Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions
Abstract
:1. Introduction
2. Cu-Based Catalysts
2.1. Supported Catalysts
Type | Sample | Tmax a (°C) | ηNOb (%) | SN2c (%) | ψ(NO) d (%) | ψ(CO) (%) | ψ(O2) (%) | F (mL min−1) e | GHSV (mL gAg−1 h−1) f | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Mono- metallic catalysts | 0.5%Cu/Al2O3 | 500 | --- | --- | 1 | 1 | 0.5 | 100 | 30,000 | [30] |
CuO/TiO2 | 500 | 54 | --- | 5 | 5 | 0.12 | 50 | 75,000 h−1 | [26] | |
5Cu/AlPO4 | 400 | 78 | 48 | 0.2 | 1.5 | 0.65 | 60 | 36,000 | [31] | |
Cu/SmCeO2/TiO2 | 300 | 50 | --- | 0.05 | 1 | 10 | 50 | 10,000 h−1 | [32] | |
Cu/Ce0.1Al | 400 | 100 | --- | 0.06 | 0.12 | 0.1 | 30 | 18,000 | [33] | |
CuO/Al2O3 | 500 | 30 | 1 | 1 | 0.5 | 100 | 30,000 h−1 | [34] | ||
Cu/Al2O3 | 500 | --- | --- | 1 | 1 | 0.5 | 100 | 30,000 | [35] | |
Bimetallic catalysts | Pt-Cu@M-Y | 350 | 43 | 53 | 0.05 | 0.1 | 1 | 667 | 10,000 h−1 | [36] |
Ce-Cu-BTC | 250 | 90 | --- | 0.1 | 0.1 | 5 | --- | --- | [37] | |
Fe2Cu1/RHA | 100 | 100 | 100 | 0.056 | 0.056 | 8.9 | 2400 | 11,220 h−1 | [38] | |
Cu1:Ce3/Al2O3 | 420 | 71.8 | --- | 0.025 | 0.5 | 5 | 300 | 360,000 | [39] | |
Cu1:Ce3/CNT | 220 | 96 | --- | 0.025 | 0.5 | 0.3 | 300 | 12,600 h−1 | [40] | |
K/Cu/SmCe@TiO2 | 330 | 97 | --- | 0.05 | 1 | 10 | 50 | 10,000 h−1 | [41] | |
Cu-Mn/Al2O3 | 180 | 78 | 85 | 0.055 | 0.9 | 16 | --- | 10,000 h−1 | [42] | |
Multi- metallic catalysts | CuCoOx/TiO2 | 200 | 60 | --- | 0.1 | 1 | 2 | 1200 | 20,000 h−1 | [43] |
CuCoCe/2D-VMT | 200 | 70 | 97 | 0.05 | 0.1 | 1 | --- | 102,000 h−1 | [44] | |
Cu-Ni-Ce/AC | 150 | 99.8 | --- | 0.4 | 4 | 5 | 1000 | 30,000 h−1 | [45] | |
Cu-Ce-Fe-Co/TiO2 | 200 | 93 | --- | 0.02 | 1 | 6 | --- | 10,000 h−1 | [46] | |
Cu-Ce-Fe-Mn/TiO2 | 200 | 82 | --- | 0.02 | 0.02 | 1 | --- | 10,000 h−1 | [46] |
2.1.1. Mono-Metallic Catalysts
2.1.2. Bimetallic Catalysts
2.1.3. Multi-Metallic Catalysts
2.2. Non-Supported Catalysts
3. Influencing Factors on Catalytic Activity
3.1. Effect of O2
3.2. Effect of Reaction Temperature
3.3. SO2 and H2O Poisoning
4. Reaction Mechanism
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, K.; Guo, S.; Tan, Z.; Wang, H.; Shang, D.; Liu, Y.; Li, X.; Wu, Z.; Hu, M.; Zhang, Y. Exploring Atmospheric Free-Radical Chemistry in China: The Self-Cleansing Capacity and the Formation of Secondary Air Pollution. Natl. Sci. Rev. 2019, 6, 579–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, W.; Sardans, J.; An, W.; Zeng, C.; Abid, A.A.; Peñuelas, J. Effect of Simulated Acid Rain on CO2, CH4 and N2O Fluxes and Rice Productivity in a Subtropical Chinese Paddy Field. Environ. Pollut. 2018, 243, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Granger, P.; Parvulescu, V.I. Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chem. Rev. 2011, 111, 3155–3207. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Hosokawa, S.; Ina, T.; Kato, K.; Nitta, K.; Uera, K.; Uruga, T.; Miura, H.; Shishido, T.; Ohyama, J.; et al. Dynamic Behavior of Rh Species in Rh/Al2O3 Model Catalyst During Three-Way Catalytic Reaction: An Operando X-Ray Absorption Spectroscopy Study. J. Am. Chem. Soc. 2018, 140, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Jaegers, N.R.; Lai, J.-K.; He, Y.; Walter, E.; Dixon, D.A.; Vasiliu, M.; Chen, Y.; Wang, C.; Hu, M.Y.; Mueller, K.T.; et al. Mechanism by Which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOx Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy. Angew. Chem. Int. Edit. 2019, 58, 12609–12616. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Investigation on Fe-Co Binary Metal Oxides Supported on Activated Semi-Coke for NO Reduction by CO. Appl. Catal. B Environ. 2017, 201, 636–651. [Google Scholar] [CrossRef]
- Cheng, X.; Bi, X.T. Reaction Kinetics of Selective Catalytic Reduction of NOx by Propylene over Fe/ZSM-5. Chem. Eng. J. 2012, 211–212, 453–462. [Google Scholar] [CrossRef]
- Yang, T.T.; Bi, H.T.; Cheng, X. Effects of O2, CO2 and H2O on NOx Adsorption and Selective Catalytic Reduction over Fe/ZSM-5. Appl. Catal. B Environ. 2011, 102, 163–171. [Google Scholar] [CrossRef]
- Souza, M.S.; Araújo, R.S.; Oliveira, A.C. Optimizing Reaction Conditions and Experimental Studies of Selective Catalytic Reduction of NO by CO over Supported SBA-15 Catalyst. Environ. Sci. Pollut. Res. 2020, 27, 30649–30660. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Lin, Y.; Zhu, T. A Review of the Catalysts Used in the Reduction of NO by CO for Gas Purification. Environ. Sci. Pollut. Res. 2020, 27, 6723–6748. [Google Scholar] [CrossRef]
- Fernández, E.; Liu, L.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters. ACS Catal. 2019, 9, 11530–11541. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Jeon, J.; Toyao, T.; Shimizu, K.-i.; Furukawa, S. A Cu–Pd Single-Atom Alloy Catalyst for Highly Efficient NO Reduction. Chem. Sci. 2019, 10, 8292–8298. [Google Scholar] [CrossRef] [Green Version]
- Yoshinari, T.; Sato, K.; Haneda, M.; Kintaichi, Y.; Hamada, H. Positive Effect of Coexisting SO2 on the Activity of Supported Iridium Catalysts for NO Reduction in the Presence of Oxygen. Appl. Catal. B Environ. 2003, 41, 157–169. [Google Scholar] [CrossRef]
- Jiang, R.; Liu, S.; Li, L.; Ji, Y.; Li, H.; Guo, X.; Jia, L.; Zhong, Z.; Su, F. Single Ir Atoms Anchored on Ordered Mesoporous WO3 are Highly Efficient for the Selective Catalytic Reduction of NO with CO under Oxygen-Rich Conditions. ChemCatChem 2021, 13, 1834–1846. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Mu, J.; Fan, S.; Chen, X.; Wang, L.; Yin, Z.; Tadé, M.; Liu, S. Oxygen Vacancy-Rich Porous Co3O4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure-Activity Relationship and Performance Enhancement Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 41988–41999. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, L.; Zhang, H.; Yao, X.; Gao, F.; Yao, K.; Dong, L.; Chen, Y. Investigation of Surface Synergetic Oxygen Vacancy in CuO-CoO Binary Metal Oxides Supported on γ-Al2O3 for NO Removal by CO. J. Colloid Interface Sci. 2013, 390, 158–169. [Google Scholar] [CrossRef]
- Takagi, N.; Ishimura, K.; Miura, H.; Shishido, T.; Fukuda, R.; Ehara, M.; Sakaki, S. Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism. ACS Omega 2019, 4, 2596–2609. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cheng, X.; Wang, Z.; Sun, R.; Zhao, G.; Feng, T.; Ma, C. Reaction of NO + CO over Ce-Modified Cu-FeOx Catalysts at Low Temperature. Energy Fuels 2019, 33, 11688–11704. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhou, L.; Luo, G.; Wei, F. NO Reduction by CO over a Fe-Based Catalyst in FCC Regenerator Conditions. Chem. Eng. J. 2014, 255, 126–133. [Google Scholar] [CrossRef]
- Simonot, L.; Garin, F.o.; Maire, G. A Comparative Study of LaCoO3, Co3O4 and a Mix of LaCoO3-Co3O4: II. Catalytic Properties for the CO + NO Reaction. Appl. Catal. B Environ. 1997, 11, 181–191. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO Reduction by CO over Copper Catalyst Supported on Mixed CeO2 and Fe2O3: Catalyst Design and Activity Test. Appl. Catal. B Environ. 2018, 239, 485–501. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Ma, C.; Wang, Z. Effects of the Fe/Ce Ratio on the Activity of CuO/CeO2-Fe2O3 Catalysts for NO Reduction by CO. Catal. Sci. Technol. 2018, 8, 3336–3345. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Ma, C.; Wang, X.; Wang, Z. Effect of a ZrO2 Support on Cu/Fe2O3-CeO2/ZrO2 Catalysts for NO Removal by CO Using a Rotary Reactor. Catal. Sci. Technol. 2018, 8, 5623–5631. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, Y.; Guo, S.; Han, Z.-K.; Ta, N.; Li, G.; Baiker, A. NO Reduction with CO over CuOx/CeO2 Nanocomposites: Influence of Oxygen Vacancies and Lattice Strain. Catal. Sci. Technol. 2021, 11, 6543–6552. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Q.; Xu, L.; Han, Z.-K.; Guo, S.; Li, G.; Baiker, A. Effect of the Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper-Ceria Solid Solution. ACS Appl. Mater. Interfaces 2021, 13, 61078–61087. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Pereira, C.A.; Urquieta-González, E.A. Reduction of NO with CO on CuO or Fe2O3 Catalysts Supported on TiO2 in the Presence of O2, SO2 and Water Steam. Fuel 2014, 118, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Gao, F.; Zhou, Y.; Yi, H.; Tang, X.; Qi, Z. Recent Advance of CuO-CeO2 Catalysts for Catalytic Elimination of CO and NO. J. Environ. Chem. Eng. 2021, 9, 106372. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dang, P.; Tang, X.; Lu, M.; Du, Y.; Zhou, Y.; Yi, H.; Duan, E. Recent Advances in NO Reduction with CO over Copper-Based Catalysts: Reaction Mechanisms, Optimization Strategies, and Anti-Inactivation Measures. Chem. Eng. J. 2022, 450, 137374. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F.; Yang, F. Recent Advances in Selective Catalytic Reduction of NOx by Carbon Monoxide for Flue Gas Cleaning Process: A Review. Catal. Rev. 2021, 63, 68–119. [Google Scholar] [CrossRef]
- Yamamoto, T.; Tanaka, T.; Kuma, R.; Suzuki, S.; Amano, F.; Shimooka, Y.; Kohno, Y.; Funabiki, T.; Yoshida, S. NO Reduction with CO in the Presence of O2 over Al2O3-Supported and Cu-Based Catalysts. Phys. Chem. Chem. Phys. 2002, 4, 2449–2458. [Google Scholar] [CrossRef]
- Kacimi, M.; Ziyad, M.; Liotta, L.F. Cu on Amorphous AlPO4: Preparation, Characterization and Catalytic Activity in NO Reduction by CO in Presence of Oxygen. Catal. Today 2015, 241, 151–158. [Google Scholar] [CrossRef]
- Venegas, F.; López, N.; Sánchez-Calderón, L.; Aguila, G.; Araya, P.; Guo, X.; Zhu, Y.; Guerrero, S. The Transient Reduction of NO with CO and Naphthalene in the Presence of Oxygen Using a Core-Shell SmCeO2@TiO2-Supported Copper Catalyst. Catal. Sci. Technol. 2019, 9, 3408–3415. [Google Scholar] [CrossRef]
- Bai, Y.; Bian, X.; Wu, W. Catalytic Properties of CuO/CeO2-Al2O3 Catalysts for Low Concentration NO Reduction with CO. Appl. Surf. Sci. 2019, 463, 435–444. [Google Scholar] [CrossRef]
- Amano, F.; Suzuki, S.; Yamamoto, T.; Tanaka, T. One-Electron Reducibility of Isolated Copper Oxide on Alumina for Selective NO-CO Reaction. Appl. Catal. B Environ. 2006, 64, 282–289. [Google Scholar] [CrossRef]
- Wen, B.; He, M.; Schrum, E.; Li, C. NO Reduction and CO Oxidation over Cu/Ce/Mg/Al Mixed Oxide Catalyst in FCC Operation. J. Mol. Catal. A Chem. 2002, 180, 187–192. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Jiang, R.; Ji, Y.; Li, H.; Guo, X.; Jia, L.; Zhong, Z.; Su, F. Subnanometric Pt on Cu Nanoparticles Confined in Y-Zeolite: Highly-Efficient Catalysts for Selective Catalytic Reduction of NOx by CO. ChemCatChem 2021, 13, 1568–1577. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Duan, J.; Bi, S. Insights into DeNOx Processing over Ce-Modified Cu-BTC Catalysts for the CO-SCR Reaction at Low Temperature by in Situ DRIFTS. Sep. Purif. Technol. 2020, 234, 116081. [Google Scholar] [CrossRef]
- Teng, Z.; Huang, S.; Fu, L.; Xu, H.; Li, N.; Zhou, Q. Study of a Catalyst Supported on Rice Husk Ash for NO Reduction with Carbon Monoxide. Catal. Sci. Technol. 2020, 10, 1431–1443. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F. The Influence of Support Composition on the Activity of Cu:Ce Catalysts for Selective Catalytic Reduction of NO by CO in the Presence of Excess Oxygen. New J. Chem. 2020, 44, 709–718. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- López, N.; Aguila, G.; Araya, P.; Guerrero, S. Highly Active Copper-Based Ce@TiO2 Core-Shell Catalysts for the Selective Reduction of Nitric Oxide with Carbon Monoxide in the Presence of Oxygen. Catal. Commun. 2018, 104, 17–21. [Google Scholar] [CrossRef]
- Liu, K.; Yu, Q.; Qin, Q.; Wang, C. Selective Catalytic Reduction of Nitric Oxide with Carbon Monoxide over Alumina-Pellet-Supported Catalysts in the Presence of Excess Oxygen. Environ. Technol. 2018, 39, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Huang, Y.; Tong, Z.; Huang, M. Catalytic Reduction of Nitric Oxide with Carbon Monoxide on Copper-Cobalt Oxides Supported on Nano-Titanium Dioxide. J. Environ. Sci. 2009, 21, 1296–1301. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, F.; Pan, K.; Zhou, X.; Sun, R.; Tian, J.; Wan, Y.; Dan, J.; Dai, B. Two-Dimensional Vermiculite Carried CuCoCe Catalysts for CO-SCR in the Presence of O2 and H2O: Experimental and DFT Calculation. Chem. Eng. J. 2021, 422, 130099. [Google Scholar] [CrossRef]
- Wang, D.; Huang, B.; Shi, Z.; Long, H.; Li, L.; Yang, Z.; Dai, M. Influence of Cerium Doping on Cu-Ni/Activated Carbon Low-Temperature CO-SCR Denitration Catalysts. RSC Adv. 2021, 11, 18458–18467. [Google Scholar] [CrossRef]
- Pan, K.L.; Young, C.W.; Pan, G.T.; Chang, M.B. Catalytic Reduction of NO by CO with Cu-Based and Mn-Based Catalysts. Catal. Today 2020, 348, 15–25. [Google Scholar] [CrossRef]
- Rebenstorf, B.; Lindblad, T.; Andersson, S.L.T. Amorphous AlPO4 as Catalyst Support 2. Characterization of Amorphous Aluminum Phosphates. J. Catal. 1991, 128, 293–302. [Google Scholar] [CrossRef]
- Li, G.; Tang, Z. Noble Metal Nanoparticle@Metal Oxide Core/Yolk-Shell Nanostructures as Catalysts: Recent Progress and Perspective. Nanoscale 2014, 6, 3995–4011. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K. Metal Organic Framework (MOF) Porous Octahedral Nanocrystals of Cu-BTC: Synthesis, Properties and Enhanced Adsorption Properties. Mater. Res. Bull. 2019, 109, 124–133. [Google Scholar] [CrossRef]
- Wang, B.; Xie, L.-H.; Wang, X.; Liu, X.-M.; Li, J.; Li, J.-R. Applications of Metal-Organic Frameworks for Green Energy and Environment: New Advances in Adsorptive Gas Separation, Storage and Removal. Green Energy Environ. 2018, 3, 191–228. [Google Scholar] [CrossRef]
- Mehandjiev, D.; Panayotov, D.; Khristova, M. Catalytic Reduction of NO with CO over CuxCo3−xO4 Spinels. React. Kinet. Catal. Lett. 1987, 33, 273–277. [Google Scholar] [CrossRef]
- Panayotov, D.; Khristova, M.; Mehandjiev, D. Application of the Transient Response Technique to the Study of CO + NO + O2 Interaction on CuxCo3-xO4 Catalysts. J. Catal. 1995, 156, 219–228. [Google Scholar] [CrossRef]
- Spassova, I.; Khristova, M.; Panayotov, D.; Mehandjiev, D. Coprecipitated CuO-MnOx Catalysts for Low-Temperature CO-NO and CO-NO-O2 Reactions. J. Catal. 1999, 185, 43–57. [Google Scholar] [CrossRef]
- Sun, R.; Yu, F.; Wan, Y.; Pan, K.; Li, W.; Zhao, H.; Dan, J.; Dai, B. Reducing N2O Formation over CO-SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021, 13, 2709–2718. [Google Scholar] [CrossRef]
- Wen, B.; He, M. Study of the Cu-Ce Synergism for NO Reduction with CO in the Presence of O2, H2O and SO2 in FCC Operation. Appl. Catal. B Environ. 2002, 37, 75–82. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Goodman, D.W. CO/NO and CO/NO/O2 Reactions over a Au-Pd Single Crystal Catalyst. J. Catal. 2009, 268, 115–121. [Google Scholar] [CrossRef]
- Hu, Q.; Cao, K.; Lang, Y.; Chen, R.; Chu, S.; Jia, L.; Yue, J.; Shan, B. Improved NO-CO Reactivity of Highly Dispersed Pt Particles on CeO2 Nanorod Catalysts Prepared by Atomic Layer Deposition. Catal. Sci. Technol. 2019, 9, 2664–2672. [Google Scholar] [CrossRef]
- Song, Y.-J.; Jesús, Y.M.L.-D.; Fanson, P.T.; Williams, C.T. Kinetic Evaluation of Direct NO Decomposition and NO-CO Reaction over Dendrimer-Derived Bimetallic Ir-Au/Al2O3 Catalysts. Appl. Catal. B Environ. 2014, 154–155, 62–72. [Google Scholar] [CrossRef]
- Liu, N.; Chen, X.; Zhang, J.; Schwank, J.W. Drifts Study of Photo-Assisted Catalytic CO + NO Redox Reaction over CuO/CeO2-TiO2. Catal. Today 2015, 258, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Xiong, Y.; Sun, J.; Gao, F.; Deng, Y.; Tang, C.; Dong, L. Influence of MnO2 Modification Methods on the Catalytic Performance of CuO/CeO2 for NO Reduction by CO. J. Rare Earths 2014, 32, 131–138. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Cheng, X.; Zhang, M.; Qin, Y.; Ma, C. In Situ DRIFTS Study of the NO + CO Reaction on Fe-Co Binary Metal Oxides over Activated Semi-Coke Supports. RSC Adv. 2017, 7, 7695–7710. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Guo, K.; Li, L.; Zou, W.; Tang, C.; Dong, L. Cavity Size Dependent SO2 Resistance for NH3-SCR of Hollow Structured CeO2-TiO2 Catalysts. Catal. Commun. 2019, 128, 105719. [Google Scholar] [CrossRef]
- Liu, K.; Yu, Q.; Liu, J.; Wang, K.; Han, Z.; Xuan, Y.; Qin, Q. Selection of Catalytically Active Elements for Removing NO and CO from Flue Gas at Low Temperatures. New J. Chem. 2017, 41, 13993–13999. [Google Scholar] [CrossRef]
- Harris, J.; Kasemo, B. On Precursor Mechanisms for Surface Reactions. Surf. Sci. 1981, 105, L281–L287. [Google Scholar] [CrossRef]
- Baxter, R.J.; Hu, P. Insight into Why the Langmuir-Hinshelwood Mechanism Is Generally Preferred. J. Chem. Phys. 2002, 116, 4379–4381. [Google Scholar] [CrossRef]
- Wang, A.; Ma, L.; Cong, Y.; Zhang, T.; Liang, D. Unique Properties of Ir/ZSM-5 Catalyst for NO Reduction with CO in the Presence of Excess Oxygen. Appl. Catal. B Environ. 2003, 40, 319–329. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, M.; He, J. NO Reactions over Ir-Based Catalysts under Oxygen-Rich Conditions. Fuel Process. Technol. 2013, 108, 63–68. [Google Scholar] [CrossRef]
- Fukuda, R.; Sakai, S.; Takagi, N.; Matsui, M.; Ehara, M.; Hosokawa, S.; Tanaka, T.; Sakaki, S. Mechanism of NO-CO Reaction over Highly Dispersed Cuprous Oxide on γ-Alumina Catalyst Using a Metal-Support Interfacial Site in the Presence of Oxygen: Similarities to and Differences from Biological Systems. Catal. Sci. Technol. 2018, 8, 3833–3845. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liu, Y.; Liu, Y.; Lian, D.; Chen, M.; Ji, Y.; Xing, L.; Wu, K.; Liu, S. Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions. Catalysts 2022, 12, 1402. https://doi.org/10.3390/catal12111402
Chen X, Liu Y, Liu Y, Lian D, Chen M, Ji Y, Xing L, Wu K, Liu S. Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions. Catalysts. 2022; 12(11):1402. https://doi.org/10.3390/catal12111402
Chicago/Turabian StyleChen, Xiaoli, Yaqi Liu, Yan Liu, Dianxing Lian, Mohaoyang Chen, Yongjun Ji, Liwen Xing, Ke Wu, and Shaomian Liu. 2022. "Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions" Catalysts 12, no. 11: 1402. https://doi.org/10.3390/catal12111402
APA StyleChen, X., Liu, Y., Liu, Y., Lian, D., Chen, M., Ji, Y., Xing, L., Wu, K., & Liu, S. (2022). Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions. Catalysts, 12(11), 1402. https://doi.org/10.3390/catal12111402