Low-Pt-Based Sn Alloy for the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption Energies of C7H14(g) and Its Intermediates on the Surfaces of Sn–Pt Alloys
2.2. Pathways and Energetics of the Dehydrogenation Reaction
2.2.1. Monoatomic Removal of Hydrogen (1/2H2(g))
2.2.2. Possible Pathways for H2(g) Removal
3. Computational Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obodo, K.O.; Ouma, C.N.M.; Bessarabov, D. Low-Temperature Water Electrolysis. In Power to Fuel: How to Speed Up a Hydrogen Economy; Spazzafumo, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–287. [Google Scholar]
- Bessarabov, D.; Human, G.; Kruger, A.J.; Chiuta, S.; Modisha, P.M.; du Preez, S.P.; Oelofse, S.P.; Vincent, I.; Van Der Merwe, J.; Langmi, H.W.; et al. South African Hydrogen Infrastructure (HySA Infrastructure) for Fuel Cells and Energy Storage: Overview of a Projects Portfolio. Int. J. Hydrogen Energy 2017, 42, 13568–13588. [Google Scholar] [CrossRef]
- Wulf, C.; Zapp, P. Assessment of System Variations for Hydrogen Transport by Liquid Organic Hydrogen Carriers. Int. J. Hydrogen Energy 2018, 43, 11884–11895. [Google Scholar] [CrossRef]
- Modisha, P.M.; Ouma, C.N.M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy Fuels 2019, 33, 2778–2796. [Google Scholar] [CrossRef]
- Jo, Y.; Oh, J.; Kim, D.; Park, J.H.; Baik, H.; Suh, Y.-W. Recent Progress in Dehydrogenation Catalysts for Heterocyclic and Homocyclic Liquid Organic Hydrogen Carriers. Korean J. Chem. Eng. 2022, 39, 20–37. [Google Scholar] [CrossRef]
- Ye, H.-L.; Liu, S.-X.; Zhang, C.; Cai, Y.-Q.; Shi, Y.-F. Dehydrogenation of Methylcyclohexane over Pt-Based Catalysts Supported on Functional Granular Activated Carbon. RSC Adv. 2021, 11, 29287. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Oda, T.; Purnomo, C.W.; Kashiwagi, T.; Aziz, M. Liquid Hydrogen, Methylcyclohexane, and Ammonia as Potential Hydrogen Storage: Comparison Review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- Niermann, M.; Timmerberg, S.; Drünert, S.; Kaltschmitt, M. Liquid Organic Hydrogen Carriers and Alternatives for International Transport of Renewable Hydrogen. Renew. Sustain. Energy Rev. 2021, 135, 110171. [Google Scholar] [CrossRef]
- Kwak, Y.; Kirk, J.; Moon, S.; Ohm, T.; Lee, Y.J.; Jang, M.; Park, L.H.; Ahn, C.; Jeong, H.; Sohn, H.; et al. Hydrogen Production from Homocyclic Liquid Organic Hydrogen Carriers (LOHCs): Benchmarking Studies and Energy-Economic Analyses. Energy Convers. Manag. 2021, 239, 114124. [Google Scholar] [CrossRef]
- Do, G.; Preuster, P.; Aslam, R.; Bösmann, A.; Müller, K.; Arlt, W.; Wasserscheid, P. Hydrogenation of the Liquid Organic Hydrogen Carrier Compound Dibenzyltoluene—Reaction Pathway Determination by 1H NMR Spectroscopy. React. Chem. Eng. 2016, 1, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Leinweber, A.; Müller, K. Hydrogenation of the LOHC Compound Monobenzyl Toluene—Reaction Pathway and Kinetic Effects. Energy Technol. 2017, 6, 513–520. [Google Scholar] [CrossRef]
- Ouma, C.N.M.; Modisha, P.; Bessarabov, D. Insight into the Adsorption of a Liquid Organic Hydrogen Carrier, Perhydro- i -Dibenzyltoluene (i = m, o, p), on Pt, Pd and PtPd Planar Surfaces. RSC Adv. 2018, 8, 31895–31904. [Google Scholar] [CrossRef] [Green Version]
- Singh, E.; Kim, K.S.; Yeom, G.Y.; Nalwa, H.S. Two-Dimensional Transition Metal Dichalcogenide-Based Counter Electrodes for Dye-Sensitized Solar Cells. RSC Adv. 2017, 7, 28234–28290. [Google Scholar] [CrossRef] [Green Version]
- Ouma, C.N.M.; Obodo, K.O.; Modisha, P.M.; Rhyman, L.; Ramasami, P.; Bessarabov, D. Effect of Chalcogen (S, Se and Te) Surface Additives on the Dehydrogenation of a Liquid Organic Hydrogen Carrier System, Octahydroindole–Indole, on a Pt (1 1 1) Surface. Appl. Surf. Sci. 2021, 566, 150636. [Google Scholar] [CrossRef]
- Obodo, K.O.; Ouma, C.N.M.; Bessarabov, D. Modified Pt (2 1 1) and (3 1 1) Surfaces towards the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study. Appl. Surf. Sci. 2022, 584, 152590. [Google Scholar] [CrossRef]
- Chen, F.; Huang, Y.; Mi, C.; Wu, K.; Wang, W.; Li, W.; Yang, Y. Density Functional Theory Study on Catalytic Dehydrogenation of Methylcyclohexane on Pt(111). Int. J. Hydrogen Energy 2020, 45, 6727–6737. [Google Scholar] [CrossRef]
- Alhumaidan, F.; Cresswell, D.; Garforth, A. Hydrogen Storage in Liquid Organic Hydride: Producing Hydrogen Catalytically from Methylcyclohexane. Energy Fuels 2011, 25, 4217–4234. [Google Scholar] [CrossRef]
- Obodo, K.O.; Ouma, C.N.M.; Modisha, P.M.; Bessarabov, D. Density Functional Theory Calculation of Ti3C2 MXene Monolayer as Catalytic Support for Platinum towards the Dehydrogenation of Methylcyclohexane. Appl. Surf. Sci. 2020, 529, 147186. [Google Scholar] [CrossRef]
- Yolcular, S.; Olgun, Ö. Hydrogen Storage in the Form of Methylcyclohexane. Energy Sources Part A Recover. Util. Environ. Eff. 2007, 30, 149–256. [Google Scholar] [CrossRef]
- Boufaden, N.; Akkari, R.; Pawelec, B.; Fierro, J.L.G.; Zina, M.S.; Ghorbel, A. Dehydrogenation of Methylcyclohexane to Toluene over Partially Reduced Silica-Supported Pt-Mo Catalysts. J. Mol. Catal. A Chem. 2016, 420, 96–106. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, Z.J.; Mu, R.; Zha, S.; Li, L.; Chen, S.; Zang, K.; Luo, J.; Li, Z.; Purdy, S.C.; et al. Breaking the Scaling Relationship via Thermally Stable Pt/Cu Single Atom Alloys for Catalytic Dehydrogenation. Nat. Commun. 2018, 9, 4454. [Google Scholar] [CrossRef]
- Maatman, R.W.; Mahaffy, P.; Hoekstra, P.; Addink, C. The Preparation of Pt-Alumina Catalyst and Its Role in Cyclohexane Dehydrogenation. J. Catal. 1971, 23, 105–118. [Google Scholar] [CrossRef]
- Sugiura, Y.; Nagatsuka, T.; Kubo, K.; Hirano, Y.; Nakamura, A.; Miyazawa, K.; Iizuka, Y.; Furuta, S.; Iki, H.; Higo, T.; et al. Dehydrogenation of Methylcyclohexane over Pt/TiO2-Al2O3 Catalysts. Chem. Lett. 2017, 46, 1601–1604. [Google Scholar] [CrossRef]
- Lup, A.N.K.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A Review on Reactivity and Stability of Heterogeneous Metal Catalysts for Deoxygenation of Bio-Oil Model Compounds. J. Ind. Eng. Chem. 2017, 56, 1–34. [Google Scholar] [CrossRef]
- Antolini, E. Pt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review. Energies 2017, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P. Supported Catalysts for CO2 Methanation: A Review. Catalysts 2017, 7, 59. [Google Scholar] [CrossRef]
- Auer, F.; Blaumeiser, D.; Bauer, T.; Bösmann, A.; Szesni, N.; Libuda, J.; Wasserscheid, P. Boosting the Activity of Hydrogen Release from Liquid Organic Hydrogen Carrier Systems by Sulfur-Additives to Pt on Alumina Catalysts. Catal. Sci. Technol. 2019, 9, 3537–3547. [Google Scholar] [CrossRef]
- Bachmann, P.; Schwarz, M.; Steinhauer, J.; Späth, F.; Düll, F.; Bauer, U.; Silva, T.N.; Mohr, S.; Hohner, C.; Scheuermeyer, M.; et al. Dehydrogenation of the Liquid Organic Hydrogen Carrier System Indole/Indoline/Octahydroindole on Pt(111). J. Phys. Chem. C 2018, 122, 4470–4479. [Google Scholar] [CrossRef]
- Modisha, P.M.; Jordaan, J.H.L.; Bösmann, A.; Wasserscheid, P.; Bessarabov, D. Analysis of Reaction Mixtures of Perhydro-Dibenzyltoluene Using Two-Dimensional Gas Chromatography and Single Quadrupole Gas Chromatography. Int. J. Hydrogen Energy 2018, 43, 5620–5636. [Google Scholar] [CrossRef]
- Wu, X.; Kang, F.; Duan, W.; Li, J. Density Functional Theory Calculations: A Powerful Tool to Simulate and Design High-Performance Energy Storage and Conversion Materials. Prog. Nat. Sci. Mater. Int. 2019, 29, 247–255. [Google Scholar] [CrossRef]
- Borbáth, I.; Bakos, I.; Pászti, Z.; Szijjártó, G.P.; Tompos, A. Design of SnPt/C Cathode Electrocatalysts with Optimized Sn/Pt Surface Composition for Potential Use in Polymer Electrolyte Membrane Fuel Cells. Catal. Today 2021, 366, 20–30. [Google Scholar] [CrossRef]
- Nagaraja, B.M.; Shin, C.H.; Jung, K.D. Selective and Stable Bimetallic PtSn/θ-Al2O3 Catalyst for Dehydrogenation of n-Butane to n-Butenes. Appl. Catal. A Gen. 2013, 467, 211–223. [Google Scholar] [CrossRef]
- Taniya, K.; Yu, C.H.; Takado, H.; Hara, T.; Okemoto, A.; Horie, T.; Ichihashi, Y.; Tsang, S.C.; Nishiyama, S. Synthesis of Bimetallic SnPt-Nanoparticle Catalysts for Chemoselective Hydrogenation of Crotonaldehyde: Relationship between SnxPty Alloy Phase and Catalytic Performance. Catal. Today 2018, 303, 241–248. [Google Scholar] [CrossRef]
- Xu, C.; Koel, B.E. Dehydrogenation of Cyclohexene on Ordered Sn/Pt(111) Surface Alloys. Surf. Sci. 1994, 304, 249–266. [Google Scholar] [CrossRef]
- Olivas, A.; Jerdev, D.I.; Koel, B.E. Hydrogenation of Cyclohexanone on Pt–Sn Surface Alloys. J. Catal. 2004, 222, 285–292. [Google Scholar] [CrossRef]
- Preuster, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-Free Hydrogen Economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef]
- Obodo, K.O.; Ouma, C.N.M.; Obodo, J.T.; Gebreyesus, G.; Rai, D.P.; Ukpong, A.M.; Bouhafs, B. Sn3C2 Monolayer with Transition Metal Adatom for Gas Sensing: A Density Functional Theory Studies. Nanotechnology 2021, 32, 355502. [Google Scholar] [CrossRef]
- Obodo, K.O.; Ouma, C.N.M.; Bessarabov, D. First Principles Evaluation of the OER Properties of TM−X (TM = Cr, Mn, Fe, Mo, Ru, W and Os, and X = F and S) Doped IrO2 (110) Surface. Electrochim. Acta 2021, 403, 139562. [Google Scholar] [CrossRef]
- Ouma, C.N.M.; Modisha, P.M.; Bessarabov, D. Catalytic Dehydrogenation Onset of Liquid Organic Hydrogen Carrier, Perhydro-Dibenzyltoluene: The Effect of Pd and Pt Subsurface Configurations. Comput. Mater. Sci. 2020, 172, 109332. [Google Scholar] [CrossRef]
- Ouma, C.N.M.; Obodo, K.O.; Modisha, P.M.; Bessarabov, D. Si, P, S and Se Surface Additives as Catalytic Activity Boosters for Dehydrogenation of Methylcyclohexane to Toluene—A Liquid Organic Hydrogen Carrier System: Density Functional Theory Insights. Mater. Chem. Phys. 2022, 279, 125728. [Google Scholar] [CrossRef]
- Wang, S.; Petzold, V.; Tripkovic, V.; Kleis, J.; Howalt, J.G.; Skulason, E.; Fernández, E.M.; Hvolbæk, B.; Jones, G.; Toftelund, A.; et al. Universal Transition State Scaling Relations for (de)Hydrogenation over Transition Metals. Phys. Chem. Chem. Phys. 2011, 13, 20760–20765. [Google Scholar] [CrossRef]
- Yook, H.; Kim, K.; Park, J.H.; Suh, Y.W.; Han, J.W. Density Functional Theory Study on the Dehydrogenation of 1,2-Dimethyl Cyclohexane and 2-Methyl Piperidine on Pd and Pt Catalysts. Catal. Today 2020, 352, 345–353. [Google Scholar] [CrossRef]
- Kim, K.; Oh, J.; Kim, T.W.; Park, J.H.; Han, J.W.; Suh, Y.W. Different Catalytic Behaviors of Pd and Pt Metals in Decalin Dehydrogenation to Naphthalene. Catal. Sci. Technol. 2017, 7, 3728–3735. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- McNellis, E.R.; Meyer, J.; Reuter, K. Azobenzene at Coinage Metal Surfaces: Role of Dispersive van Der Waals Interactions. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 205414. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Lindan, J.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5049. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obodo, K.O.; Ouma, C.N.M.; Obodo, J.T.; Braun, M.; Bessarabov, D. First Principles Study of Single and Multi-Site Transition Metal Dopant Ions in MoS2 Monolayer. Comput. Condens. Matter 2019, 21, e00419. [Google Scholar] [CrossRef]
- Hamada, I. Van Der Waals Density Functional Made Accurate. Phys. Rev. B 2014, 89, 121103. [Google Scholar] [CrossRef]
- Ouma, C.N.M.; Obodo, K.O.; Braun, M.; Amolo, G.O.; Bessarabov, D. Insights on Hydrogen Evolution Reaction in Transition Metal Doped Monolayer TcS2 from Density Functional Theory Calculations. Appl. Surf. Sci. 2019, 470, 107–113. [Google Scholar] [CrossRef]
Molecules | Sn4Pt | Sn2Pt | Sn3Pt2 | SnPt |
---|---|---|---|---|
C7H14 | −0.87 | −0.91 | −0.73 | −2.97 |
C7H13 | −3.76 | −2.11 | −3.51 | −3.52 |
C7H12 | −2.79 | −1.31 | −2.31 | −3.05 |
C7H11 | −3.68 | −2.07 | −3.32 | −4.57 |
C7H10 | −3.77 | −1.32 | −2.34 | −3.91 |
C7H9 | −4.24 | −1.91 | −3.11 | −4.52 |
C7H8 | −3.55 | −1.03 | −0.75 | −3.29 |
Sn–Pt Alloys | Surface | 1H | 2H | 3H | 4H | 5H | 6H |
---|---|---|---|---|---|---|---|
Sn3Pt2 | (0 0 2) | −69.76 | 62.05 | 67.81 | 58.59 | 45.83 | 104.48 |
Sn4Pt | (1 0 1) | −78.49 | 39.11 | 79.04 | −43.45 | 74.82 | −56.41 |
Sn2Pt | (1 1 1) | 81.83 | 23.36 | 91.52 | 36.13 | 63.78 | −38.08 |
SnPt | (1−1 0) | 143.75 | −8.03 | 18.08 | 29.03 | 60.80 | 3.97 |
Pathways | A | B | C | D | |||||
---|---|---|---|---|---|---|---|---|---|
Sn–Pt Alloys | Surfaces | H2 | H2 | H2 | H2 | 2H2 | 2H2 | H2 | 3H2 |
Sn3Pt2 | (0 0 2) | −7.71 | 126.41 | 150.31 | −7.71 | 276.72 | 118.70 | 150.31 | 83.33 |
Sn4Pt | (1 0 1) | −39.39 | 35.59 | 18.41 | −39.39 | 54.00 | −3.80 | 18.41 | 4.41 |
Sn2Pt | (1 1 1) | 105.19 | 127.65 | 25.70 | 105.19 | 153.36 | 232.84 | 25.70 | 85.72 |
SnPt | (1 −1 0) | 135.72 | 47.11 | 64.77 | 135.72 | 111.88 | 182.83 | 64.77 | 79.45 |
Pt | (1 1 1) | 89.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obodo, K.O.; Ouma, C.N.M.; Bessarabov, D. Low-Pt-Based Sn Alloy for the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study. Catalysts 2022, 12, 1221. https://doi.org/10.3390/catal12101221
Obodo KO, Ouma CNM, Bessarabov D. Low-Pt-Based Sn Alloy for the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study. Catalysts. 2022; 12(10):1221. https://doi.org/10.3390/catal12101221
Chicago/Turabian StyleObodo, Kingsley Onyebuchi, Cecil Naphtaly Moro Ouma, and Dmitri Bessarabov. 2022. "Low-Pt-Based Sn Alloy for the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study" Catalysts 12, no. 10: 1221. https://doi.org/10.3390/catal12101221
APA StyleObodo, K. O., Ouma, C. N. M., & Bessarabov, D. (2022). Low-Pt-Based Sn Alloy for the Dehydrogenation of Methylcyclohexane to Toluene: A Density Functional Theory Study. Catalysts, 12(10), 1221. https://doi.org/10.3390/catal12101221