Di Micco, S.; Jannelli, E. Techno-economics of novel refueling stations based on ammonia-to-hydrogen route and SOFC technology. Int. J. Hydrogen Energy 2021, 46, 10059–10071. [Google Scholar] [CrossRef]
- Afif, A.; Radenahmad, N.; Cheok, Q.; Shams, S.; Kim, J.H.; Azad, A.K. Ammonia-fed fuel cells: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 60, 822–835. [Google Scholar] [CrossRef]
- Jeerh, G.; Zhang, M.; Tao, S. Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. A 2021, 9, 727–752. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A review and comparative assessment of direct ammonia fuel cells. Therm. Sci. Eng. Prog. 2018, 5, 568–578. [Google Scholar] [CrossRef]
- Jiao, F.; Xu, B. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 2019, 31, 1805173. [Google Scholar] [CrossRef] [PubMed]
- Chmielarz, L.; Jabłońska, M. Advances in selective catalytic oxidation of ammonia to dinitrogen: A review. RSC Adv. 2015, 5, 43408–43431. [Google Scholar] [CrossRef]
- Sobczyk, D.P.; van Grondelle, J.; Thüne, P.C.; Kieft, I.E.; de Jong, A.; van Santen, R.A. Low-temperature ammonia oxidation on platinum sponge studied with positron emission profiling. J. Catal. 2004, 225, 466–478. [Google Scholar] [CrossRef]
- Jabłońska, M.; Król, A.; Kukulska-Zajac, E.; Tarach, K.; Chmielarz, L.; Góra-Marek, K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. J. Catal. 2014, 316, 36–46. [Google Scholar] [CrossRef]
- Chen, W.; Qu, Z.; Huang, W.; Hu, X.; Yan, N. Novel effect of SO2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO2 modified Ce–Zr solid solution and the mechanism investigation. Fuel 2016, 166, 179–187. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, G.J.; Hong, S.C. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen. Appl. Surf. Sci. 2020, 506, 144906. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Noble metal (Pt, Rh, Pd) promoted Fe-ZSM-5 for selective catalytic oxidation of ammonia to N2 at low temperatures. Catal. Lett. 2002, 78, 353–357. [Google Scholar] [CrossRef]
- Zhang, L.; He, H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3. J. Catal. 2009, 268, 18–25. [Google Scholar] [CrossRef]
- Lin, M.; An, B.; Niimi, N.; Jikihara, Y.; Nakayama, T.; Honma, T.; Takei, T.; Shishido, T.; Ishida, T.; Haruta, M. Role of the acid site for selective catalytic oxidation of NH3 over Au/Nb2O5. ACS Catal. 2019, 9, 1753–1756. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3–TiO2 prepared with a sol–gel method. J. Catal. 2002, 207, 158–165. [Google Scholar] [CrossRef]
- Hinokuma, S.; Kiritoshi, S.; Kawabata, Y.; Araki, K.; Matsuki, S.; Sato, T.; Machida, M. Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides. J. Catal. 2018, 361, 267–277. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Ichihashi, M. Gas-phase reactions of copper oxide cluster cations with ammonia: Selective catalytic oxidation to nitrogen and water molecules. J. Phys. Chem. A 2018, 122, 4801–4807. [Google Scholar] [CrossRef] [PubMed]
- Hinokuma, S.; Araki, K.; Iwasa, T.; Kiritoshi, S.; Kawabata, Y.; Taketsugu, T.; Machida, M. Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts. Catal. Commun. 2019, 123, 64–68. [Google Scholar] [CrossRef]
- Amblard, M.; Burch, R.; Southward, B.W.L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions. Catal. Today 2000, 59, 365–371. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.B.; Hong, S.C. Characterization and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen. Chemosphere 2003, 50, 1115–1122. [Google Scholar] [CrossRef]
- De Boer, M.; Huisman, H.M.; Mos, R.J.M.; Leliveld, R.G.; van Dillen, A.J.; Geus, J.W. Selective oxidation of ammonia to nitrogen over SiO2-supported MoO3 catalysts. Catal. Today 1993, 17, 189–200. [Google Scholar] [CrossRef]
- Lee, S.M.; Hong, S.C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst. Appl. Catal. B Environ. 2015, 163, 30–39. [Google Scholar] [CrossRef]
- Song, S.; Jiang, S. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of CNTs on the catalytic activity and selectivity. Appl. Catal. B Environ. 2012, 117, 346–350. [Google Scholar] [CrossRef]
- Hung, C.-M.; Lai, W.-L.; Lin, J.-L. Removal of gaseous ammonia in Pt-Rh binary catalytic oxidation. Aerosol Air Qual. Res. 2012, 12, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, Z.; Sun, Q.; Wang, J.; Zhang, C.; Chen, D.; Li, X. High-performance Ag–Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl. Mater. Interfaces 2019, 11, 46875–46885. [Google Scholar] [CrossRef] [PubMed]
- Chmielarz, L.; Jabłońska, M.; Strumiński, A.; Piwowarska, Z.; Węgrzyn, A.; Witkowski, S.; Michalik, M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Appl. Catal. B Environ. 2013, 130, 152–162. [Google Scholar] [CrossRef]
- Chmielarz, L.; Kuśtrowski, P.; Rafalska-Łasocha, A.; Dziembaj, R. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides. Appl. Catal. B Environ. 2005, 58, 235–244. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, Z.; Zhang, X.; Wang, H. Role of different coordinated Cu and reactive oxygen species on the highly active Cu–Ce–Zr mixed oxides in NH3-SCO: A combined in situ EPR and O2-TPD approach. Catal. Sci. Technol. 2016, 6, 4491–4502. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Song, C.; Ogata, Y.; Rao, H.; Zhao, X.; Xu, H.; Chen, Y. Different reaction mechanisms of ammonia oxidation reaction on Pt/Al2O3 and Pt/CeZrO2 with various Pt states. ACS Appl. Mater. Interfaces 2019, 11, 23102–23111. [Google Scholar] [CrossRef]
- Jabłońska, M. TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO. Catal. Commun. 2015, 70, 66–71. [Google Scholar] [CrossRef]
- Lin, M.; An, B.; Takei, T.; Shishido, T.; Ishida, T.; Haruta, M.; Murayama, T. Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity. J. Catal. 2020, 389, 366–374. [Google Scholar] [CrossRef]
- Akah, A.; Cundy, C.; Garforth, A. The selective catalytic oxidation of NH3 over Fe-ZSM-5. Appl. Catal. B Environ. 2005, 59, 221–226. [Google Scholar] [CrossRef]
- Guo, J.; Yang, W.; Zhang, Y.; Gan, L.; Fan, C.; Chen, J.; Peng, Y.; Li, J. A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. Catal. Commun. 2020, 135, 105751. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, B.; Qin, P.; Lv, N.; Wang, T.; Bi, X.; Zhu, H.; Yuan, P.; Bai, Z.; Cui, Q. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chem. Eng. J. 2020, 398, 125515. [Google Scholar] [CrossRef]
- Zapf, R.; Thiele, R.; Wichert, M.; O′Connell, M.; Ziogas, A.; Kolb, G. Application of rhodium nanoparticles for steam reforming of propane in microchannels. Catal. Commun. 2013, 41, 140–145. [Google Scholar] [CrossRef]
- Kolb, G.; Zapf, R.; Hessel, V.; Löwe, H. Propane steam reforming in micro-channels—results from catalyst screening and optimisation. Appl. Catal. A Gen. 2004, 277, 155–166. [Google Scholar] [CrossRef]
- Zapf, R.; Becker-Willinger, C.; Berresheim, K.; Bolz, H.; Gnaser, H.; Hessel, V.; Kolb, G.; Löb, P.; Pannwitt, A.-K.; Ziogas, A. Detailed characterization of various porous alumina-based catalyst coatings within microchannels and their testing for methanol steam reforming. Chem. Eng. Res. Des. 2003, 81, 721–729. [Google Scholar] [CrossRef]
Catalyst | Metal Loading (XRF)/wt.-% | Particle Size (TEM)/nm |
---|---|---|
Pt/Al2O3 | 5.28 | 2.35 |
Pd/Al2O3 | 4.90 | 4.30 |
Rh/Al2O3 | 5.79 | 1.02 |
Ru/Al2O3 | 6.50 | 50.3 |
Ir/Al2O3 | 4.80 | 3.72 |
Ni/Al2O3 | 5.01 | >30 nm |
Fe/Al2O3 | 4.87 | >25 nm |
Cu/Al2O3 | 10.35 | not measured |
Component | SOFC Off-Gas Surrogate | Reactor Feed |
---|---|---|
N2 | 25% | 56.8% |
H2 | 15% | 5.9% |
NH3 | 100 ppm | 35.8 ppm |
H2O | 60% | 23.9% |
O2 | - | 13.2% |
Catalyst | H2 Light-Off TX=50% | NH3 Light-Off TX=50% | Lowest SNOx at XNH3> 98% | S NOx at 600 °C |
---|---|---|---|---|
Pt/Al2O3 | <100 | 125 | 81.1 (200 °C) | 160.3 |
Pd/Al2O3 | 178 | 214 | 117.2 (400 °C) | 135.9 |
Rh/Al2O3 | 243 | 244 | 113.6 (400 °C) | 102.9 |
Ru/Al2O3 | 303 | 266 | 90.2 (400 °C) | 116.4 |
Ir/Al2O3 | 267 | 275 | 63.1 (400 °C) | 120.3 |
Ni/Al2O3 | 183 | 177 | 51.4 (300 °C) | 110.7 |
Fe/Al2O3 | 257 | 254 | 115.0 (600 °C) | 115.0 |
Cu/Al2O3 | 412 | 419 | 109.6 (600 °C) | 109.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weissenberger, T.; Zapf, R.; Pennemann, H.; Kolb, G. Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas. Catalysts 2022, 12, 1186. https://doi.org/10.3390/catal12101186
Weissenberger T, Zapf R, Pennemann H, Kolb G. Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas. Catalysts. 2022; 12(10):1186. https://doi.org/10.3390/catal12101186
Chicago/Turabian StyleWeissenberger, Tobias, Ralf Zapf, Helmut Pennemann, and Gunther Kolb. 2022. "Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas" Catalysts 12, no. 10: 1186. https://doi.org/10.3390/catal12101186
APA StyleWeissenberger, T., Zapf, R., Pennemann, H., & Kolb, G. (2022). Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas. Catalysts, 12(10), 1186. https://doi.org/10.3390/catal12101186