Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Optimization
Effect of CaO Loading and Activation Temperature on Catalytic Activity
2.2. Catalyst Characterisation
2.2.1. XRD and TGA
2.2.2. BET
2.2.3. Basicity of Catalyst
2.2.4. SEM−EDS
2.2.5. TEM
2.2.6. XPS
2.3. Transesterification of Soybean Oil
GC−MS of Synthesized Biodiesel
2.4. Modelling Results and Data Analysis
2.4.1. Interaction of Input Variables
2.4.2. Optimization of Biodiesel Yield
2.5. Kinetics of Soybean−Oil Transesterification
2.6. Comparison of Other Reported Heterogeneous Catalysts with the Present Catalyst
2.7. Catalytic Reusability
3. Materials and Methods
3.1. Chemicals Used
3.2. Preparation of UiO−66 MOF
3.3. Preparation of Snail−Shell−Derived CaO
3.4. Preparation of MOF−Based CaO−ZrO2 Composite Catalyst
3.5. Catalyst Characterization
3.6. Biodiesel Production from Transesterification of Soybean Oil
3.7. Biodiesel Characterization
3.8. Reaction Kinetics
3.9. Modelling of the Transesterification Process
4. Fuel Properties of Biodiesel
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changmai, B.; Wheatley, A.E.H.; Rano, R.; Halder, G.; Selvaraj, M.; Rashid, U.; Rokhum, S.L. A Magnetically Separable Acid-Functionalized Nanocatalyst for Biodiesel Production. Fuel 2021, 305, 121576. [Google Scholar] [CrossRef]
- Jamil, U.; Husain Khoja, A.; Liaquat, R.; Raza Naqvi, S.; Nor Nadyaini Wan Omar, W.; Aishah Saidina Amin, N. Copper and Calcium-Based Metal Organic Framework (MOF) Catalyst for Biodiesel Production from Waste Cooking Oil: A Process Optimization Study. Energy Convers. Manag. 2020, 215, 112934. [Google Scholar] [CrossRef]
- Changmai, B.; Rano, R.; Vanlalveni, C.; Rokhum, L. A Novel Citrus Sinensis Peel Ash Coated Magnetic Nanoparticles as an Easily Recoverable Solid Catalyst for Biodiesel Production. Fuel 2021, 286, 119447. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Helian, Y.; Li, C.; Wu, Z.; Li, H.; Chu, H.; Wang, Y.; Wang, Y.; Lu, W.; et al. Current Application of MOFs Based Heterogeneous Catalysts in Catalyzing Transesterification/Esterification for Biodiesel Production: A Review. Energy Convers. Manag. 2021, 229. [Google Scholar] [CrossRef]
- Liu, F.; Ma, X.; Li, H.; Wang, Y.; Cui, P.; Guo, M.; Yaxin, H.; Lu, W.; Zhou, S.; Yu, M. Dilute Sulfonic Acid Post Functionalized Metal Organic Framework as a Heterogeneous Acid Catalyst for Esterification to Produce Biodiesel. Fuel 2020, 266. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Ma, X.; Cui, P.; Guo, M.; Li, Y.; Gao, Y.; Zhou, S.; Yu, M. An Efficient Basic Heterogeneous Catalyst Synthesis of Magnetic Mesoporous Fe@C Support SrO for Transesterification. Renew. Energy 2020, 149, 816–827. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Q.; Yang, T.; Lei, D.; Wang, J.; Zhang, Y.; Zhang, Y. Efficient Production of Biodiesel from Esterification of Lauric Acid Catalyzed by Ammonium and Silver Co-Doped Phosphotungstic Acid Embedded in a Zirconium Metal-Organic Framework Nanocomposite. ACS Omega 2020, 5, 12760–12767. [Google Scholar] [CrossRef]
- Wan, H.; Chen, C.; Wu, Z.; Que, Y.; Feng, Y.; Wang, W.; Wang, L.; Guan, G.; Liu, X. Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal-Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem 2015, 7, 441–449. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Veličković, A.V.; Veljković, V.B. The Production of Biodiesel from Vegetable Oils by Ethanolysis: Current State and Perspectives. Fuel 2011. [Google Scholar] [CrossRef]
- Gouda, S.P.; Ngaosuwan, K.; Assabumrungrat, S.; Selvaraj, M.; Halder, G.; Rokhum, S.L. Microwave Assisted Biodiesel Production Using Sulfonic Acid-Functionalized Metal-Organic Frameworks UiO-66 as a Heterogeneous Catalyst. Renew. Energy 2022, 197, 161–169. [Google Scholar] [CrossRef]
- Lee, S.L.; Wong, Y.C.; Tan, Y.P.; Yew, S.Y. Transesterification of Palm Oil to Biodiesel by Using Waste Obtuse Horn Shell-Derived CaO Catalyst. Energy Convers. Manag. 2015, 93, 282–288. [Google Scholar] [CrossRef]
- Rafiei, S.; Tangestaninejad, S.; Horcajada, P.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Kardanpour, R.; Zadehahmadi, F. Efficient Biodiesel Production Using a Lipase@ZIF-67 Nanobioreactor. Chem. Eng. J. 2018, 334. [Google Scholar] [CrossRef]
- Laskar, I.B.; Rajkumari, K.; Gupta, R.; Chatterjee, S.; Paul, B.; Rokhum, L. Waste Snail Shell Derived Heterogeneous Catalyst for Biodiesel Production by the Transesterification of Soybean Oil. RSC Adv. 2018, 8, 20131–20142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, B.; Dey, B.; Balasubramanian, P. Algal Biodiesel Production with Engineered Biochar as a Heterogeneous Solid Acid Catalyst. Bioresour. Technol. 2020, 310, 123392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lei, D.; Luo, Q.; Wang, J.; Deng, T.; Zhang, Y.; Ma, P. Efficient biodiesel production from oleic acid using metal-organic framework encapsulated Zr-doped polyoxometalate nano-hybrids. RSC Adv. 2020, 10, 8766–8772. [Google Scholar] [CrossRef]
- Nanda, M.R.; Zhang, Y.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Xu, C. Catalytic Conversion of Glycerol for Sustainable Production of Solketal as a Fuel Additive: A Review. Renew. Sustain. Energy Rev. 2016, 56, 1022–1031. [Google Scholar] [CrossRef]
- Ooi, X.Y.; Gao, W.; Ong, H.C.; Lee, H.V.; Juan, J.C.; Chen, W.H.; Lee, K.T. Overview on Catalytic Deoxygenation for Biofuel Synthesis Using Metal Oxide Supported Catalysts. Renew. Sustain. Energy Rev. 2019, 112, 834–852. [Google Scholar] [CrossRef]
- Sahani, S.; Roy, T.; Sharma, Y.C. Smart Waste Management of Waste Cooking Oil for Large Scale High Quality Biodiesel Production Using Sr-Ti Mixed Metal Oxide as Solid Catalyst: Optimization and E-Metrics Studies. Waste Manag. 2020, 108, 189–201. [Google Scholar] [CrossRef]
- Niju, S.; Raj, F.R.; Anushya, C.; Balajii, M. Optimization of Acid Catalyzed Esterification and Mixed Metal Oxide Catalyzed Transesterification for Biodiesel Production from Moringa Oleifera Oil. Green Process. Synth. 2019, 8, 756–775. [Google Scholar] [CrossRef]
- Sedaghat-Hoor, S.; Anbia, M. ZnO Impregnated MgAl(O) Catalyst with Improved Properties for Biodiesel Production: The Influence of Synthesis Method on Stability and Reusability. Part. Sci. Technol. 2018, 37, 893–899. [Google Scholar] [CrossRef]
- Gutiérrez-Ortega, N.; Ramos-Ramírez, E.; Serafín-Muñoz, A.; Zamorategui-Molina, A.; Monjaraz-Vallejo, J. Use of Co/Fe-Mixed Oxides as Heterogeneous Catalysts in Obtaining Biodiesel. Catalysts 2019, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Ooi, H.K.; Koh, X.N.; Ong, H.C.; Lee, H.V.; Mastuli, M.S.; Taufiq-Yap, Y.H.; Alharthi, F.A.; Alghamdi, A.A.; Mijan, N.A. Progress on Modified Calcium Oxide Derived Waste-Shell Catalysts for Biodiesel Production. Catalysts 2021, 11, 194. [Google Scholar] [CrossRef]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S. A Comparative Study of KOH/Al2O3 and KOH/NaY Catalysts for Biodiesel Production via Transesterification from Palm Oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Liu, L.; Wen, Z.; Cui, G. Preparation of Ca/Zr Mixed Oxide Catalysts through a Birch-Templating Route for the Synthesis of Biodiesel via Transesterification. Fuel 2015, 158, 176–182. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Liu, S.; Zhao, N.; Wei, W.; Sun, Y. Influence of Preparation Methods on the Structure and Performance of CaO–ZrO2 Catalyst for the Synthesis of Dimethyl Carbonate via Transesterification. J. Mol. Catal. A Chem. 2006, 258, 308–312. [Google Scholar] [CrossRef]
- Rahman, N.J.A.; Ramli, A.; Jumbri, K.; Uemura, Y. Tailoring the Surface Area and the Acid–Base Properties of ZrO2 for Biodiesel Production from Nannochloropsis Sp. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bellido, J.D.A.; De Souza, J.E.; M’Peko, J.C.; Assaf, E.M. Effect of Adding CaO to ZrO2 Support on Nickel Catalyst Activity in Dry Reforming of Methane. Appl. Catal. A Gen. 2009, 358, 215–223. [Google Scholar] [CrossRef]
- Xia, S.; Guo, X.; Mao, D.; Shi, Z.; Wu, G.; Lu, G. Biodiesel Synthesis over the CaO–ZrO2 Solid Base Catalyst Prepared by a Urea–Nitrate Combustion Method. RSC Adv. 2014, 4, 51688–51695. [Google Scholar] [CrossRef]
- Huang, Y.B.; Liang, J.; Wang, X.S.; Cao, R. Multifunctional Metal–Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46, 126–157. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A.M.; Garcia, H. Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem 2019, 11, 899–923. [Google Scholar] [CrossRef]
- Chen, D.; Sun, H.; Wang, Y.; Quan, H.; Ruan, Z.; Ren, Z.; Luo, X. UiO-66 Derived Zirconia/Porous Carbon Nanocomposites for Efficient Removal of Carbamazepine and Adsorption Mechanism. Appl. Surf. Sci. 2020, 507, 145054. [Google Scholar] [CrossRef]
- Liu, S.; Ma, J.; Guan, L.; Li, J.; Wei, W.; Sun, Y. Mesoporous CaO-ZrO2 Nano-Oxides: A Novel Solid Base with High Activity and Stability. Microporous Mesoporous Mater. 2009, 117, 466–471. [Google Scholar] [CrossRef]
- Jannah, I.N.A.; Sekarsari, H.F.; Mulijani, S.; Wijaya, K.; Wibowo, A.C.; Patah, A. Facile Synthesis of Various ZrO2 Phases and ZrO2-MO2 (M = Ti, Hf) by Thermal Decomposition of a Single UiO-66 Precursor for Photodegradation of Methyl Orange. Catalysts 2022, 12, 609. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ma, X.; Guo, M.; Li, Y.; Li, G.; Cui, P.; Zhou, S.; Yu, M. Synthesis of CaO/ZrO2 Based Catalyst by Using UiO–66(Zr) and Calcium Acetate for Biodiesel Production. Renew. Energy 2022, 185, 970–977. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Li, H.; Gao, C.; Zhao, Y. Heterogeneous CaO-ZrO2 Acid–Base Bifunctional Catalysts for Vapor-Phase Selective Dehydration of 1,4-Butanediol to 3-Buten-1-Ol. Appl. Catal. A Gen. 2013, 466, 233–239. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A Highly Selective and Stable ZnO-ZrO2 Solid Solution Catalyst for CO2 Hydrogenation to Methanol. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, M.; Zhao, N.; Wei, W.; Sun, Y. CaO–ZrO2 Solid Solution: A Highly Stable Catalyst for the Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol. Catal. Lett. 2005, 105, 253–257. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ma, X.; Wu, Z.; Cui, P.; Lu, W.; Liu, F.; Chu, H.; Wang, Y. A Novel Magnetic CaO-Based Catalyst Synthesis and Characterization: Enhancing the Catalytic Activity and Stability of CaO for Biodiesel Production. Chem. Eng. J. 2020, 391, 123549. [Google Scholar] [CrossRef]
- Ge, J.; Liu, L.; Shen, Y. Facile Synthesis of Amine-Functionalized UiO-66 by Microwave Method and Application for Methylene Blue Adsorption. J. Porous Mater. 2017, 24, 647–655. [Google Scholar] [CrossRef]
- Fang, X.; Wu, S.; Wu, Y.; Yang, W.; Li, Y.; He, J.; Hong, P.; Nie, M.; Xie, C.; Wu, Z.; et al. High-Efficiency Adsorption of Norfloxacin Using Octahedral UIO-66-NH2 Nanomaterials: Dynamics, Thermodynamics, and Mechanisms. Appl. Surf. Sci. 2020, 518, 146226. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, X.; Wei, X.; Tang, L.; Liang, J.; Wang, S.; Wang, L. Insights into the Synergetic Mechanism of Basic Active Site and Oxygen Vacancy on Thermally Activated MOFs for the Colophony Esterification: Experiments and DFT Calculations. Ind. Crops Prod. 2021, 166, 113486. [Google Scholar] [CrossRef]
- Laskar, I.B.; Deshmukhya, T.; Bhanja, P.; Paul, B.; Gupta, R.; Chatterjee, S. Transesterification of Soybean Oil at Room Temperature Using Biowaste as Catalyst; an Experimental Investigation on the Effect of Co-Solvent on Biodiesel Yield. Renew. Energy 2020, 162, 98–111. [Google Scholar] [CrossRef]
- Kaewdaeng, S.; Sintuya, P.; Nirunsin, R. Biodiesel Production Using Calcium Oxide from River Snail Shell Ash as Catalyst. Energy Procedia 2017, 138, 937–942. [Google Scholar]
- Dhawane, S.H.; Kumar, T.; Halder, G. Parametric Effects and Optimization on Synthesis of Iron (II) Doped Carbonaceous Catalyst for the Production of Biodiesel. Energy Convers. Manag. 2016, 122, 310–320. [Google Scholar] [CrossRef]
- Betiku, E.; Etim, A.O.; Pereao, O.; Ojumu, T.V. Two-Step Conversion of Neem (Azadirachta Indica) Seed Oil into Fatty Methyl Esters Using a Heterogeneous Biomass-Based Catalyst: An Example of Cocoa Pod Husk. Energy and Fuels 2017, 31, 6182–6193. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Bai, S.; Shao, X.; Jiang, L.; Li, Q. Immobilized Lipase in Bio-Based Metal-Organic Frameworks Constructed by Biomimetic Mineralization: A Sustainable Biocatalyst for Biodiesel Synthesis. Colloids Surfaces B Biointerfaces 2020, 188. [Google Scholar] [CrossRef]
- Li, H.; Niu, S.; Lu, C.; Li, J. Calcium Oxide Functionalized with Strontium as Heterogeneous Transesterification Catalyst for Biodiesel Production. Fuel 2016, 176, 63–71. [Google Scholar] [CrossRef]
- Sharma, A.; Kodgire, P.; Kachhwaha, S.S. Biodiesel Production from Waste Cotton-Seed Cooking Oil Using Microwave-Assisted Transesterification: Optimization and Kinetic Modeling. Renew. Sustain. Energy Rev. 2019, 116, 109394. [Google Scholar] [CrossRef]
- Xie, W.; Wan, F. Biodiesel Production from Acidic Oils Using Polyoxometalate-Based Sulfonated Ionic Liquids Functionalized Metal–Organic Frameworks. Catal. Letters 2019, 100. [Google Scholar] [CrossRef]
- Yang, C.M.; Huynh, M.V.; Liang, T.Y.; Le, T.K.; Kieu Xuan Huynh, T.; Lu, S.Y.; Tsai, D.H. Metal-Organic Framework-Derived Mg-Zn Hybrid Nanocatalyst for Biodiesel Production. Adv. Powder Technol. 2022, 33, 103365. [Google Scholar] [CrossRef]
- Fazaeli, R.; Aliyan, H. Production of Biodiesel through Transesterification of Soybean Oil Using ZIF-8@GO Doped with Sodium and Potassium Catalyst. Russ. J. Appl. Chem. 2015, 88. [Google Scholar] [CrossRef]
- Istadi, I.; Prasetyo, S.A.; Nugroho, T.S. Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environ. Sci. 2015, 23, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Li, H.; Li, M.; Chen, J.; Ye, C.; Wang, H.; Qiu, T. Ionic Liquid Grafted NH2-UiO-66 as Heterogeneous Solid Acid Catalyst for Biodiesel Production. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ullah Siddik Bhuyan, M.S.; Md Ashraful Alam, A.H.; Seo, Y.C. Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions. Energies 2018, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Rahman, W.U.; Fatima, A.; Anwer, A.H.; Athar, M.; Khan, M.Z.; Khan, N.A.; Halder, G. Biodiesel Synthesis from Eucalyptus Oil by Utilizing Waste Egg Shell Derived Calcium Based Metal Oxide Catalyst. Process Saf. Environ. Prot. 2019, 122, 313–319. [Google Scholar] [CrossRef]
- Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Nizami, A.S.; Sultana, S.; Zafar, M.; Rehan, M.; Srinivasan, G.R.; Ali, A.M.; et al. Biodiesel Production from Novel Non-Edible Caper (Capparis Spinosa L.) Seeds Oil Employing Cu–Ni Doped ZrO2 Catalyst. Renew. Sustain. Energy Rev. 2021, 138, 110558. [Google Scholar] [CrossRef]
- Fatimah, I.; Rubiyanto, D.; Taushiyah, A.; Najah, F.B.; Azmi, U.; Sim, Y.L. Use of ZrO2 Supported on Bamboo Leaf Ash as a Heterogeneous Catalyst in Microwave-Assisted Biodiesel Conversion. Sustain. Chem. Pharm. 2019, 12, 100129. [Google Scholar] [CrossRef]
- Olatundun, E.A.; Borokini, O.O.; Betiku, E. Cocoa Pod Husk-Plantain Peel Blend as a Novel Green Heterogeneous Catalyst for Renewable and Sustainable Honne Oil Biodiesel Synthesis: A Case of Biowastes-to-Wealth. Renew. Energy 2020, 166, 163–175. [Google Scholar] [CrossRef]
- Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A.F.; Wilson, K.; Rehan, M. A Magnetically Separable SO4/Fe-Al-TiO2 Solid Acid Catalyst for Biodiesel Production from Waste Cooking Oil. Appl. Catal. B Environ. 2018. [Google Scholar] [CrossRef] [Green Version]
- Connolly, B.M.; Aragones-Anglada, M.; Gandara-Loe, J.; Danaf, N.A.; Lamb, D.C.; Mehta, J.P.; Vulpe, D.; Wuttke, S.; Silvestre-Albero, J.; Moghadam, P.Z.; et al. Tuning Porosity in Macroscopic Monolithic Metal-Organic Frameworks for Exceptional Natural Gas Storage. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
Peak No. | Retention Time (min) | Identified Compounds | Composition (%) | Corresponding Acids |
---|---|---|---|---|
1 | 19.784 | Hexadecanoic acid, methyl ester | 11.23 | C16:0 |
2 | 20.590 | 11,14−Eicosadienoic acid, methyl ester | 0.20 | C20:2 |
3 | 20.808 | Heptadecanoic acid, methyl ester | 0.10 | C17:0 |
4 | 21.509 | 9,12−Octadecadienoic acid (Z, Z), methyl ester | 47.19 | C18:2 |
5 | 21.599 | 9−Octadecenoic acid, methyl ester | 34.41 | C18:1 |
6 | 21.715 | 9,12,15−Octadecatrienoic acid, methyl ester | 1.37 | C18:3 |
7 | 21.795 | Methyl stearate | 5.51 | C18:0 |
Std | Run | Time (min) (A) | Temperature (°C) (B) | Catalyst Loading (wt.%) I | MeOH: Oil (Molar Ratio) (D) | Actual Value Yield (%) | Predicted Value Yield (%) |
---|---|---|---|---|---|---|---|
21 | 1 | 60 | 70 | 2 | 10 | 75.83 | 76.36 |
18 | 2 | 90 | 70 | 6 | 10 | 86.35 | 85.55 |
14 | 3 | 75 | 60 | 8 | 12 | 81.23 | 81.7 |
16 | 4 | 75 | 80 | 8 | 12 | 88.67 | 88.85 |
17 | 5 | 30 | 70 | 6 | 10 | 75.42 | 76.3 |
27 | 6 | 60 | 70 | 6 | 10 | 95.8 | 96.43 |
4 | 7 | 75 | 80 | 4 | 8 | 80.16 | 79.78 |
29 | 8 | 60 | 70 | 6 | 10 | 96.42 | 96.43 |
12 | 9 | 75 | 80 | 4 | 12 | 85.24 | 85.64 |
26 | 10 | 60 | 70 | 6 | 10 | 96.63 | 96.43 |
19 | 11 | 60 | 50 | 6 | 10 | 87.64 | 87.49 |
22 | 12 | 60 | 70 | 10 | 10 | 82.38 | 81.93 |
6 | 13 | 75 | 60 | 8 | 8 | 83.66 | 83.9 |
15 | 14 | 45 | 80 | 8 | 12 | 76.01 | 75.7 |
11 | 15 | 45 | 80 | 4 | 12 | 78.01 | 77.42 |
28 | 16 | 60 | 70 | 6 | 10 | 96.51 | 96.43 |
10 | 17 | 75 | 60 | 4 | 12 | 79.02 | 78.68 |
7 | 18 | 45 | 80 | 8 | 8 | 80.56 | 80.55 |
24 | 19 | 60 | 70 | 6 | 14 | 70.6 | 70.69 |
13 | 20 | 45 | 60 | 8 | 12 | 74.21 | 74.24 |
8 | 21 | 75 | 80 | 8 | 8 | 86.88 | 87.25 |
2 | 22 | 75 | 60 | 4 | 8 | 76.03 | 76.61 |
20 | 23 | 60 | 90 | 6 | 10 | 91.89 | 92.12 |
30 | 24 | 60 | 70 | 6 | 10 | 96.6 | 96.43 |
5 | 25 | 45 | 60 | 8 | 8 | 83.01 | 82.88 |
3 | 26 | 45 | 80 | 4 | 8 | 78.21 | 78.01 |
25 | 27 | 60 | 70 | 6 | 10 | 96.63 | 96.43 |
23 | 28 | 60 | 70 | 6 | 6 | 73.47 | 73.47 |
1 | 29 | 45 | 60 | 4 | 8 | 81.04 | 80.51 |
9 | 30 | 45 | 60 | 4 | 12 | 76.23 | 76.13 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1888.16 | 4 | 134.87 | 448.88 | <0.0001 | significant |
A−Time | 128.21 | 1 | 128.21 | 426.7 | <0.0001 | |
B−Temp | 32.22 | 1 | 32.22 | 107.25 | <0.0001 | |
C−CL | 46.45 | 1 | 46.45 | 154.61 | <0.0001 | |
D−MTOR | 11.58 | 1 | 11.58 | 38.54 | <0.0001 | |
AB | 32.23 | 1 | 32.23 | 107.28 | <0.0001 | |
AC | 24.23 | 1 | 24.23 | 80.65 | <0.0001 | |
AD | 41.57 | 1 | 41.57 | 138.36 | <0.0001 | |
BC | 0.0315 | 1 | 0.0315 | 0.1049 | 0.7505 | |
BD | 14.38 | 1 | 14.38 | 47.87 | <0.0001 | |
CD | 18.17 | 1 | 18.17 | 60.47 | <0.0001 | |
A² | 412.1 | 1 | 412.1 | 1371.57 | <0.0001 | |
B² | 75.23 | 1 | 75.23 | 250.39 | <0.0001 | |
C² | 512.15 | 1 | 512.15 | 1704.58 | <0.0001 | |
D² | 1016.82 | 1 | 1016.82 | 3384.23 | <0.0001 | |
Residual | 4.51 | 15 | 0.3005 | |||
Lack of Fit | 3.99 | 10 | 0.3995 | 3.9 | 0.0731 | not significant |
Pure Error | 0.5123 | 5 | 0.1025 | |||
Cor Total | 1892.67 | 29 |
Std. Dev. | 0.5481 | R² | 0.9976 |
Mean | 83.68 | Adjusted R² | 0.9954 |
C.V.% | 0.6551 | Predicted R² | 0.9875 |
Adeq Precision | 66.4194 |
Entry | Catalyst | Feedstock | a Conditions | TOF (mol g−1 h−1) | Biodiesel Yield (%) | Ref. |
---|---|---|---|---|---|---|
1. | Peanut shell | Algal oil | 20:1, 5, 65, 4 | 0.005 | 94.91 | [14] |
2. | AIL−HPMo−MIL−100(Fe) | Soybean oil | 30:1, 9, 120, 8 | 0.002 | 92.30 | [50] |
3. | AIL@NH2−UiO−66 | Oleic acid | 14:1, 5, 75, 2 | 0.034 | 97.52 | [54] |
4. | MgO@ZnO | Soybean oil | 3:1, 1, 210, 2 | 0.042 | 73.30 | [51] |
5. | CaO−MIL–100(Fe) | Palm oil | 9:1, 4, 65, 2 | 0.014 | 95.09 | [39] |
6. | KNa/ZIF−8@GO | Soybean oil | 18:1, 8, 100, 8 | 0.002 | 98.00 | [52] |
7. | Zn−CaO | Eucalyptus oil | 6:1, 5, 65, 2.5 | 0.048 | 93.80 | [56] |
8. | K2O/CaO−ZnO | Soybean oil | 15:1, 6, 60, 4 | 0.004 | 81.10 | [53] |
9. | Cu−Ni−ZrO2 | Capparis spinosa seed oil | 6:1, 2.5, 70, 1.5 | − | 90.20 | [57] |
10. | ZrO2/BLA | Soybean oil | 15:1, 12, 50, 0.5 | 0.018 | 96.90 | [58] |
11. | CCPA | Hanne seed oil | 15:1, 4.5, 65, 1.5 | − | 98.98 | [59] |
12. | SO4/Fe−Al−TiO2 | WCO | 10:1, 3, 90, 2.5 | 0.013 | 96.00 | [60] |
13. | S−ZrO2/SBA−15 | WCO | 10:1, 2, 140, 0.17 | 0.287 | 96.38 | [55] |
14. | CaO−ZrO2 | Soybean oil | 9.7:1, 6.5, 73.2, 1.1 | 0.019 | 97.22 | This work |
Properties | ASTM Standards | Biodiesel (This Study) |
---|---|---|
Density (kg/m3) | 860–900 | 865 |
Flash point (°C) | >130 | 161 |
Kinematic viscosity at 40 °C (mm2/s) | 1.9–6 | 4.08 |
Calorific value (MJ/kg) | 35–45 | 42.24 |
Acid value (mg KOH/g) | Max. 0.5 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, S.P.; H. Anal, J.M.; Kumar, P.; Dhakshinamoorthy, A.; Rashid, U.; Rokhum, S.L. Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology. Catalysts 2022, 12, 1312. https://doi.org/10.3390/catal12111312
Gouda SP, H. Anal JM, Kumar P, Dhakshinamoorthy A, Rashid U, Rokhum SL. Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology. Catalysts. 2022; 12(11):1312. https://doi.org/10.3390/catal12111312
Chicago/Turabian StyleGouda, Shiva Prasad, Jasha Momo H. Anal, Puneet Kumar, Amarajothi Dhakshinamoorthy, Umer Rashid, and Samuel Lalthazuala Rokhum. 2022. "Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology" Catalysts 12, no. 11: 1312. https://doi.org/10.3390/catal12111312
APA StyleGouda, S. P., H. Anal, J. M., Kumar, P., Dhakshinamoorthy, A., Rashid, U., & Rokhum, S. L. (2022). Microwave-Assisted Biodiesel Production Using UiO-66 MOF Derived Nanocatalyst: Process Optimization Using Response Surface Methodology. Catalysts, 12(11), 1312. https://doi.org/10.3390/catal12111312