Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Features of ZIF-L
2.2. Polymerization of MMA
2.3. Recoverability and Reusability of Catalyst
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Catalyst ZIF-L
3.3. Polymerization with ZIF-L
3.4. Characterizations of Catalyst and Polymer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaghi, O.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Li, H.; Davis, C.E.; Groy, T.L.; Kelley, D.G.; Yaghi, O. Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BCD)3·6CH3OH (BCD = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 2186–2187. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.-B.; Xiang, S.; Xing, H.; Zhou, W.; Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coordin. Chem. Rev. 2019, 378, 87–103. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Gates, B.C. Catalysis by metal organic frameworks: Perspective and suggestions for future research. ACS Catal. 2019, 9, 1779–1798. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [Green Version]
- Koo, W.-T.; Jang, J.-S.; Kim, I.-D. Metal-organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938–1963. [Google Scholar] [CrossRef]
- Wang, D.; Jana, D.; Zhao, Y. Metal–organic framework derived nanozymes in biomedicine. Accounts Chem. Res. 2020, 53, 1389–1400. [Google Scholar] [CrossRef]
- Chen, R.; Yao, J.; Gu, Q.; Smeets, S.; Baerlocher, C.; Gu, H.; Zhu, D.; Morris, W.; Yaghi, O.M.; Wang, H. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500–9502. [Google Scholar] [CrossRef]
- Kang, Z.; Fan, L.; Sun, D. Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073–10091. [Google Scholar] [CrossRef]
- Liu, W.; Yin, R.; Xu, X.; Zhang, L.; Shi, W.; Cao, X. Structural engineering of low-dimensional metal–organic frameworks: Synthesis, properties, and applications. Adv. Sci. 2019, 6, 1802373. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J.J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Gao, Y.; Qiao, Z.; Zhao, S.; Wang, Z.; Wang, J. In situ synthesis of polymer grafted zifs and application in mixed matrix membrane for CO2 separation. J. Mater. Chem. A 2018, 6, 3151–3161. [Google Scholar] [CrossRef]
- Zanon, A.; Verpoort, F. Metals@ZIFs: Catalytic applications and size selective catalysis. Coordin. Chem. Rev. 2017, 353, 201–222. [Google Scholar] [CrossRef]
- Liu, J.; Goetjen, T.A.; Wang, Q.; Knapp, J.G.; Wasson, M.C.; Yang, Y.; Syed, Z.H.; Delferro, M.; Notestein, J.M.; Farha, O.K.; et al. Mof-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem. Soc. Rev. 2022, 51, 1045–1097. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Del. 2013, 10, 89–101. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Z.; Liang, K. Biocatalytic metal-organic framework-based artificial cells. Adv. Funct. Mater. 2019, 29, 1905321. [Google Scholar] [CrossRef]
- Wang, T.; Kou, Z.; Mu, S.; Liu, J.; He, D.; Amiinu, I.S.; Meng, W.; Zhou, K.; Luo, Z.; Chaemchuen, S. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc–air batteries. Adv. Funct. Mater. 2018, 28, 1705048. [Google Scholar] [CrossRef]
- Liu, Q.; Low, Z.-X.; Feng, Y.; Leong, S.; Zhong, Z.; Yao, J.; Hapgood, K.; Wang, H. Direct conversion of two-dimensional ZIF-L film to porous zno nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Micropor. Mesopor. Mat. 2014, 194, 1–7. [Google Scholar] [CrossRef]
- Zhong, Z.; Yao, J.; Chen, R.; Low, Z.; He, M.; Liu, J.Z.; Wang, H. Oriented two-dimensional zeolitic imidazolate framework-l membranes and their gas permeation properties. J. Mater. Chem. A 2015, 3, 15715–15722. [Google Scholar] [CrossRef]
- Nasir, A.M.; Nordin, N.M.; Goh, P.; Ismail, A. Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: Kinetic, isotherm and mechanism. J. Mol. Liq. 2018, 250, 269–277. [Google Scholar] [CrossRef]
- Gu, Q.; Ng, T.C.A.; Sun, Q.; Elshahawy, A.M.K.; Lyu, Z.; He, Z.; Zhang, L.; Ng, H.Y.; Zeng, K.; Wang, J. Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Adv. 2019, 9, 1591–1601. [Google Scholar] [CrossRef] [Green Version]
- Motevalli, B.; Taherifar, N.; Wang, H.; Liu, J.Z. Ab initio simulations to understand the leaf-shape crystal morphology of ZIF-L with two-dimensional layered network. J. Phys. Chem. C 2017, 121, 2221–2227. [Google Scholar] [CrossRef]
- Low, Z.-X.; Yao, J.; Liu, Q.; He, M.; Wang, Z.; Suresh, A.K.; Bellare, J.; Wang, H. Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 2014, 14, 6589–6598. [Google Scholar] [CrossRef]
- Hong, M.; Chen, J.; Chen, E.Y.-X. Polymerization of polar monomers mediated by main-group lewis acid–base pairs. Chem. Rev. 2018, 118, 10551–10616. [Google Scholar] [CrossRef]
- Nzahou Ottou, W.; Conde-Mendizabal, E.; Pascual, A.; Wirotius, A.-L.; Bourichon, D.; Vignolle, J.; Robert, F.; Landais, Y.; Sotiropoulos, J.-M.; Miqueu, K. Organic lewis pairs based on phosphine and electrophilic silane for the direct and controlled polymerization of methyl methacrylate: Experimental and theoretical investigations. Macromolecules 2017, 50, 762–774. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Hong, M. Controlled and efficient polymerization of conjugated polar alkenes by lewis pairs based on sterically hindered aryloxide-substituted alkylaluminum. Molecules 2018, 23, 442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Miyake, G.M.; Chen, E.Y.X. Alane-based classical and frustrated lewis pairs in polymer synthesis: Rapid polymerization of mma and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Edit. 2010, 49, 10158–10162. [Google Scholar] [CrossRef]
- Zhang, Y.; Miyake, G.M.; John, M.G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E.Y.-X. Lewis pair polymerization by classical and frustrated lewis pairs: Acid, base and monomer scope and polymerization mechanism. Dalton T. 2012, 41, 9119–9134. [Google Scholar] [CrossRef] [PubMed]
- McGraw, M.L.; Chen, E.Y.-X. Lewis pair polymerization: Perspective on a ten-year journey. Macromolecules 2020, 53, 6102–6122. [Google Scholar] [CrossRef]
- Wang, C.-G.; Chang, J.J.; Foo, E.Y.J.; Niino, H.; Chatani, S.; Hsu, S.Y.; Goto, A. Recyclable solid-supported catalysts for quaternary ammonium iodide-catalyzed living radical polymerization. Macromolecules 2020, 53, 51–58. [Google Scholar] [CrossRef]
- Taskin, O.S.; Kiskan, B.; Yagci, Y. An efficient, heterogeneous, reusable atom transfer radical polymerization catalyst. Polym. Int. 2018, 67, 55–60. [Google Scholar] [CrossRef]
- Yang, L.; Xie, C.; Li, Y.; Guo, L.; Nie, M.; Zhang, J.; Yan, Z.; Wang, J.; Wang, W. Polymerization of alkylsilanes on ZIF-8 to hierarchical siloxane microspheres and microflowers. Catalysts 2017, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Chaemchuen, S.; Zhou, K.; Verpoort, F. Ring-opening polymerization of l-lactide to cyclic poly (lactide) by zeolitic imidazole framework ZIF-8 catalyst. ChemSusChem 2017, 10, 4135–4139. [Google Scholar] [CrossRef]
- Mochizuki, S.; Kitao, T.; Uemura, T. Controlled polymerizations using metal–organic frameworks. Chem. Commun. 2018, 54, 11843–11856. [Google Scholar] [CrossRef]
- Low, Z.-X.; Razmjou, A.; Wang, K.; Gray, S.; Duke, M.; Wang, H. Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J. Membrane Sci. 2014, 460, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Jiang, H.; Zhong, Z.; Low, Z.-X.; Chen, R.; Xing, W. Palladium nanoparticles supported on a two-dimensional layered zeolitic imidazolate framework-l as an efficient size-selective catalyst. Micropor. Mesopor. Mat. 2016, 221, 220–227. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, W.; Wang, J.; Li, S.; Liu, X.; Dou, L.; Yue, T.; Sun, J.; Wang, J. Nanostructured morphology control and phase transition of zeolitic imidazolate frameworks as an ultra-high performance adsorbent for water purification. Inorg. Chem. Front. 2019, 6, 2667–2674. [Google Scholar] [CrossRef]
- Lee, L.-H.; Chen, W.-C. High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate)–titania materials. Chem. Mater. 2001, 13, 1137–1142. [Google Scholar] [CrossRef]
- Samad, H.A.; Jaafar, M. Effect of polymethyl methacrylate (PMMA) powder to liquid monomer (P/L) ratio and powder molecular weight on the properties of pmma cement. Polym-Plast. Technol. 2009, 48, 554–560. [Google Scholar] [CrossRef]
- Lu, Z.; Pan, Y.; Liu, X.; Zheng, G.; Schubert, D.W.; Liu, C. Molar mass and temperature dependence of rheological properties of polymethylmethacrylate melt. Mater. Lett. 2018, 221, 62–65. [Google Scholar] [CrossRef]
- Xu, D.; Jin, J.; Chen, C.; Wen, Z. From nature to energy storage: A novel sustainable 3D cross-linked chitosan–PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Appl. Mater. Inter. 2018, 10, 38526–38537. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702184. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Zhang, Q.; Hou, C.; Shi, Q.; Wang, H. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J. 2019, 375, 121922. [Google Scholar] [CrossRef]
- D’Elia, A.; Deering, J.; Clifford, A.; Lee, B.; Grandfield, K.; Zhitomirsky, I. Electrophoretic deposition of polymethylmethacrylate and composites for biomedical applications. Colloid. Surface B 2020, 188, 110763. [Google Scholar] [CrossRef]
- Meneghetti, P.; Qutubuddin, S.; Webber, A. Synthesis of polymer gel electrolyte with high molecular weight poly (methyl methacrylate)–clay nanocomposite. Electrochim. Acta 2004, 49, 4923–4931. [Google Scholar] [CrossRef]
- Rzayev, J.; Penelle, J. Hp-raft: A free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew. Chem. Inter. Edi. 2004, 43, 1691–1694. [Google Scholar] [CrossRef]
- Arita, T.; Kayama, Y.; Ohno, K.; Tsujii, Y.; Fukuda, T. High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer 2008, 49, 2426–2429. [Google Scholar] [CrossRef]
- Bai, Y.; He, J.; Zhang, Y. Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system. Angew. Chem. 2018, 130, 17476–17480. [Google Scholar] [CrossRef]
- Carmean, R.N.; Sims, M.B.; Figg, C.A.; Hurst, P.J.; Patterson, J.P.; Sumerlin, B.S. Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization. ACS Macro Lett. 2020, 9, 613–618. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Z.; Cao, K.; Nair, S.; Cheng, X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. Pervaporation performance comparison of hybrid membranes filled with two-dimensional zif-l nanosheets and zero-dimensional zif-8 nanoparticles. J. Membrane Sci. 2017, 523, 185–196. [Google Scholar] [CrossRef]
- Zhu, W.; Li, X.; Sun, Y.; Guo, R.; Ding, S. Introducing hydrophilic ultra-thin zif-l into mixed matrix membranes for CO2/CH4 separation. RSC Adv. 2019, 9, 23390–23399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Du, M.; Shao, P.; Wang, L.; Ye, J.; Chen, J.; Chen, J. Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution. Environ. Sci. Technol. 2018, 52, 12708–12716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Dou, J.; Zhang, H. Mixed membranes comprising carboxymethyl cellulose (as capping agent and gas barrier matrix) and nanoporous zif-l nanosheets for gas separation applications. Polymers 2018, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Wang, X.; Xu, Y.; Feng, S.; Ding, Y.; Pan, Y.; Xu, W.; Wang, H. Hydrothermal preparation of hierarchical zif-l nanostructures for enhanced co2 capture. J. Colloid Interf. Sci. 2018, 519, 38–43. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme Microb. Technol. 2018, 108, 11–20. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-N.; Jang, H.-G.; Seo, G.; Ahn, W.-S. CO2 cycloaddition of styrene oxide over mof catalysts. Appl. Catal. A Gen. 2013, 453, 175–180. [Google Scholar] [CrossRef]
- Naz, F.; Mumtaz, F.; Chaemchuen, S.; Verpoort, F. Bulk ring-opening polymerization of ε-caprolactone by zeolitic imidazolate framework. Catal. Lett. 2019, 149, 2132–2141. [Google Scholar] [CrossRef]
- Garg, D.K.; Serra, C.A.; Hoarau, Y.; Parida, D.; Bouquey, M.; Muller, R. Analytical solution of free radical polymerization: Applications-implementing gel effect using ak model. Macromolecules 2014, 47, 7370–7377. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E.Y.-X. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [al]-based frustrated lewis pairs. Macromolecules 2014, 47, 7765–7774. [Google Scholar] [CrossRef]
- Jia, Y.-B.; Wang, Y.-B.; Ren, W.-M.; Xu, T.; Wang, J.; Lu, X.-B. Mechanistic aspects of initiation and deactivation in n-heterocyclic olefin mediated polymerization of acrylates with alane as activator. Macromolecules 2014, 47, 1966–1972. [Google Scholar] [CrossRef]
- Peters, R.; Mengerink, Y.; Langereis, S.; Frederix, M.; Linssen, H.; van Hest, J.; van der Wal, S. Quantitation of functionality of poly(methyl methacrylate) by liquid chromatography under critical conditions followed by evaporative light-scattering detection: Comparison with nmr and titration. J. Chromatogr. A 2002, 949, 327–335. [Google Scholar] [CrossRef]
- Chen, E.Y.-X. Polymerization by classical and frustrated lewis pairs. Top. Curr. Chem. 2013, 334, 239–260. [Google Scholar] [PubMed]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (zif-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef]
- Yao, J.; He, M.; Wang, H. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks. CrystEngComm 2015, 17, 4970–4976. [Google Scholar] [CrossRef]
Entry | Temp. (°C) | Time (h) | [M]/[Cat] | Conv. a (%) | Mnb (kg/mol) | Đb |
---|---|---|---|---|---|---|
1 | 100 | 24 | 50/1 | 17 | 796 | 1.58 |
2 | 120 | 24 | 50/1 | 52 | 849 | 1.69 |
3 | 140 | 24 | 50/1 | 83 | 1390 | 1.12 |
4 | 140 | 3 | 50/1 | 20 | 745 | 1.78 |
5 | 140 | 6 | 50/1 | 38 | 890 | 1.37 |
6 | 140 | 12 | 50/1 | 64 | 1080 | 1.55 |
7 | 140 | 24 | 100/1 | 77 | 1210 | 1.46 |
8 | 140 | 24 | 200/1 | 63 | 940 | 1.69 |
9 | 140 | 24 | 400/1 | 50 | 716 | 1.73 |
10 | 140 | 24 | 800/1 | 34 | 459 | 1.79 |
11 | 140 | 24 | 1000/1 | 27 | 407 | 1.57 |
12 c | 140 | 24 | 50/1 | 64 | 632 | 1.62 |
13 d | 140 | 24 | 50/1 | 85 | 434 | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, M.A.; Mousavi, B.; Naz, F.; Verpoort, F. Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts 2022, 12, 521. https://doi.org/10.3390/catal12050521
Rahaman MA, Mousavi B, Naz F, Verpoort F. Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts. 2022; 12(5):521. https://doi.org/10.3390/catal12050521
Chicago/Turabian StyleRahaman, M. Abdur, Bibimaryam Mousavi, Farah Naz, and Francis Verpoort. 2022. "Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization" Catalysts 12, no. 5: 521. https://doi.org/10.3390/catal12050521
APA StyleRahaman, M. A., Mousavi, B., Naz, F., & Verpoort, F. (2022). Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts, 12(5), 521. https://doi.org/10.3390/catal12050521