Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes
Abstract
:1. Introduction
1.1. Overview of Catalytic Conversion Routes of Light Alkanes
1.1.1. Dehydrogenation
1.1.2. Aromatization
1.1.3. Catalytic Cracking
1.1.4. Isomerization
1.2. Importance of Ga-Based Catalysts
2. Basic Properties and Preparation Methods of Ga-Based Catalysts
2.1. Basic Information about Ga Species
2.2. Preparation Method of Ga Catalyst
2.2.1. Impregnation
2.2.2. Ion Exchange
2.2.3. Chemical Liquid Deposition
2.2.4. In Situ Synthesis
3. Application of Ga-Based Catalysts in Light Alkane Conversion
3.1. Ga-Based Catalysts in Alkane Dehydrogenation
3.2. Ga-Based Catalysts in Alkane Aromatization
3.3. Ga-Based Catalysts in Catalytic Cracking of Alkane
3.4. Ga-Based Catalysts in Alkane Isomerization
4. Conclusions
- (i)
- In future studies, the dispersion of Ga-active species on the support needs to be improved, such as modifying the preparation method and using appropriate supports. Especially with the development of preparation technology, new kinds of preparation methods can be introduced to Ga-based catalysts. The designed functional Ga catalysts can be, thus, efficiently applied and used in alkane conversion with a detailed study of their impact on Ga species modulation and metal-support interaction.
- (ii)
- As discussed above, Ga has many different kinds of species, which may all have catalytic activities in alkane conversion. Meanwhile, these Ga species can be changed during the reaction. Thus, the variation of Ga species during the reaction and the function of different kinds of Ga species urgently require clarification with the combination of in situ and ex situ characterizations. Additionally, the structure–catalytic performance of Ga-based catalysts should be then investigated in depth, with more studies conducted on the catalytic mechanism of Ga-based catalysts.
- (iii)
- Meanwhile, to further improve the catalytic performance of Ga-based catalysts, additives can be investigated. With the introduction of other components, a synergistic effect with Ga, such as electronic effect, alloy, etc., can be formed to improve its catalytic activity and stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Chang, M. Analysis and forecast of global ethylene supply and demand. World Pet. Ind. 2021, 28, 54–61. [Google Scholar]
- Liu, Z.; Li, Y. Review of China’s propylene market and outlook for 2021–2025 period. Mod. Chem. Ind. 2021, 41, 16–18. [Google Scholar] [CrossRef]
- Gao, X.; Xu, W.; Li, X.; Cen, J.; Xu, Y.; Lin, L.; Yao, S. Non-oxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: Identification of the nature of active site. Chem. Eng. J. 2022, 443, 136393. [Google Scholar] [CrossRef]
- Ma, S.; Liu, Z.-P. Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation. Nat. Commun. 2022, 13, 2716. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-D.; Jiang, J.-W.; Sui, Z.-J.; Zhu, Y.-A.; Zhou, X.-G. Kinetic Promotion Effect of Hydrogen and Dimethyl Disulfide Addition on Propane Dehydrogenation over the Pt-Sn-K/Al2O3 Catalyst. ACS Omega 2022, 7, 30773–30781. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Zhang, N.; Song, J.; Fan, X.; Zhao, Z.; Kong, L.; Xiao, X.; Xie, Z. Propane Dehydrogenation over PtSn/Al2O3 Catalysts: Influence of Urea to Al(NO3)(3)center dot 9H(2)O Ratio. Catalysts 2022, 12, 157. [Google Scholar] [CrossRef]
- Shao, H.; Wang, X.; Gu, X.; Wang, D.; Jiang, T.; Guo, X. Improved catalytic performance of CrOx catalysts supported on foamed Sn-modified alumina for propane dehydrogenation. Microporous Mesoporous Mater. 2021, 311, 110684. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.-H.; Liu, Z.-T.; Liu, Z.-W. Active and selective nature of supported CrOx for the oxidative dehydrogenation of propane with carbon dioxide. Appl. Catal. B Environ. 2021, 297, 120400. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Wang, Y.; Yang, D.; Yuan, Z.-Y. CrO supported on high-silica HZSM-5 for propane dehydrogenation. J. Energy Chem. 2020, 47, 225–233. [Google Scholar] [CrossRef]
- Daresibi, F.G.; Khodadadi, A.A.; Mortazavi, Y.; Huotari, S.; Ritala, M. Highly dispersed atomic layer deposited CrOx on SiO2 catalyst with enhanced yield of propylene for CO2-mediated oxidative dehydrogenation of propane. Mol. Catal. 2022, 526, 112396. [Google Scholar] [CrossRef]
- Golubina, E.V.; Kaplin, I.Y.; Gorodnova, A.V.; Lokteva, E.S.; Isaikina, O.Y.; Maslakov, K.I. Non-Oxidative Propane Dehydrogenation on CrOx-ZrO2-SiO2 Catalyst Prepared by One-Pot Template-Assisted Method. Molecules 2022, 27, 6095. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; He, Q.; Wang, D.; Zhang, Y.; Jiang, T.; Guo, X. The active sites and catalytic properties of CrOx/Zn-Al2O3 catalysts for propane dehydrogenation. Appl. Catal. A -Gen. 2022, 637, 118610. [Google Scholar] [CrossRef]
- Song, C.; Wang, J.; Wang, S.; Wen, J. Experimental and Theoretical Study of the Impact of Operating Conditions on Catalytic Propane Dehydrogenation in a Fluidized Bed Reactor. Ind. Eng. Chem. Res. 2022, 61, 12434–12447. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, X.; Song, C.; Liu, Y.; Zhao, Z. Fabrication of Isolated VOx Sites on Alumina for Highly Active and Stable Non-Oxidative Dehydrogenation. J. Phys. Chem. C 2021, 125, 19229–19237. [Google Scholar] [CrossRef]
- Iffländer, K.; Eckelt, R.; Lund, H.; Kreyenschulte, C.; Bartling, S.; Wotzka, A.; Steinfeldt, N. Dehydrogenation of 1-butene with CO2 over VOx supported catalysts. Appl. Catal. A Gen. 2020, 602, 117648. [Google Scholar] [CrossRef]
- Balogun, M.L.; Adamu, S.; Ba-Shammakh, M.S.; Hossain, M.M. Promotional effects of CO2 on the oxidative dehydrogenation of propane over mesoporous VOX/γAl2O3 catalysts. J. Ind. Eng. Chem. 2021, 96, 82–97. [Google Scholar] [CrossRef]
- Liu, F.; Han, M.; Li, X.; Zhang, X.; Wang, Y.; Xu, Y.; Zhang, L. Dispersion and Stabilization of Supported Layered Double Hydroxide-Based Nanocomposites on V-Based Catalysts for Nonoxidative Dehydrogenation of Isobutane to Isobutene. Catalysts 2022, 12, 382. [Google Scholar] [CrossRef]
- Sanchez-Garcia, J.-L.; Handy, B.E.; Rodriguez, A.G.; Martin Gonzalez-Chavez, M.; Garcia de Leon, R.; Cardenas-Galindo, M.-G. Relating the Synthesis Method of VOx/CeO2/SiO2 Catalysts to Red-Ox Properties, Acid Sites, and Catalytic Activity for the Oxidative Dehydrogenation of Propane and n-Butane. Top. Catal. 2022, 65, 1408–1418. [Google Scholar] [CrossRef]
- Shan, Y.L.; Sun, H.-L.; Zhao, S.-L.; Li, K.-X.; Xia, K.-H.; Ding, J.W.; Yu, W.L. Enhancing propane direct dehydrogenation performances through temperature induced VO(x) dispersion and alumina support phase transformation. Chem. Eng. J. 2022, 450, 137969. [Google Scholar] [CrossRef]
- Shan, Y.-L.; Sun, H.-L.; Zhao, S.-L.; Tang, P.-L.; Zhao, W.-T.; Ding, J.-W.; Yu, W.-L.; Li, L.-N.; Feng, X.; Chen, D. Effects of Support and CO2 on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catal. 2022, 12, 5736–5749. [Google Scholar] [CrossRef]
- Wang, H.; Chai, S.; Li, P.; Yang, Y.; Wang, X. Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts. Catal. Lett. 2022. [Google Scholar] [CrossRef]
- Cheng, Y.; Lei, T.; Miao, C.; Hua, W.; Yue, Y.; Gao, Z. Ga2O3/NaZSM-5 for C2H6 dehydrogenation in the presence of CO2: Conjugated effect of silanol. Microporous Mesoporous Mater. 2018, 268, 235–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E.V. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation. Nat. Commun. 2018, 9, 3794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Yan, X.; Chen, Y.; Guo, X.-J.; Lang, W.-Z.; Guo, Y.-J. Improved propylene selectivity and superior catalytic performance of Ga-xMg/ZSM-5 catalysts for propane dehydrogenation (PDH) reaction. Appl. Catal. A -Gen. 2022, 643, 118778. [Google Scholar] [CrossRef]
- Zhang, T.; Pei, C.; Sun, G.; Chen, S.; Zhao, Z.-J.; Sun, S.; Lu, Z.; Xu, Y.; Gong, J. Synergistic Mechanism of Platinum-GaOx Catalysts for Propane Dehydrogenation. Angew. Chem. -Int. Ed. 2022, 61, e202201453. [Google Scholar] [CrossRef]
- Herold, F.; Prosch, S.; Oefner, N.; Brunnengraber, K.; Leubner, O.; Hermans, Y.; Hofmann, K.; Drochner, A.; Hofmann, J.P.; Qi, W.; et al. Nanoscale Hybrid Amorphous/Graphitic Carbon as Key Towards Next-Generation Carbon-Based Oxidative Dehydrogenation Catalysts. Angew. Chem. Int. Ed. 2021, 60, 5898–5906. [Google Scholar] [CrossRef]
- Cao, T.; Dai, X.; Li, F.; Liu, W.; Bai, Y.; Fu, Y.; Qi, W. Efficient Non-Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobalt-nitrogen Compounds on Carbon Nanotubes. ChemCatChem 2021, 13, 3067–3073. [Google Scholar] [CrossRef]
- Cao, T.; Dai, X.; Liu, W.; Fu, Y.; Qi, W. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: Improvement of propene selectivity and oxidation resistance. Carbon 2022, 189, 199–209. [Google Scholar] [CrossRef]
- Liu, W.; Cao, T.; Dai, X.; Bai, Y.; Lu, X.; Li, F.; Qi, W. Nitrogen-Doped Graphene Monolith Catalysts for Oxidative Dehydrogenation of Propane. Front. Chem. 2021, 9, 759936. [Google Scholar] [CrossRef]
- Wongnongwa, Y.; Kidkhunthod, P.; Sukkha, U.; Pengpanich, S.; Thavornprasert, K.-A.; Phupanit, J.; Kungwan, N.; Feng, G.; Keawin, T.; Jungsuttiwong, S. Local structure elucidation and reaction mechanism of light naphtha aromatization over Ga embedded H-ZSM-5 zeolite: Combined DFT and experimental study. Microporous Mesoporous Mater. 2020, 306, 110414. [Google Scholar] [CrossRef]
- Kostyniuk, A.; Bajec, D.; Likozar, B. Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor. Renew. Energy 2022, 188, 240–255. [Google Scholar] [CrossRef]
- Lim, Y.H.; Gim, M.Y.; Kim, H.; Kim, D.H. Top-down HCl treatment to prepare highly active Ga species in Ga/ZSM-5 for propane aromatization. Fuel Process. Technol. 2022, 227, 107107. [Google Scholar] [CrossRef]
- Liu, C.; Uslamin, E.A.; Khramenkova, E.; Sireci, E.; Ouwehand, L.T.L.J.; Ganapathy, S.; Kapteijn, F.; Pidko, E.A. High Stability of Methanol to Aromatic Conversion over Bimetallic Ca,Ga-Modified ZSM-5. ACS Catal. 2022, 12, 3189–3200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, H.; Liu, H.; Sardar, A.; Shan, J.; Guillen, L. Step-change performance enhancement of ethylene aromatization on Ga-ZSM-5 through steaming treatment. Mol. Catal. 2022, 524, 112313. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, J. In Situ Synthesis of Metal-Containing ZSM-5 and Its Catalytic Performance in Aromatization of Methanol. ACS Omega 2022, 7, 24241–24248. [Google Scholar] [CrossRef]
- Lin, W.; Song, Y.; Han, L.; Yang, X.; Liu, J.; Peng, B. Dehydrogenative aromatization of 1-octene over multifunctional Ni/ZSM-5-P-Fe catalyst. Fuel 2021, 299, 120890. [Google Scholar] [CrossRef]
- Xu, B.; Tan, M.; Wu, X.; Geng, H.; Zhao, S.; Yao, J.; Ma, Q.; Yang, G.; Tsubaki, N.; Tan, Y. Propane Aromatization Tuned by Tailoring Cr Modified Ga/ZSM-5 Catalysts. ChemCatChem 2021, 13, 3601–3610. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Xu, X.; Jiang, H. Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catal. Sci. Technol. 2020, 10, 835–843. [Google Scholar] [CrossRef]
- Dauda, I.B.; Yusuf, M.; Gbadamasi, S.; Bello, M.; Atta, A.Y.; Aderemi, B.O.; Jibril, B.Y. Highly Selective Hierarchical ZnO/ZSM-5 Catalysts for Propane Aromatization. ACS Omega 2020, 5, 2725–2733. [Google Scholar] [CrossRef] [Green Version]
- Uslamin, E.A.; Saito, H.; Sekine, Y.; Hensen, E.J.M.; Kosinov, N. Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catal. Today 2021, 369, 184–192. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Li, Y.; Song, W.; Huan, Q.; Lu, J.; Gao, Y.; Han, S.; Gao, M.; Ma, Y.; et al. Synergistic construction of bifunctional and stable Pt/HZSM-5-based catalysts for efficient catalytic cracking of n-butane. Nanoscale 2021, 13, 5103–5114. [Google Scholar] [CrossRef] [PubMed]
- Soualah, A.; Lemberton, J.L.; Pinard, L.; Chater, M.; Magnoux, P.; Moljord, K. Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism. Appl. Catal. A Gen. 2008, 336, 23–28. [Google Scholar] [CrossRef]
- Bigey, C.; Su, B.L. Propane as alkylating agent for alkylation of benzene on HZSM-5 and Ga-modified HZSM-5 zeolites. J. Mol. Catal. A Chem. 2004, 209, 179–187. [Google Scholar] [CrossRef]
- Safi, N.A.; Li, Y.; Yu, B.; Liu, P.; Wang, J.; Ge, H.; Zhang, K. The dependence of high catalytic performance on the tunable oxygen vacancy in the CZxS/Zn-HZSM-5 bifunctional catalyst for alkylation of benzene and syngas. Appl. Organomet. Chem. 2022, 36, e6744. [Google Scholar] [CrossRef]
- Bonnin, A.; Comparot, J.-D.; Pouilloux, Y.; Coupard, V.; Uzio, D.; Pinard, L. Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts. Appl. Catal. A Gen. 2021, 611, 117974. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Wang, J.; Ma, G.; Lin, J.; Yang, Y.; Li, Y.; Zhang, C.; Ding, M. Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catal. 2019, 9, 5147–5156. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Xu, L.; Yang, X.; Nawaz, M.A.; Yuan, H.; Zhang, Z.; Xu, X.; Liu, D. Tuning the Integration Proximity between Na Promoter and FeMnOx Coupled with Rationally Modified HZSM-5 to Promote Selective CO2 Hydrogenation to Aromatics. Ind. Eng. Chem. Res. 2022, 61, 6820–6830. [Google Scholar] [CrossRef]
- Pimerzin, A.A.; Savinov, A.A.; Ishutenko, D.I.; Verevkin, S.P.; Pimerzin, A.A. Isomerization of Linear Paraffin Hydrocarbons in the Presence of Sulfide CoMo and NiW Catalysts on Al2O3-SAPO-11 Support. Russ. J. Appl. Chem. 2020, 92, 1772–1779. [Google Scholar] [CrossRef]
- Valavarasu, G.; Sairam, B. Light naphtha isomerization process: A review. Pet. Sci. Technol. 2013, 31, 580–595. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Liu, Y.; Liu, C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts. J. Energy Chem. 2017, 26, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Gong, J.; Qiao, G.; Ye, S.; Zheng, J.; Zhang, N.; Chen, B. Effect of Metal Precursors on the Performance of Pt/SAPO-11 Catalysts for n-Dodecane Hydroisomerization. ACS Omega 2019, 4, 12598–12605. [Google Scholar] [CrossRef] [PubMed]
- Loc, L.C.; Gaidai, N.A.; Tri, N.; Thoa, D.T.K.; Kogan, V.M.; Cuong, H.T.; Agafonov, Y.A. Kinetics of n-hexane hydroisomerization over HZSM-5 supported platinum catalysts. Features of the process mechanism and the Ni-promoting effect. Mol. Catal. 2021, 515, 111880. [Google Scholar] [CrossRef]
- Chen, H.; Yi, F.; Ma, C.; Gao, X.; Liu, S.; Tao, Z.; Wu, B.; Xiang, H.; Yang, Y.; Li, Y.-w. Hydroisomerization of n-heptane on a new kind of bifunctional catalysts with palladium nanoparticles encapsulating inside zeolites. Fuel 2020, 268, 117241. [Google Scholar] [CrossRef]
- Kaucký, D.; Sobalík, Z.; Hidalgo, J.M.; Černý, R.; Bortnovský, O. Impact of dopant metal ions in the framework of parent zirconia on the n-heptane isomerization activity of the Pt/WO3-ZrO2 catalysts. J. Mol. Catal. A Chem. 2016, 420, 107–114. [Google Scholar] [CrossRef]
- Chen, X.-R.; Chen, C.-L.; Xu, N.-P.; Mou, C.-Y. Al- and Ga-promoted WO3/ZrO2 strong solid acid catalysts and their catalytic activities in n-butane isomerization. Catal. Today 2004, 93–95, 129–134. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Li, C.; Lian, J.; Gan, G.; Lim, E.; Kooli, F. Effect of ZnO additives and acid treatment on catalytic performance of Pt/WO3/ZrO2 for n-C7 hydroisomerization. J. Catal. 2006, 244, 17–23. [Google Scholar] [CrossRef]
- Chen, C.; Qin, L.; Chen, X.; Chen, C. Catalytic Performance of Re/Ga2O3/WO3/ZrO2 Catalyst for n-Hexane Isomerization. Chin. J. Catal. 2009, 30, 859–863. [Google Scholar] [CrossRef]
- Moreno-Barrueta, E.; Alvarado-Camacho, C.; Durán-Pérez, J.F.; Morales-Pérez, A.-A.; Castillo, C.O. On the dynamics of the catalytic surface of a bimetallic mixed-oxide formulation during the oxidative dehydrogenation of ethane. Catal. Today 2022, 394–396, 161–177. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, K.; Han, S.; Doronkin, D.E.; Lund, H.; Li, J.; Grunwaldt, J.-D.; Zhao, Z.; Xu, C.; Jiang, G.; et al. Controlling Reaction-Induced Loss of Active Sites in ZnOx/Silicalite-1 for Durable Nonoxidative Propane Dehydrogenation. ACS Catal. 2022, 12, 4608–4617. [Google Scholar] [CrossRef]
- Castro-Fernández, P.; Serykh, A.I.; Yakimov, A.V.; Prosvirin, I.P.; Bukhtiyarov, A.V.; Abdala, P.M.; Copéret, C.; Fedorov, A.; Müller, C.R. Atomic-scale changes of silica-supported catalysts with nanocrystalline or amorphous gallia phases: Implications of hydrogen pretreatment on their selectivity for propane dehydrogenation. Catal. Sci. Technol. 2022, 12, 3957–3968. [Google Scholar] [CrossRef]
- Salehi, M.; Asadi, R.; Darian, J.T.; Khoshbin, R. New approach for enhancement of light olefin production through oxidative dehydrogenation of propane over doped Mo/TiO2 nanotubes. Adv. Powder Technol. 2022, 33, 103356. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, D.; Zhao, F.; Zhao, Y.; Wang, S.; Ma, X. Catalytic oxidative dehydrogenation of ethane using carbon dioxide as a soft oxidant over Co-HMS catalysts to ethylene. Asia-Pac. J. Chem. Eng. 2022, 17, e2804. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, A.; Ould-Chikh, S.; Castells-Gil, J.; Aguilar-Tapia, A.; Bordet, P.; Alrushaid, M.A.; Marti-Gastaldo, C.; Gascon, J. Fe-MOF Materials as Precursors for the Catalytic Dehydrogenation of Isobutane. ACS Catal. 2022, 12, 3832–3844. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, F.; Jarvis, J.; He, P.; Yung, M.M.; Wang, A.; Zhao, K.; Song, H. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane. Fuel 2018, 219, 331–339. [Google Scholar] [CrossRef]
- Prakash, G.K.; Mathew, T.; Olah, G.A. Gallium(III) triflate: An efficient and a sustainable Lewis acid catalyst for organic synthetic transformations. Acc. Chem. Res. 2012, 45, 565–577. [Google Scholar] [CrossRef]
- Rochlitz, L.; Searles, K.; Nater, D.F.; Docherty, S.R.; Gioffrè, D.; Copéret, C. A Molecular Analogue of the C-H Activation Intermediate of the Silica-Supported Ga(III) Single-Site Propane Dehydrogenation Catalyst: Structure and XANES Signature. Helv. Chim. Acta 2021, 104, e2100078. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Suttipat, D.; Dugkhuntod, P.; Yutthalekha, T.; Thivasasith, A.; Kidkhunthod, P.; Nokbin, S.; Pengpanich, S.; Limtrakul, J.; Wattanakit, C. Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel 2019, 236, 1243–1253. [Google Scholar] [CrossRef]
- Phadke, N.M.; Mansoor, E.; Bondil, M.; Head-Gordon, M.; Bell, A.T. Mechanism and Kinetics of Propane Dehydrogenation and Cracking over Ga/H-MFI Prepared via Vapor-Phase Exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 2019, 141, 1614–1627. [Google Scholar] [CrossRef] [Green Version]
- Pidko, E.; Kazansky, V.; Hensen, E.; Vansanten, R. A comprehensive density functional theory study of ethane dehydrogenation over reduced extra-framework gallium species in ZSM-5 zeolite. J. Catal. 2006, 240, 73–84. [Google Scholar] [CrossRef]
- Kazansky, V.; Subbotina, I.; Vansanten, R.; Hensen, E. DRIFTS study of the nature and chemical reactivity of gallium ions in Ga/ZSM-5II. Oxidation of reduced Ga species in ZSM-5 by nitrous oxide or water. J. Catal. 2005, 233, 351–358. [Google Scholar] [CrossRef]
- Rane, N.; Overweg, A.; Kazansky, V.; Vansanten, R.; Hensen, E. Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5. J. Catal. 2006, 239, 478–485. [Google Scholar] [CrossRef]
- Hensen, E.J.M.; Pidko, E.A.; Rane, N.; van Santen, R.A. Water-Promoted Hydrocarbon Activation Catalyzed by Binuclear Gallium Sites in ZSM-5 Zeolite. Angew. Chem. 2007, 119, 7411–7414. [Google Scholar] [CrossRef]
- Pidko, E.A.; Hensen, E.J.M.; van Santen, R.A. Self-organization of extraframework cations in zeolites. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 2070–2086. [Google Scholar] [CrossRef]
- Joshi, Y.V.; Thomson, K.T. The roles of gallium hydride and Brønsted acidity in light alkane dehydrogenation mechanisms using Ga-exchanged HZSM-5 catalysts: A DFT pathway analysis. Catal. Today 2005, 105, 106–121. [Google Scholar] [CrossRef]
- Yang, G.; Yang, J.; Huang, D.; Zhou, W.; Yang, L.; Lv, P.; Yi, W.; Sun, Y.; Yan, B. BTX production from rice husk by fast catalytic pyrolysis over a Ga-modified ZSM-5/SBA-15 catalyst. New J. Chem. 2021, 45, 3809–3816. [Google Scholar] [CrossRef]
- Dieu Nguyen, H.K.; Dang, T.H.; Dinh, N.T.; Duy Nguyen, H.H. Study on characterization and application of novel Ni-Ga based catalysts in conversion of carbon dioxide to methanol. AIP Adv. 2019, 9, 085006. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Tan, M.; Wu, X.; Geng, H.; Song, F.; Ma, Q.; Luan, C.; Yang, G.; Tan, Y. Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization. Fuel 2021, 283, 118889. [Google Scholar] [CrossRef]
- Shao, C.-T.; Lang, W.-Z.; Yan, X.; Guo, Y.-J. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: Effects of support and loading amount. RSC Adv. 2017, 7, 4710–4723. [Google Scholar] [CrossRef] [Green Version]
- Cybulskis, V.J.; Pradhan, S.U.; Lovón-Quintana, J.J.; Hock, A.S.; Hu, B.; Zhang, G.; Delgass, W.N.; Ribeiro, F.H.; Miller, J.T. The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO2. Catal. Lett. 2017, 147, 1252–1262. [Google Scholar] [CrossRef]
- Rodrigues, V.d.O.; Vasconcellos, F.J.; Faro Júnior, A.d.C. Mechanistic studies through H–D exchange reactions: Propane aromatization in HZSM5 and Ga/HZSM5 catalysts. J. Catal. 2016, 344, 252–262. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, J.; Wang, P.; Zhang, Z.; Zhang, Q.; Xie, H.; Yang, G.; Han, Y.; Tan, Y. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Adv. 2015, 5, 92222–92233. [Google Scholar] [CrossRef]
- Zhou, Y.; Thirumalai, H.; Smith, S.K.; Whitmire, K.H.; Liu, J.; Frenkel, A.I.; Grabow, L.C.; Rimer, J.D. Ethylene Dehydroaromatization over Ga-ZSM-5 Catalysts: Nature and Role of Gallium Speciation. Angew Chem. Int. Ed. Engl. 2020, 59, 19592–19601. [Google Scholar] [CrossRef] [PubMed]
- Phadke, N.M.; Van der Mynsbrugge, J.; Mansoor, E.; Getsoian, A.B.; Head-Gordon, M.; Bell, A.T. Characterization of Isolated Ga3+ Cations in Ga/H-MFI Prepared by Vapor-Phase Exchange of H-MFI Zeolite with GaCl3. ACS Catal. 2018, 8, 6106–6126. [Google Scholar] [CrossRef]
- Shishido, T.; Shimamura, K.; Teramura, K.; Tanaka, T. Role of CO2 in dehydrogenation of propane over Cr-based catalysts. Catal. Today 2012, 185, 151–156. [Google Scholar] [CrossRef]
- Chen, M.; Xu, J.; Su, F.Z.; Liu, Y.M.; Cao, Y.; He, H.Y.; Fan, K.N. Dehydrogenation of propane over spinel-type gallia-alumina solid solution catalysts. J. Catal. 2008, 256, 293–300. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Gonzalez-Jimenez, I.D.; Luo, L.; Stears, B.A.; Malek, A.; Barton, D.G.; Kilos, B.A.; Kaminsky, M.P.; Verhoeven, T.W.G.M.; Koers, E.J.; et al. Platinum-Promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane. Angew. Chem. -Int. Ed. 2014, 53, 9251–9256. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Zhang, J.; Wang, X.; Zhang, Q.; Xie, H.; Han, Y.; Tan, Y. A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catal. Sci. Technol. 2015, 5, 4081–4090. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.L.; Xu, N.P.; Mou, C.Y. Isomerization of n-butane by gallium-promoted sulfated zirconia supported on MCM-41. Green Chem. 2002, 4, 257–260. [Google Scholar] [CrossRef]
- Liu, S.; He, Y.; Zhang, H.; Chen, Z.; Lv, E.; Ren, J.; Yun, Y.; Wen, X.; Li, Y.-W. Design and synthesis of Ga-doped ZSM-22 zeolites as highly selective and stable catalysts forn-dodecane isomerization. Catal. Sci. Technol. 2019, 9, 2812–2827. [Google Scholar] [CrossRef]
- Han, J.; Jiang, G.; Han, S.; Liu, J.; Zhang, Y.; Liu, Y.; Wang, R.; Zhao, Z.; Xu, C.; Wang, Y.; et al. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics. Catalysts 2016, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Li, Y.; Zhang, Y.; Wang, Y.; Cui, G.; Jiang, G.; Zhao, Z.; Xu, C. Effect of redox atmosphere treatment on bifunctional Ga/ZSM-5 for efficient catalytic cracking of n-butane. Chem. Eng. Sci. 2021, 245, 116856. [Google Scholar] [CrossRef]
- Abdelgaid, M.; Dean, J.; Mpourmpakis, G. Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping. Catal. Sci. Technol. 2020, 10, 7194–7202. [Google Scholar] [CrossRef]
- Pidko, E.A.; Hensen, E.J.M.; van Santen, R.A. Dehydrogenation of Light Alkanes over Isolated Gallyl Ions in Ga/ZSM-5 Zeolites. J. Phys. Chem. C 2007, 111, 13068–13075. [Google Scholar] [CrossRef]
- Schreiber, M.W.; Plaisance, C.P.; Baumgartl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J.A. Lewis-Bronsted Acid Pairs in Ga/H-ZSM-5 To Catalyze Dehydrogenation of Light Alkanes. J. Am. Chem. Soc. 2018, 140, 4849–4859. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.H.; Lu, J.; Fan, K.-N. Periodic Density Functional Theory Study of Propane Dehydrogenation over Perfect Ga2O3(100) Surface. J. Phys. Chem. C 2008, 112, 20382–20392. [Google Scholar] [CrossRef]
- Uslamin, E.A.; Saito, H.; Kosinov, N.; Pidko, E.; Sekine, Y.; Hensen, E.J.M. Aromatization of ethylene over zeolite-based catalysts. Catal. Sci. Technol. 2020, 10, 2774–2785. [Google Scholar] [CrossRef] [Green Version]
- Roshanaei, A.; Alavi, S.M. Using two-zone fluidized bed reactor in propane aromatization over Zn/HZSM-5 catalyst. Fuel Process. Technol. 2018, 176, 197–204. [Google Scholar] [CrossRef]
- Yan, M.; Xu, D.; Wu, B.; Yang, Y.; Li, Y. Insight into the performance of different Pt/KL catalysts for n-alkane (C6–C8) aromatization: Catalytic role of zeolite channels. Catal. Sci. Technol. 2022, 12, 1610–1618. [Google Scholar] [CrossRef]
- Pan, T.; Ge, S.; Yu, M.; Ju, Y.; Zhang, R.; Wu, P.; Zhou, K.; Wu, Z. Synthesis and consequence of Zn modified ZSM-5 zeolite supported Ni catalyst for catalytic aromatization of olefin/paraffin. Fuel 2022, 311, 122629. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Q.; Xu, J.; Qi, G.; Wang, C.; Zhou, X.; Zhao, X.; Feng, N.; Liu, X.; Deng, F. Brønsted/Lewis Acid Synergy in Methanol-to-Aromatics Conversion on Ga-Modified ZSM-5 Zeolites, As Studied by Solid-State NMR Spectroscopy. ACS Catal. 2017, 8, 69–74. [Google Scholar] [CrossRef]
- Raad, M.; Astafan, A.; Hamieh, S.; Toufaily, J.; Hamieh, T.; Comparot, J.D.; Canaff, C.; Daou, T.J.; Patarin, J.; Pinard, L. Catalytic properties of Ga-containing MFI-type zeolite in cyclohexane dehydrogenation and propane aromatization. J. Catal. 2018, 365, 376–390. [Google Scholar] [CrossRef]
- Moreno, J.A.; Poncelet, G. Isomerization of n-butane over sulfated Al- and Ga-promoted zirconium oxide catalysts. Influence of promoter and preparation method. J. Catal. 2001, 203, 453–465. [Google Scholar] [CrossRef]
No. | Support | Ga Precursor | Preparation Method | Application | Active Species | Ref. |
---|---|---|---|---|---|---|
1 | NaZSM-5 | Ga(NO3)3·xH2O | Impregnation | Ethane dehydrogenation | Ga2O3 | [22] |
2 | SiO2 | γ-Ga2O3 | Impregnation | Propane dehydrogenation | Ga3+IV sites | [60] |
3 | ZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane dehydrogenation | Ga2O3 | [24] |
4 | γ-Al2O3 | Ga(NO3)3·xH2O | Impregnation | Propane dehydrogenation | Gaδ+-H | [25] |
5 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Catalytic hydrocracking | [31] | |
6 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane aromatization | Bulky Ga agglomerates, dispersed Ga2O3 and GaO+ ion | [32] |
7 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Methanol to aromatic | Ga2O22+ | [33] |
8 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Ethylene aromatization | [34] | |
9 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane aromatization | [37] | |
10 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Ethane aromatization | Ga+ | [40] |
11 | ZrO2 | Ga(NO3)3·xH2O | Impregnation | Butane isomerization | [55] | |
12 | ZrO2 | Ga(NO3)3·xH2O | Impregnation | Hexane isomerization | Ga3+ | [57] |
13 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Light alkanes aromatization | [64] | |
14 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Ethane aromatization | GaO+ | [70] |
15 | ZSM-5/SBA-15 | Ga(NO3)3·xH2O | Impregnation | Catalytic pyrolysis | [75] | |
16 | SiO2 | Ga(NO3)3·xH2O | Impregnation | CO2 to methanol | NiGa alloy | [76] |
17 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane dehydroaromatization | [77] | |
18 | ZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane dehydroaromatization | Gaδ+ cations, δ < 2 | [78] |
19 | SiO2 | Ga(NO3)3·xH2O | Impregnation | Propane dehydroaromatization | Four-coordinate Ga3+-O centers | [79] |
20 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane aromatization | Ga+/GaH2+ pair | [80] |
21 | HZSM-5 | Ga(NO3)3·xH2O | Impregnation | Propane aromatization | GaO+ | [81] |
22 | HZSM-5 | trimethylgallium | Chemical vapor deposition | Propane dehydrogenation | [GaH2]+, GaO+, Ga+ | [71] |
23 | HZSM-5 | trimethylgallium | Chemical vapor deposition | Propane dehydrogenation | Dimeric oxygen-bridged Ga species | [72] |
24 | HZSM-5 | GaCl3·6H2O | Chemical vapor deposition | Propane dehydrogenation | [GaH2]+ | [82] |
25 | HZSM-5 | GaCl3·6H2O | In situ synthesize | Methanol to aromatic | [35] | |
26 | HZSM-5 | Ga(NO3)3·xH2O | In situ synthesize | Propane dehydrogenation | Framework GaFW | [82] |
27 | HZSM-5 | Ga(NO3)3·xH2O | Ion-exchange | Pentane aromatization | [GaH2]2+ | [30] |
28 | HZSM-5 | Ga(NO3)3·xH2O | Ion-exchange | Benzene alkylation | Non-framework Si-O(Gax+)-Al | [43] |
29 | HZSM-5 | Ga(NO3)3·xH2O | Ion-exchange | Pentane aromatization | [GaH2]+ | [67] |
30 | HZSM-5 | Ga(NO3)3·xH2O | Ion-exchange | Propane dehydrogenation | [GaH2]+ | [82] |
31 | SiO2 | Ga(OSi(OtBu)3)3(THF) | Surface organometallic chemistry | Propane dehydrogenation | Ga(III) isolated sites | [66] |
32 | H-MFI | GaCl3·6H2O | Vapor phase exchange | Propane dehydrogenation and Cracking | [GaH2]+ | [68] |
33 | H-MFI | GaCl3·6H2O | Vapor phase exchange | [GaH2]+, [Ga(OH)]2+, [Ga(OH)2]+-H+ cation pairs, [Ga(OH)H]+-H+ cation pairs, etc. | [83] |
Catalyst | Preparation Method | Application | Alkane Concentration | Temp. (°C) | Conv. (%) | Product Select. (%) | Reactant | Products | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ga/ZSM-5-N | Impregnation | Dehydrogenation | C2H6/CO2/N2 = 3/15/82 | 650 | 3.3 | 90.9 | C2H6 | C2H4 | [22] |
Ga/ZSM-5-S | Impregnation | 25.3 | 91.7 | ||||||
Ga/ZSM-5-L | Impregnation | 2.2 | 97.5 | ||||||
Ga/ZSM-5-S | Impregnation | C2H6/N2 = 3/97 | 24.9 | 84.2 | |||||
0.03Pt-3Ga2O3 | Impregnation | Dehydrogenation | C3H8/H2/N2 = 14/14/72 | 600 | 12 | 95 | C3H8 | C3H6 | [25] |
TMG/ZSM-5 | Chemical vapor deposition | Dehydrogenation | C3H8/He = 1/19 | 550 | 24 | 63 | C3H8 | C3H6 | [71] |
Ga/ZSM-5 | Chemical vapor deposition | Dehydrogenation | C3H8/He = 1/19 | 550 | 7 | 80 | C3H8 | C3H6 | [72] |
Ga2O3/MCM-22 | Impregnation | Dehydrogenation | C3H8/Ar = 1/19 | 600 | 57.8 | 37.5 | C3H8 | C3H6 | [78] |
Ga2O3/ITQ-2 | Impregnation | 30 | 72 | ||||||
Ga2O3/HZSM-48 | Impregnation | 40 | 53.8 | ||||||
Ga2O3/TiO2 | Impregnation | 23 | 85 | ||||||
Ga2O3/Al2O3 | Impregnation | 33 | 92 | ||||||
Ga2O3/ZrO2 | Impregnation | 39 | 74 | ||||||
Ga2O3/SiO2 | Impregnation | 7.2 | 92 | ||||||
Ga2O3/MgO | Impregnation | 5.3 | 34 | ||||||
Ga2O3/Al2O3 | Impregnation | 620 | 46 | 95.2 | |||||
Ga2O3/ZSM-5 | Impregnation | 78.1 | 60.2 | ||||||
Ga2O3/SiO2 | Impregnation | 6.7 | 90.1 | ||||||
Ga2O3/SBA-15 | Impregnation | 28.5 | 92.5 | ||||||
γ-Ga2O3 | Alcoholic coprecipitation | Dehydrogenation | C3H8/N2 = 1/39 | 500 | 41.3 | 93.3 | C3H8 | C3H6 | [85] |
Ga8Al2O15 | Alcoholic coprecipitation | 51.7 | 91.6 | ||||||
Ga5Al5O15 | Alcoholic coprecipitation | 38.4 | 92.3 | ||||||
Ga2Al8O15 | Alcoholic coprecipitation | 22.8 | 94.9 | ||||||
1000 ppm Pt, 1.5 wt% Ga, 0.25 wt% K | Impregnation | Dehydrogenation | Pure C3H8 | 620 | 42 | 96.7 | C3H8 | C3H6 | [86] |
1000 ppm Pt, 3 wt% Ga, 0.25 wt% K | Impregnation | 41.9 | 96.9 | ||||||
1000 ppm Pt, 1.5 wt% Ga | Impregnation | 42 | 96.7 | ||||||
1000 ppm Pt, 3 wt% Ga | Impregnation | 40.3 | 95.4 | ||||||
1.5 wt% Ga, 0.25 wt% K | Impregnation | 14.7 | 88.9 | ||||||
3 wt% Ga, 0.25 wt% K | Impregnation | 21.8 | 89 | ||||||
1.5 wt% Ga | Impregnation | 15.8 | 81.3 | ||||||
3 wt% Ga | Impregnation | 20.7 | 88 | ||||||
Ga/Z-0.2HA | Impregnation | Aromatization | C3H8/N2 = 1/2 | 550 | 82.5 | 53.3 | C3H8 | BTX | [32] |
2Ga/Z | Impregnation | 82 | 48.8 | ||||||
2% Ga/ZSM-5 | Impregnation | Aromatization | C2H4/H2/N2 = 1/1/1 | 450 | 99.7 | 53.4 | C2H4 | BTX | [34] |
2% Ga/ZSM-5 | Impregnation | 550 | 99.2 | 63.6 | |||||
2% Ga/ZSM-5 | Impregnation | 630 | 98.7 | 54.2 | |||||
2% Ga/ZSM-5 ST-1 | Impregnation | 450 | 99.2 | 46.6 | |||||
2% Ga/ZSM-5 ST-1 | Impregnation | 550 | 98 | 67.9 | |||||
2% Ga/ZSM-5 ST-1 | Impregnation | 630 | 97.5 | 65.9 | |||||
2Cr-Ga/Z5 | Impregnation | Aromatization | C3H8/N2 = 1/2 | 540 | 51 | 55 | C3H8 | BTX | [37] |
Ga/ZSM-5 | Impregnation | Aromatization | Pure C2H6 | 650 | 17.5 | 67 | C2H6 | C2H4 | [40] |
Ga/ZSM-5 | Impregnation | Pure C2H6 | 650 | 17.5 | 21 | C2H6 | BTX | ||
GaExcZS-5-NS-38 | Ion-exchange | Aromatization | C5H12/N2 = 1/9 | 500 | 86 | 43.25 | C5H12 | BTX | [67] |
5% Zn-Ga/ZSM-5 | Impregnation | Aromatization | Heptane with methane | 400 | 98.16 | 58.56 | Heptane | BTX | [64] |
1% Ga/ZSM-5 | Impregnation | Heptane with methane | 97.71 | 37.45 | Heptane | BTX | |||
H-Ga-ZSM-5 | Chemical vapor deposition | Aromatization | C2H4/Ar = 1/7 | 400 | 94 | 52 | C2H6 | BTX | [82] |
Ga/Z5-4Si | Impregnation | Aromatization | C3H8/N2 = 1/2 | 540 | 40.29 | 53.47 | C3H8 | BTX | [77] |
Ga/IMRO3C | Impregnation | Aromatization | C3H8/N2 = 1/2 | 540 | 61 | 60 | C3H8 | BTX | [81] |
H-Ga/SNSA | Formic acid impregnation and in situ treatment | Aromatization | C3H8/N2 = 1/2 | 540 | 53.6 | 58 | C3H8 | BTX | [87] |
Pt/1.0GWZ850 | Impregnation | Isomerization | C4H10/H2/Ar = 3/12/120 | 300 | 44 | 91 | n-C4H10 | i-C4H10 | [55] |
1.0% Re/1.0% Ga2O3/WO3/ZrO2 | Impregnation | Isomerization | C6H14/N2 = 1/2 | 195 | 84.8 | 97.7 | n-C6H14 | i-C6H14 | [57] |
SZG/MCM-41 | Impregnation | Isomerization | n-C4H10/H2 = 1/10 | 250 | 43.85 | 87.5 | n-C4H10 | i-C4H10 | [88] |
Pt/H-ZG-1 | Impregnation | Isomerization | n-dodecane/H2 = 1/100 | 320 | 90 | 78.2 | n-C12H26 | i-C12H26 | [89] |
0.1% Ga2O3/ZSM-5 | Impregnation | Catalytic cracking | n-C4H10/N2 = 1/19 | 600 | 47.3 | 84.5 | n-C4H10 | Alkene + BTX | [90] |
0.2% Ga2O3/ZSM-5 | Impregnation | 82.3 | 84.7 | ||||||
0.3% Ga2O3/ZSM-5 | Impregnation | 93.8 | 79.2 | ||||||
0.4% Ga2O3/ZSM-5 | Impregnation | 96.5 | 82.1 | ||||||
0.3% Ga2O3/ZSM-5 Fibers | Impregnation | 99.9 | 87.7 | ||||||
Redox-Ga/ZSM-5-0.7 | Impregnation | Catalytic cracking | n-C4H10/N2 = 1/19 | 600 | 99 | 80 | n-C4H10 | Alkene + BTX | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Fu, S.; Zhang, Q.; Liu, H.; Wang, Y. Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes. Catalysts 2022, 12, 1371. https://doi.org/10.3390/catal12111371
Li Y, Fu S, Zhang Q, Liu H, Wang Y. Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes. Catalysts. 2022; 12(11):1371. https://doi.org/10.3390/catal12111371
Chicago/Turabian StyleLi, Yuming, Shuting Fu, Qiyang Zhang, Hongyu Liu, and Yajun Wang. 2022. "Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes" Catalysts 12, no. 11: 1371. https://doi.org/10.3390/catal12111371
APA StyleLi, Y., Fu, S., Zhang, Q., Liu, H., & Wang, Y. (2022). Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes. Catalysts, 12(11), 1371. https://doi.org/10.3390/catal12111371