Treatment of Coking Wastewater by α-MnO2/Peroxymonosulfate Process via Direct Electron Transfer Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Degradation of Phenol by α-MnO2/PMS Process
2.2. Non-Radical Mechanism of α-MnO2/PMS Process
2.3. Disposal of Coking Wastewater by α-MnO2/PMS Process
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Characterization of α-MnO2
3.4. Experiments to Remove Phenol
3.5. Experiments to Treat Coking Wastewater
3.6. Analytic Technologies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, F.; Qiu, S.; Zhu, Y.; Zhang, X.; Yang, J.; Ma, F. Tripolyphosphate-assisted electro-Fenton process for coking wastewater treatment at neutral pH. Environ. Sci. Pollut. Res. 2019, 26, 11928–11939. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J. Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process. Chem. Eng. J. 2020, 379, 122361. [Google Scholar] [CrossRef]
- Ghosh, T.K.; Biswas, P.; Bhunia, P.; Kadukar, S.; Banerjee, S.K.; Ghosh, R.; Sarkar, S. Application of coke breeze for removal of colour from coke plant wastewater. J. Environ. Manag. 2022, 302, 113800. [Google Scholar] [CrossRef] [PubMed]
- Pitas, V.; Somogyi, V.; Karpati, A.; Thury, P.; Frater, T. Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater. J. Clean. Prod. 2020, 273, 122482. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, M.; Zhang, Q.; Xu, X.; Li, Y.; Su, P.; Paidar, M.; Bouzek, K. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water Res. 2019, 154, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Y.; Huang, M.; Xiang, W.; Wang, Z.; Wu, X.; Zan, F.; Zhou, T. A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater. Bioresour. Technol. 2022, 363, 127897. [Google Scholar] [CrossRef]
- Chen, B.; Yang, S.; Wu, Y.; Suo, M.; Qian, Y. Intensified phenols extraction and oil removal for industrial semi-coking wastewater: A novel economic pretreatment process design. J. Clean. Prod. 2020, 242, 118453. [Google Scholar]
- Liu, Z.; Teng, Y.; Xu, Y.; Zheng, Y.; Zhang, Y.; Zhu, M.; Sun, Y. Ozone catalytic oxidation of biologically pretreated semi-coking wastewater (BPSCW) by spinel-type MnFe2O4 magnetic nanoparticles. Sep. Purif. Technol. 2022, 278, 118277. [Google Scholar]
- Sun, G.; Zhang, Y.; Gao, Y.; Han, X.; Yang, M. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application. Water Res. 2020, 173, 115517. [Google Scholar] [CrossRef]
- Cui, Y.; Kang, W.; Qin, L.; Ma, J.; Liu, X.; Yang, Y. Magnetic surface molecularly imprinted polymer for selective adsorption of quinoline from coking wastewater. Chem. Eng. J. 2020, 397, 125480. [Google Scholar] [CrossRef]
- Yuan, R.; Xia, Y.; Wu, X.; He, C.; Qin, Y.; He, C.; Zhang, X.; Li, N.; He, X. Efficient advanced treatment of coking wastewater using O3/H2O2/Fe-shavings process. J. Environ. Chem. Eng. 2022, 10, 107307. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, F.; Bai, Z.; Wang, Y.; Zhang, H.; Gao, X.; Wang, Y.; Li, X. Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater. Chemosphere 2022, 308, 136544. [Google Scholar] [CrossRef]
- Zhou, X.; Hou, Z.; Lv, L.; Song, J.; Yin, Z. Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: Parameters optimization, removal behavior and kinetics analysis. Chemosphere 2020, 238, 124649. [Google Scholar] [CrossRef]
- Tamang, M.; Paul, K.K. Advances in treatment of coking wastewater—A state of art review. Water Sci. Technol. 2022, 85, 449–473. [Google Scholar] [CrossRef]
- Iskurt, C.; Keyikoglu, R.; Kobya, M.; Khataee, A. Treatment of coking wastewater by aeration assisted electrochemical oxidation process at controlled and uncontrolled initial pH conditions. Sep. Purif. Technol. 2020, 248, 117043. [Google Scholar] [CrossRef]
- Wang, J.; Cai, J.; Wang, S.; Zhou, X.; Ding, X.; Ali, J.; Zheng, L.; Wang, S.; Yang, L.; Xi, S.; et al. Biochar-based activation of peroxide: Multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chem. Eng. J. 2022, 428, 131233. [Google Scholar] [CrossRef]
- An, W.; Wang, H.; Yang, T.; Xu, J.; Wang, Y.; Liu, D.; Hu, J.; Cui, W.; Liang, Y. Enriched photocatalysis-Fenton synergistic degradation of organic pollutants and coking wastewater via surface oxygen vacancies over Fe-BiOBr composites. Chem. Eng. J. 2023, 451, 138653. [Google Scholar] [CrossRef]
- Verma, V.; Chaudhari, P.K. Optimization of multiple parameters for treatment of coking wastewater using Fenton oxidation. Arab. J. Chem. 2020, 13, 5084–5095. [Google Scholar] [CrossRef]
- Razaviarani, V.; Zazo, J.A.; Casas, J.A.; Jaffe, P.R. Coupled fenton-denitrification process for the removal of organic matter and total nitrogen from coke plant wastewater. Chemosphere 2019, 224, 653–657. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Z.; Yu, C.; Wang, Y.; Wang, X. Degradation performance of high-concentration coking wastewater by manganese oxide ore acidic oxidation. Water Sci. Technol. 2022, 86, 367–379. [Google Scholar] [CrossRef]
- Wang, J.; Gong, Q.; Ali, J.; Shen, M.; Cai, J.; Zhou, X.; Liao, Z.; Wang, S.; Chen, Z. pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process. Chem. Eng. J. 2020, 390, 124512. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Zeng, Z.; Khan, A.; Wang, Z.; Zhao, M.; Mo, W.; Chen, Z. Elimination of atrazine through radical/non-radical combined processes by manganese nano-catalysts/PMS and implications to the structure-performance relationship. Chem. Eng. J. 2020, 397, 125425. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Chen, Z.; Chen, Z. One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation. RSC Adv. 2017, 7, 18696–18706. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Du, Y.; Zhu, J.; Xi, S.; Chen, Z.; Chen, Z. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 2017, 185, 754–763. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Wang, H.; Du, Y.; Zhou, X.; Liao, Z.; Wang, H.; Chen, Z. Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction. Sci. Total Environ. 2020, 740, 140388. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Gong, Q.; Wang, X.; Cai, J.; Wang, S.; Chen, Z. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation. Sci. Total Environ. 2020, 714, 136728. [Google Scholar]
- Guo, Z.Y.; Li, C.X.; Gao, M.; Han, X.; Zhang, Y.J.; Zhang, W.J.; Li, W.W. Mn-O Covalency Governs the Intrinsic Activity of Co-Mn Spinel Oxides for Boosted Peroxymonosulfate Activation. Angew. Chem. Int. Ed. 2021, 60, 274–280. [Google Scholar] [CrossRef]
- Kuang, H.; He, Z.; Li, M.; Huang, R.; Zhang, Y.; Xu, X.; Wang, L.; Chen, Y.; Zhao, S. Enhancing co-catalysis of MoS2 for persulfate activation in Fe3+-based advanced oxidation processes via defect engineering. Chem. Eng. J. 2021, 417, 127987. [Google Scholar]
- Shao, P.; Jing, Y.; Duan, X.; Lin, H.; Yang, L.; Ren, W.; Deng, F.; Li, B.; Luo, X.; Wang, S. Revisiting the Graphitized Nanodiamond-Mediated Activation of Peroxymonosulfate: Singlet Oxygenation versus Electron Transfer. Environ. Sci. Technol. 2021, 55, 16078–16087. [Google Scholar]
- Wu, L.; Sun, Z.; Zhen, Y.; Zhu, S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O-2) in the Fe-Co LDH/Peroxymonosulfate System. Environ. Sci. Technol. 2021, 55, 15400–15411. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Zhou, S.; Huang, R.; Huang, S.; Kuang, H.; Zeng, X.; Zhao, S. Activation of persulfate by MnOOH: Degradation of organic compounds by nonradical mechanism. Chemosphere 2021, 272, 129629. [Google Scholar] [CrossRef]
- Jawad, A.; Zhan, K.; Wang, H.; Shahzad, A.; Zeng, Z.; Wang, J.; Zhou, X.; Ullah, H.; Chen, Z.; Chen, Z. Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide. Environ. Sci. Technol. 2020, 54, 2476–2488. [Google Scholar] [CrossRef]
- Shen, S.; Zhou, X.; Zhao, Q.; Jiang, W.; Wang, J.; He, L.; Ma, Y.; Yang, L.; Chen, Z. Understanding the nonradical activation of peroxymonosulfate by different crystallographic MnO2: The pivotal role of Mn-III content on the surface. J. Hazard. Mater. 2022, 439, 129613. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Yin, Z.; Liu, Z.; Liu, Y.; Yang, Z.; Yang, W. Adsorption and catalysis of peroxymonosulfate on carbocatalysts for phenol degradation: The role of pyrrolic-nitrogen. Appl. Catal. B Environ. 2022, 319, 121891. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Yue, Y.; Wang, H.; Cheng, G.; Gao, C.; Chen, C.; Ai, Y.; Chen, Z.; Wang, X. The Confined Interlayer Growth of Ultrathin Two-Dimensional Fe3O4 Nanosheets with Enriched Oxygen Vacancies for Peroxymonosulfate Activation. ACS Catal. 2021, 11, 11256–11265. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Duan, P.; Guo, K.; Akram, M.; Xu, X.; Yue, Q.; Gao, Y. Improving peroxymonosulfate activation by copper ion-saturated adsorbent-based single atom catalysts for the degradation of organic contaminants: Electron-transfer mechanism and the key role of Cu single atoms. J. Mater. Chem. A 2021, 9, 11604–11613. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.L.; Chen, J.J.; Li, W.W.; Chen, Y.P.; Zhang, Y.J.; Wu, J.H.; Mei, S.C.; Yang, Q.; Yu, H.Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Q.; Wang, J.; Chen, Z.; Chen, Z. Nonradical oxidation processes in PMS-based heterogeneous catalytic system: Generation, identification, oxidation characteristics, challenges response and application prospects. Chem. Eng. J. 2021, 410, 128312. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Moussavi, G.; Giannakis, S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021, 411, 127957. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P.; Hu, K.; Zhou, P.; Wang, Y.; Asif, A.H.; Duan, X.; Sun, H.; Wang, S. Crystallinity and valence states of manganese oxides in Fenton-like polymerization of phenolic pollutants for carbon recycling against degradation. Appl. Catal. B Environ. 2022, 315, 121593. [Google Scholar] [CrossRef]
- Fu, J.; Gao, P.; Wang, L.; Zhang, Y.; Deng, Y.; Huang, R.; Zhao, S.; Yu, Z.; Wei, Y.; Wang, G.; et al. Regulating Crystal Facets of MnO2 for Enhancing Peroxymonosulfate Activation to Degrade Pollutants: Performance and Mechanism. Catalysts 2022, 12, 342. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Z.; You, S.; Liu, Y. Electrogenerated quinone intermediates mediated peroxymonosulfate activation toward effective water decontamination and electrode antifouling. Appl. Catal. B Environ. 2023, 320, 121980. [Google Scholar] [CrossRef]
- Wang, Z.; Almatrafi, E.; Wang, H.; Qin, H.; Wang, W.; Du, L.; Chen, S.; Zeng, G.; Xu, P. Cobalt Single Atoms Anchored on Oxygen-Doped Tubular Carbon Nitride for Efficient Peroxymonosulfate Activation: Simultaneous Coordination Structure and Morphology Modulation. Angew. Chem. Int. Ed. 2022, 61, e202202338. [Google Scholar]
- Zhou, X.; Luo, C.; Wang, J.; Wang, H.; Chen, Z.; Wang, S.; Chen, Z. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation. Sci. Total Environ. 2021, 762, 143120. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Q.; Tian, Y.; Wang, J.; Jawad, A.; Wang, S.; Chen, Z.; Chen, Z. Identification of step-by-step oxidation process and its driving mechanism in the peroxymonosulfate catalytically activated with redox metal oxides. Chem. Eng. J. 2022, 436, 131256. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Q.; Wang, J.; Wei, X.; Zhang, R.; Wang, S.; Liu, P.; Chen, Z. Effects of foreign metal doping on the step-by-step oxidation process in M-OMS-2 catalyzed activation of PMS. J. Hazard. Mater. 2022, 434, 128773. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Cai, J.; Gendy, E.A.; Chen, Z. Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): A mini review. Chemosphere 2021, 280, 130949. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Liu, Y.; Zhang, L.; Feng, L. Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: Conversion of reactive radicals. Chem. Eng. J. 2019, 358, 1332–1341. [Google Scholar] [CrossRef]
- Duan, P.; Liu, X.; Liu, B.; Akram, M.; Li, Y.; Pan, J.; Yue, Q.; Gao, B.; Xu, X. Effect of phosphate on peroxymonosulfate activation: Accelerating generation of sulfate radical and underlying mechanism. Appl. Catal. B Environ. 2021, 298, 120532. [Google Scholar] [CrossRef]
- Li, H.; Yuan, N.; Qian, J.; Pan, B. Mn2O3 as an Electron Shuttle between Peroxymonosulfate and Organic Pollutants: The Dominant Role of Surface Reactive Mn(IV) Species. Environ. Sci. Technol. 2022, 56, 4498–4506. [Google Scholar] [CrossRef]
- Yang, J.; Dong, Z.; Jiang, C.; Wang, C.; Liu, H. An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies. Chemosphere 2019, 237, 124521. [Google Scholar] [CrossRef]
- Appiani, E.; Ossola, R.; Latch, D.E.; Erickson, P.R.; McNeill, K. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content. Environ. Sci. Proc. Imp. 2017, 19, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Li, X.; Kang, J.; Duan, X.; Wang, S. Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. Environ. Sci. Technol. 2019, 53, 307–315. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, S.; Guo, J.; Cheng, F.; Li, Z. In situ anchoring strategy to enhance dual nonradical degradation of sulfamethoxazole with high loading manganese doped carbon nitride. Chemosphere 2022, 303, 135035. [Google Scholar] [CrossRef]
- Sun, W.; Pang, K.; Ye, F.; Pu, M.; Zhou, C.; Huang, H.; Zhang, Q.; Niu, J. Carbonization of camphor sulfonic acid and melamine to N,S-co-doped carbon for sulfamethoxazole degradation via persulfate activation: Nonradical dominant pathway. Sep. Purif. Technol. 2021, 279, 119723. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Jiang, N.; Pang, S.; Jiang, J.; Zhang, T. Effective activation of peroxymonosulfate with natural manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols. J. Hazard. Mater. 2021, 417, 126152. [Google Scholar] [CrossRef]
- Shahzad, A.; Ali, J.; Ifthikar, J.; Aregay, G.G.; Zhu, J.; Chen, Z.; Chen, Z. Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides. J. Hazard. Mater. 2020, 392, 122316. [Google Scholar]
- Jiang, N.; Xu, H.; Wang, L.; Jiang, J.; Zhang, T. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065. [Google Scholar]
- Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qu, W.; Jiang, C. Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination? Environ. Sci. Technol. 2018, 52, 11276–11284. [Google Scholar]
- Ren, W.; Nie, G.; Zhou, P.; Zhang, H.; Duan, X.; Wang, S. The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis. Environ. Sci. Technol. 2020, 54, 6438–6447. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Zhang, L.; Li, T.; Yang, M.; Hu, C. CoO anchored on boron nitride nanobelts for efficient removal of water contaminants by peroxymonosulfate activation. Chem. Eng. J. 2022, 430, 132915. [Google Scholar] [CrossRef]
- Duan, P.; Pan, J.; Du, W.; Yue, Q.; Gao, B.; Xu, X. Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal. Appl. Catal. B Environ. 2021, 299, 120714. [Google Scholar] [CrossRef]
- Deng, S.; Jothinathan, L.; Cai, Q.; Li, R.; Wu, M.; Ong, S.L.; Hu, J. FeOx@GAC catalyzed microbubble ozonation coupled with biological process for industrial phenolic wastewater treatment: Catalytic performance, biological process screening and microbial characteristics. Water Res. 2021, 190, 116687. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, W.; Wang, H.; Si, Q.; Zhao, Q.; Luo, H.; Ren, N. B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation. Chem. Eng. J. 2020, 396, 125119. [Google Scholar] [CrossRef]
- Yin, C.; Xia, Q.; Zhou, J.; Li, B.; Guo, Y.; Khan, A.; Li, X.; Xu, A. Direct electron transfer process-based peroxymonosulfate activation via surface labile oxygen over mullite oxide YMn2O5 for effective removal of bisphenol A. Sep. Purif. Technol. 2022, 280, 119924. [Google Scholar] [CrossRef]
- Aram, M.; Farhadian, M.; Nazar, A.R.S.; Tangestaninejad, S.; Eskandari, P.; Jeon, B.-H. Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection. J. Mol. Liq. 2020, 304, 112764. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O. The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters. Process Saf. Environ. 2017, 109, 203–213. [Google Scholar] [CrossRef]
- Berkani, M.; Vasseghian, Y.; Le, V.T.; Dragoi, E.-N.; Khaneghah, A.M. The Fenton-like reaction for Arsenic removal from groundwater: Health risk assessment. Environ. Res. 2021, 202, 111698. [Google Scholar] [CrossRef]
- Chai, Y.; Yang, H.; Bai, M.; Chen, A.; Peng, L.; Yan, B.; Zhao, D.; Qin, P.; Peng, C.; Wang, X. Direct production of 2, 5-Furandicarboxylicacid from raw biomass by manganese dioxide catalysis cooperated with ultrasonic-assisted diluted acid pretreatment. Bioresour. Technol. 2021, 337, 125421. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.; Mohammed, A.; Prakash, H. Determination of persulphates using N,N-diethyl-p-phenylenediamine as colorimetric reagent: Oxidative coloration and degradation of the reagent without bactericidal effect in water. Chem. Eng. J. 2016, 286, 223–231. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Z.; Guo, Z.; Liao, Z.; Yang, L.; Wang, J.; Chen, Z. Removal of Refractory Contaminants in Municipal Landfill Leachate by Hydrogen, Oxygen and Palladium: A Novel Approach of Hydroxyl Radical Production. J. Hazard. Mater. 2015, 287, 349–355. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Model | 5351.403 | 9 | 594.600 | 17.451 | 0.0005 | significant |
X1 | 4465.125 | 1 | 4465.125 | 131.051 | <0.0001 | |
X2 | 782.101 | 1 | 782.101 | 79.751 | 0.0008 | |
X3 | 25.600 | 1 | 25.600 | 22.955 | 0.0020 | |
X1X2 | 21.160 | 1 | 21.160 | 0.621 | 0.4565 | |
X1X3 | 0.010 | 1 | 0.010 | 0.001 | 0.9868 | |
X2X3 | 26.523 | 1 | 26.523 | 0.778 | 0.4069 | |
X12 | 0.022 | 1 | 0.022 | 0.001 | 0.9803 | |
X22 | 20.788 | 1 | 20.788 | 0.610 | 0.4603 | |
X32 | 14.933 | 1 | 14.9338 | 0.438 | 0.5291 | |
Residual | 238.502 | 7 | 34.072 | |||
Lack of Fit | 238.495 | 5 | 47.699 | 7.660 | 0.2154 | not significant |
Pure Error | 0.007 | 2 | 0.003 | |||
Cor Total | 5589.905 | 16 |
R-Squared | Mean | Adj R-Squared | C.V.% | Pred R-Squared | PRESS | Adeq Precisior |
---|---|---|---|---|---|---|
0.9874 | 58.21 | 0.9626 | 3.7 | 0.7007 | 2791.36 | 14.977 |
Parameters | Values * |
---|---|
pH value | 7.17 ± 0.25 |
Electrical Conductivity (mS/cm) | 13.46 ± 0.97 |
Alkalinity (mg CaCO3/L) | 3349.00 ± 102.37 |
COD (mg/L) | 1135.00 ± 47.90 |
BOD5 (mg/L) | 195.00 ± 16.30 |
TOC (mg/L) | 298.45 ± 21.40 |
Total phenol (mg/L) | 377.35 ± 37.80 |
CN− (mg/L) | 83.20 ± 14.60 |
SCN− (mg/L) | 115.70 ± 19.80 |
Cl− (mg/L) | 297.40 ± 31.20 |
NH4+-N (mg/L) | 178.50 ± 11.90 |
Total nitrogen (mg/L) | 276.60 ± 24.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liao, Z.; Cai, J.; Wang, S.; Luo, F.; Ifthikar, J.; Wang, S.; Zhou, X.; Chen, Z. Treatment of Coking Wastewater by α-MnO2/Peroxymonosulfate Process via Direct Electron Transfer Mechanism. Catalysts 2022, 12, 1359. https://doi.org/10.3390/catal12111359
Wang J, Liao Z, Cai J, Wang S, Luo F, Ifthikar J, Wang S, Zhou X, Chen Z. Treatment of Coking Wastewater by α-MnO2/Peroxymonosulfate Process via Direct Electron Transfer Mechanism. Catalysts. 2022; 12(11):1359. https://doi.org/10.3390/catal12111359
Chicago/Turabian StyleWang, Jia, Zhuwei Liao, Jiayi Cai, Siqi Wang, Fang Luo, Jerosha Ifthikar, Songlin Wang, Xinquan Zhou, and Zhuqi Chen. 2022. "Treatment of Coking Wastewater by α-MnO2/Peroxymonosulfate Process via Direct Electron Transfer Mechanism" Catalysts 12, no. 11: 1359. https://doi.org/10.3390/catal12111359
APA StyleWang, J., Liao, Z., Cai, J., Wang, S., Luo, F., Ifthikar, J., Wang, S., Zhou, X., & Chen, Z. (2022). Treatment of Coking Wastewater by α-MnO2/Peroxymonosulfate Process via Direct Electron Transfer Mechanism. Catalysts, 12(11), 1359. https://doi.org/10.3390/catal12111359