Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results
2.2. Photocatalytic Degradation
3. Materials and Methods
3.1. Material and Chemicals
3.2. Synthesis of Lanthanum Composites
3.3. Catalyst Characterization
3.4. Photocatalytic Activity Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dooley, K.M.; Chen, S.-Y.; Ross, J. Stable nickel-containing catalysts for the oxidative coupling of methane. J. Catal. 1994, 145, 402–408. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Moazampour, M.; Ensafi, A.A.; Mallakpour, S.; Hatami, M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. 2014, 21, 5879–5888. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xiong, W.; Zhang, Y.; Yang, D.; Wang, T.; Che, Y.; Zhao, J. Internanofiber spacing adjustment in the bundled nanofibers for sensitive fluorescence detection of volatile organic compounds. Anal. Chem. 2017, 89, 3814–3818. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sheng, J.; Yin, X.; Yu, J.; Ding, B. Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J. Colloid Interface Sci. 2017, 508, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Yang, W.; Shen, W.; Xue, H.; Pang, H. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small 2018, 14, 1704435. [Google Scholar] [CrossRef]
- Fu, L.; Qu, Q.; Holze, R.; Kondratiev, V.V.; Wu, Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds? J. Mater. Chem. A 2019, 7, 14937–14970. [Google Scholar] [CrossRef]
- Peng, K.; Fu, L.; Yang, H.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 2016, 6, 19723. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Kong, J.; Jia, H.; Wang, Z. Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight. Appl. Surf. Sci. 2015, 344, 176–180. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Torrades, F.; García-Montaño, J. Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dye. Pigment. 2014, 100, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Singha, K.; Pandit, P.; Maity, S.; Sharma, S.R. Chapter 11—Harmful environmental effects for textile chemical dyeing practice. In Green Chemistry for Sustainable Textiles; Ibrahim, N., Hussain, C.M., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 153–164. [Google Scholar] [CrossRef]
- Ahmad, A.; Puasa, S. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J. 2007, 132, 257–265. [Google Scholar] [CrossRef]
- Arslan, I.; Balcioǧlu, I.A.; Bahnemann, D.W. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dye. Pigment. 2000, 47, 207–218. [Google Scholar] [CrossRef]
- Mo, J.H.; Lee, Y.H.; Kim, J.; Jeong, J.Y.; Jegal, J. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dye. Pigment. 2008, 76, 429–434. [Google Scholar] [CrossRef]
- Rauf, M.; Ashraf, S.; Alhadrami, S. Photolytic oxidation of coomassie brilliant blue with H2O2. Dye. Pigment. 2005, 66, 197–200. [Google Scholar] [CrossRef]
- Rauf, M.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Salim, H.A.M.; Salih, S.A.M. Photodegradation study of Toluidine Blue dye in aqueous solution using magnesium oxide as a photocatalyst. Int. J. Chem. 2015, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, L.; Liu, W.; Su, G.; Dong, B. Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 2012, 38, 5791–5797. [Google Scholar] [CrossRef]
- Ameta, R.; Sharma, S.; Sharma, S.; Gorana, Y. Visible Light Induced Photocatalytic Degradation of Toluidine Blue-O by Using Molybdenum Doped Titanium Dioxide. Eur. J. Adv. Eng. Technol. 2015, 2, 95–99. [Google Scholar]
- Sakthivel, S.; Geissen, S.-U.; Bahnemann, D.; Murugesan, V.; Vogelpohl, A. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J. Photochem. Photobiol. A Chem. 2002, 148, 283–293. [Google Scholar] [CrossRef]
- Jing, L.; Sun, X.J.; Xin, B.F.; Wang, B.Q.; Cai, W.; Fu, H.G. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 2004, 177, 3375–3382. [Google Scholar]
- Wu, X.; Ding, X.; Qin, W.; He, W.; Jiang, Z. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. J. Hazard. Mater. 2006, 137, 192–197. [Google Scholar] [CrossRef]
- Yuan, S.; Sheng, Q.; Zhang, J.; Chen, F.; Anpo, M.; Zhang, Q. Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater. 2005, 79, 93–99. [Google Scholar] [CrossRef]
- Atribak, I.; Such-Basanez, I.; Bueno-Lopez, A.; García, A.G. Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catal. Commun. 2007, 8, 478–482. [Google Scholar] [CrossRef]
- Thirumalairajan, S.; Girija, K.; Ganesh, I.; Mangalaraj, D.; Viswanathan, C.; Balamurugan, A.; Ponpandian, N. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity. Chem. Eng. J. 2012, 209, 420–428. [Google Scholar] [CrossRef]
- Aman, D.; Zaki, T.; Mikhail, S.; Selim, S. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion. Catal. Today 2011, 164, 209–213. [Google Scholar] [CrossRef]
- Deng, H.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Sui, X. Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicol. Environ. Saf. 2019, 168, 35–44. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Wen, W.; Xue, L.; Yan, Y. Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J. Alloys Compd. 2010, 491, 560–564. [Google Scholar] [CrossRef]
- Zhong, W.; Jiang, T.; Dang, Y.; He, J.; Chen, S.-Y.; Kuo, C.-H.; Kriz, D.; Meng, Y.; Meguerdichian, A.G.; Suib, S.L. Mechanism studies on methyl orange dye degradation by perovskite-type LaNiO3-δ under dark ambient conditions. Appl. Catal. A Gen. 2018, 549, 302–309. [Google Scholar] [CrossRef]
- Zhao, Z. Lanthanum-containing Catalytic Materials and Their Applications in Heterogeneous Catalysis. ChemInform 2011, 42, 109–158. [Google Scholar] [CrossRef]
- Farhadi, S.; Sepahvand, S. Microwave-assisted solid-state decomposition of La[Co(CN)6]·5H2O precursor: A simple and fast route for the synthesis of single-phase perovskite-type LaCoO3 nanoparticles. J. Alloys Compd. 2010, 489, 586–591. [Google Scholar] [CrossRef]
- Gildo-Ortiz, L.; Guillén-Bonilla, H.; Rodríguez-Betancourtt, V.; Blanco-Alonso, O.; Guillén-Bonilla, A.; Santoyo-Salazar, J.; Romero-Ibarra, I.; Reyes-Gómez, J. Key processing of porous and fibrous LaCoO3 nanostructures for successful CO and propane sensing. Ceram. Int. 2018, 44, 15402–15410. [Google Scholar] [CrossRef]
- Thomas, J.; Anitha, P.; Thomas, T.; Thomas, N. The influence of B-site cation in LaBO3 (B = Fe, Co, Ni) perovskites on the nanomolar sensing of neurotransmitters. Sens. Actuators B Chem. 2021, 332, 129362. [Google Scholar] [CrossRef]
- Das, S.; Dutta, S.; Tama, A.M.; Basith, M.A. Nanostructured LaFeO3-MoS2 for efficient photodegradation and photocatalytic hydrogen evolution. Mater. Sci. Eng. B 2021, 271, 115295. [Google Scholar] [CrossRef]
- Pei, H.; Li, X.; Song, Y.; Zhang, M.; Wang, D.; Wu, J.; Wang, F.; Zhang, Y.; Zhao, X.; Jia, T. LaFeO3 perovskite nanoparticles for efficient capture of elemental mercury from coal-fired flue gas. Fuel 2022, 309, 122134. [Google Scholar] [CrossRef]
- Naveena, D.; Dhanabal, R.; Bose, A.C. Investigating the effect of La doped CuO thin film as absorber material for solar cell application. Opt. Mater. 2022, 127, 112266. [Google Scholar] [CrossRef]
- Estepa, L.; Daudon, M. Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 1997, 3, 347–369. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 2003, 259, 282–286. [Google Scholar] [CrossRef]
- Kashyap, S.J.; Sankannavar, R.; Madhu, G.M. Insights on the various structural, optical and dielectric characteristics of La1-xCaxFeO3 perovskite-type oxides synthesized through solution-combustion technique. Appl. Phys. A 2022, 128, 518. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Li, X.; Li, J.; Dong, S.; Hao, H.; Tong, Y.; Zhou, Y. Highly efficient P uptake by Fe3O4 loaded amorphous Zr-La (carbonate) oxides: Electrostatic attraction, inner-sphere complexation and oxygen vacancies acceleration effect. J. Environ. Sci. 2022, 120, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Li, F.; Yan, Z.-f.; Lu, G. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources 2004, 134, 324–330. [Google Scholar] [CrossRef]
- El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Ślebarski, A.; Deniszczyk, J. Experimental evidence for fractional valence of La in LaAl2: Electronic structure from x-ray photoelectron spectroscopy and band structure calculations. Phys. Rev. B 2022, 105, 245154. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, H.; Wei, Y.; Xie, C.; Lai, K.; Zhao, Z.; Liu, J. Metal Ions (Li, Mg, Zn, Ce) Doped into La2O3 Nanorod for Boosting Catalytic Oxidative Coupling of Methane. Catalysts 2022, 12, 713. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, X.; Liu, J.; Liu, F.; Li, Y. Reaction mechanism and microkinetics of CO catalytic combustion over Ni-doped LaCoO3 perovskite. Proc. Combust. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Ye, C.; Wang, R.; Wang, H.; Jiang, F. The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC Chem. 2020, 14, 65. [Google Scholar] [CrossRef]
- Xu, C.; Jin, Z.; Yang, J.; Cui, J.; Hu, J.; Li, Z.; Chen, C.; Liu, F.; Hu, R. High surface area B-doped LaFeO3/Ag/Ag3PO4 as a Z-scheme photocatalyst for facilitate phenol degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129668. [Google Scholar] [CrossRef]
- Yu, J.; Wang, C.; Yuan, Q.; Yu, X.; Wang, D.; Chen, Y. Ag-Modified Porous Perovskite-Type LaFeO3 for Efficient Ethanol Detection. Nanomaterials 2022, 12, 1768. [Google Scholar] [CrossRef]
- Abdel-Khalek, E.K.; Motawea, M.A.; Aboelnasr, M.A.; El-Bahnasawy, H.H. Study the oxygen vacancies and Fe oxidation states in CaFeO3-δ perovskite nanomaterial. Phys. B Condens. Matter 2022, 624, 413415. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Wang, K.; Yu, H.; Dong, S.; Chen, X.; Jiang, X.; Ren, Z.; Liu, J. Synthesis and characterization of La0.825Sr0.175MnO3 nanowires. J. Phys. Condens. Matter 2005, 17, L467. [Google Scholar] [CrossRef]
- Veldurthi, N.K.; Bandipalli, P.; Ravi, G.; Reddy, J.R.; Palla, S.; Bhanuprakash, K.; Vithal, M. Interplay of Photoabsorption, Electronic Structure, and Recombination Rate of Charge Carriers on Visible Light Driven Photocatalytic Activity of Cu-and N-Doped Ba3V2O8. Eur. J. Inorg. Chem. 2014, 2014, 5585–5595. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; Jeong, H.E.; Yang, P. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234–240. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S.B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Huan-Ping, J. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Becker, J.; Raghupathi, K.R.; Pierre, J.S.; Zhao, D.; Koodali, R.T. Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 2011, 115, 13844–13850. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Boopathy, R.; Sekaran, G. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. J. Colloid Interface Sci. 2015, 448, 163–174. [Google Scholar] [CrossRef]
- Margellou, A.; Manos, D.; Petrakis, D.; Konstantinou, I. Activation of persulfate by LaFe1-xCoxO3 perovskite catalysts for the degradation of phenolics: Effect of synthetic method and metal substitution. Sci. Total Environ. 2022, 832, 155063. [Google Scholar] [CrossRef]
La Nanocomposite | %Phase Composition a | Average Crystallite Size (nm) b | %Phase Composition a | Average Crystallite Size (nm) b | ||||
---|---|---|---|---|---|---|---|---|
1:1 | 2:3 | |||||||
LaMO3 | La2MO4 | LaMO3 | La2MO4 | LaMO3 | La2MO4 | LaMO3 | La2MO4 | |
LaFeO | 100 | 0.00 | 18.2 | - | 100 | 0.00 | 26.3 | - |
LaCoO | 35.0 | 61.0 | 1.8 | 17 | 28.3 | 54 | 3.2 | 22.2 |
LaNiO | 85.8 | 3.3 | 3.1 | 2.2 | 73.4 | 5.1 | 10.9 | 3.9 |
Composite | Degradation (%) TBO | TOF (×1016 molecules.g−1.s−1) | Degradation (%) MB | TOF (1016 molecules.g−1.s−1) | ||||
---|---|---|---|---|---|---|---|---|
La:M 1:1 | La:M 2:3 | La:M 1:1 | La:M 2:3 | La:M 1:1 | La:M 2:3 | La:M 1:1 | La:M 2:3 | |
LaNiO3 | 32 | 38 | 3.82 | 4.71 | 17 | 20 | 2.44 | 2.88 |
LaFeO3 | 37 | 9 | 4.58 | 1.11 | 22 | 27 | 3.16 | 3.88 |
LaCoO3 | 57 | 47 | 6.80 | 5.82 | 63 | 16 | 9.06 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocwana, M.L.; Mokoena, P.P.; Mbule, P.S.; Beas, I.N.; Kabongo, G.L.; Ogugua, S.N.; Tshabalala, T.E. Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni). Catalysts 2022, 12, 1313. https://doi.org/10.3390/catal12111313
Mocwana ML, Mokoena PP, Mbule PS, Beas IN, Kabongo GL, Ogugua SN, Tshabalala TE. Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni). Catalysts. 2022; 12(11):1313. https://doi.org/10.3390/catal12111313
Chicago/Turabian StyleMocwana, Mmabatho L., Puseletso P. Mokoena, Pontsho S. Mbule, Isaac N. Beas, Guy L. Kabongo, Simon N. Ogugua, and Themba E. Tshabalala. 2022. "Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni)" Catalysts 12, no. 11: 1313. https://doi.org/10.3390/catal12111313
APA StyleMocwana, M. L., Mokoena, P. P., Mbule, P. S., Beas, I. N., Kabongo, G. L., Ogugua, S. N., & Tshabalala, T. E. (2022). Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni). Catalysts, 12(11), 1313. https://doi.org/10.3390/catal12111313