Review on the Energy Transformation Application of Black Phosphorus and Its Composites
Abstract
:1. Introduction
2. Application of Black Phosphorus and Its Composites in Energy Storage
3. Application of Black Phosphorus and Its Composites in Photocatalysts
4. Application of Black Phosphorus and Its Composites in Electrocatalysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Xiao, L.; Wu, Z.; Jia, Y.; Ye, X.; Wang, F.; Yuan, B.; Yu, Y.; Huang, H.; Zou, G. Harvesting Vibration Energy to Piezo-Catalytically Generate Hydrogen Through Bi2WO6 Layered-perovskite. Nano Energy 2020, 78, 105351. [Google Scholar] [CrossRef]
- Bhatia, L.; Bachheti, R.K.; Garlapati, V.K.; Chandel, A.K. Third Generation Biorefineries: A Sustainable Platform for Food, Clean Energy and Nutraceuticals Production. Biomass Convers. Biorefinery 2020, 12, 4215–4230. [Google Scholar] [CrossRef]
- Liang, G.; Niu, D.; Liang, Y. Core Competitiveness Evaluation of Clean Energy Incubators Based on Matter-Element Extension Combined with TOPSIS and KPCA-NSGA-II-LSSVM. Sustainability 2020, 12, 9570. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, Q.; Alharthi, M.; Mohsin, M.; Rasul, F.; Iqbal, N. Managerial Policy and Economic Analysis of Wind-Generated Renewable Hydrogen for Light-Duty Vehicles: Green Solution of Energy Crises. Environ. Sci. Pollut. Res. 2021, 28, 10642–10653. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, T.; Teng, Y. Capacity Optimal Configuration of Wind-Hydrogen Low Carbon Energy System. IOP Conf. Ser. Earth Environ. Sci. 2021, 784, 012034–012041. [Google Scholar] [CrossRef]
- Sahin, H.H.; Yelmen, B.; Kurt, C. Management of Renewable Energy Sources and Technologies for Turkey. Asian J. Adv. Res. Rep. 2020, 11, 26–36. [Google Scholar] [CrossRef]
- Siddiquio, O.; Dincer, I. Design and Transient Analyses of a New Renewable Energy System for Multigeneration of Power, Heat, Hydrogen and Ammonia. J. Clean. Prod. 2020, 270, 122502. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Liu, Y.; Peng, S. Development Trends and Strategic Countermeasures of China’s Emerging Energy Technology Industry Toward 2035. Chin. J. Eng. Sci. 2020, 22, 38–46. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Zhang, G.; Zhang, Y.W. Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery. Nano Lett. 2015, 15, 1691–1697. [Google Scholar] [CrossRef]
- Ishaq, H.; Siddiqui, O.; Chehade, G.; Dincer, I. A Solar and Wind Driven Energy System for Hydrogen and Urea Production with CO2 Capturing. Int. J. Hydrog. Energy 2021, 46, 4749–4760. [Google Scholar] [CrossRef]
- Acakpovi, A.; Adjei, P.; Nwulu, N.; Asabere, N.Y. Optimal Hybrid Renewable Energy System: A Comparative Study of Wind/Hydrogen/Fuel-Cell and Wind/Battery Storage. J. Electr. Comput. Eng. 2020, 2020, 1756503. [Google Scholar] [CrossRef]
- Finnah, B.; Gnsch, J. Optimizing Trading Decisions of Wind Power Plants with Hybrid Energy Storage Systems Using Backwards Approximate Dynamic Programming. Int. J. Prod. Econ. 2021, 238, 108155. [Google Scholar] [CrossRef]
- Adhikari, U.; Bhattarai, B.R.; Karki, M.; Khan, S. Battery Energy Storage System Optimization for Grid-Connected Wind-PV Hybrid System. In Proceedings of the IOE Graduate Conference 2019-Winter, Kirtipur, Pokhara, 13–14 December 2019. [Google Scholar]
- Liu, S.; Wang, K.; Wang, B.; Li, J.; Zhang, C. Sunlight Irradiation and Wind Effect on the Interlaminar Stresses of the Organic Solar Cell. Arch. Appl. Mech. 2021, 91, 3203–3221. [Google Scholar] [CrossRef]
- Haddad, A.; Ramadan, M.; Khaled, M.; Ramadan, H.; Becherif, M. Triple Hybrid System Coupling Fuel Cell with Wind Turbine and Thermal Solar System. Int. J. Hydrog. Energy 2020, 45, 11484–11491. [Google Scholar] [CrossRef]
- Tang, O.; Rehme, J.; Cerin, P.; Huisingh, D. Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-Term Uncertainties. Energy Policy 2021, 148, 111990. [Google Scholar] [CrossRef]
- Ani, V.A. Development of an Intelligent Power Management System for Solar PV-Wind-Battery-Fuel-Cell Integrated System. Front. Energy Res. 2021, 9, 613958. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, Z.; Shi, X.; Zhang, K.; Zhang, H. Recent Progress in Black Phosphorus and Black-Phosphorus-analogue Materials: Properties, Synthesis and Applications. Nanoscale 2019, 11, 14491–14527. [Google Scholar] [CrossRef]
- Park, C.M.; Sohn, H.J. Black Phosphorus and Its Composite for Lithium Rechargeable Batteries. Adv. Mater. 2007, 19, 2465–2468. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, S.; Bu, K.; Zhao, W.; Bi, Q.; Lin, T.; Huang, J.; Li, Y.; Huang, F.Q. Nickel Nitride-Black Phosphorus Heterostructure Nanosheets for Boosting Electrocatalytic Activity towards Oxygen Evolution. J. Mater. Chem. A 2019, 7, 22063–22069. [Google Scholar] [CrossRef]
- Wang, Y.; He, M.; Ma, S.; Yang, C.; Yu, M.; Yin, G.; Zuo, P. Low-Temperature Solution Synthesis of Black Phosphorus from Red Phosphorus: Crystallization Mechanism and Lithium Ion Battery Applications. J. Phys. Chem. Lett. 2020, 11, 2708–2716. [Google Scholar] [CrossRef]
- Ozdemir, B. Black Phosphorus and Phosphorene/Graphene Heterostructure as Alkali metal (Li, Na, and K) Ion Battery. Mater. Sci. 2020, 2007, 10308. [Google Scholar]
- Callegari, D.; Colombi, S.; Nitti, A.; Simari, C.; Nicotera, I.; Ferrara, C.; Mustarelli, P.; Pasini, D.; Quartarone, E. Autonomous Self-Healing Strategy for Stable Sodium-Ion Battery: A Case Study of Black Phosphorus Anodes. ACS Appl. Mater. Interfaces 2021, 13, 13170–13182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Cai, X.; Fujitsuka, M.; Zhang, J.; Majima, T. Au/La2Ti2O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light. Angew. Chem. 2016, 56, 2064–2068. [Google Scholar] [CrossRef]
- Lai, B.; Wang, H.; Su, W.; Wang, Z.; Zhu, B.-W.; Yu, C.; Tan, M. A Phosphorescence Resonance Energy Transfer-based “off-on” Long Afterglow Aptasensor for Cadmium Detection in Food Samples. Talanta 2021, 232, 122409. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.-K.; Yuan, Y.-J.; Pei, L.; Yu, Z.-T.; Zou, Z. Black Phosphorus Photocatalysts for Photocatalytic H2 Generation: A Review. Chem. Eng. J. 2020, 386, 123997. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, S.Y.; Jang, H.W. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. Nanomaterials 2016, 6, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Yang, N.; Wang, J.; Huang, M.; Liu, L.; Peng, X.; Wang, G.; Yu, X.F.; Chu, P.K. Molybdenum Diselenide–Black Phosphorus Heterostructures for Electrocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2019, 467–468, 328–334. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Lai, C.; Zeng, G.; Huang, D.; Qin, L.; Zhang, M.; Cheng, M.; Liu, X.; Yi, H.; Zhou, C.; et al. Black Phosphorus, a Rising Star 2D Nanomaterial in the Post-Graphene Era: Synthesis, Properties, Modifications, and Photocatalysis Applications. Small 2019, 15, 1804565. [Google Scholar] [CrossRef]
- Liu, Y.; Rodrigues, J.; Zheng, L.Y.; Li, L.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J.; Bao, Y.; Xu, H.; et al. Tailoring Sample-Wide Pseudo-Magnetic Fields on a Graphene–black Phosphorus Heterostructure. Nat. Nanotechnol. 2018, 13, 828–834. [Google Scholar] [CrossRef]
- Zhou, R.; Ullah, K.; Yang, S.; Lin, Q.; Tang, L.; Liu, D.; Li, S.; Zhao, Y.; Wang, F. Recent Advances in Graphene and Black Phosphorus Nonlinear Plasmonics. Nanophotonics 2020, 9, 1695–1715. [Google Scholar] [CrossRef]
- Hlali, A.; Houaneb, Z.; Zairi, H. Tunable Attenuator Based on Hybrid Graphene-Black phosphorus Microstrip Line for Terahertz Applications. Opt. Int. J. Light Electron Opt. 2020, 216, 164827. [Google Scholar] [CrossRef]
- Han, L.; Wang, L.; Xing, H.; Chen, X. Active Control of Plasmon-induced Transparency with Large Tunability and High Q-factor in Graphene-black Phosphorus Hybrid System. J. Phys. D Appl. Phys. 2021, 54, 225103. [Google Scholar] [CrossRef]
- Guoping, L.; Zhicheng, N.; Shengnan, L.; Haoxue, D.; Min, X.; Yunjun, L. Thermal Decomposition of Ammonium Perchlorate by Black Phosphorus and Graphene Oxide Composite Aerogel. J. Mater. Sci. 2021, 56, 17632–17645. [Google Scholar] [CrossRef]
- Laxmi, V.; Dong, W.; Wang, H.; Qi, D.; Hao, Q.; Ouyang, Z.; Ahmad, W.; Shah, M.N.U.; Yuan, Q.; Zhang, W. Protecting Black Phosphorus with Selectively Adsorbed Graphene Quantum Dot Layers. Appl. Surf. Sci. 2020, 538, 148089. [Google Scholar] [CrossRef]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. Acs Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Ji, C.; Adeleke, A.A.; Yang, L.; Wan, B.; Gou, H.; Yao, Y.; Li, B.; Meng, Y.; Smith, J.S.; Prakapenka, V.B.; et al. Nitrogen in Black Phosphorus Structure. Sci. Adv. 2020, 6, eaba9206. [Google Scholar] [CrossRef]
- Laniel, D.; Winkler, B.; Fedotenko, T.; Pakhomova, A.S.; Chariton, S.; Milman, V.; Prakapenka, V.; Dubrovinsky, L.; Dubrovinskaia, N. High-Pressure Polymeric Nitrogen Allotrope with the Black Phosphorus Structure. Phys. Rev. Lett. 2020, 124, 216001. [Google Scholar] [CrossRef]
- Liu, B.; Xie, H.; Niu, D.; Wang, S.; Zhao, Y.; Liu, Y.; Gao, Y. Interface Electronic Structure between Aluminum and Black Phosphorus. Results Phys. 2020, 18, 103222. [Google Scholar] [CrossRef]
- Appalakondaiah, S.; Vaitheeswaran, G.; Lebegue, S.; Christensen, N.E.; Svane, A. Effect of Van Der Waals Interactions on the Structural and Elastic Properties of Black Phosphorus. Phys. Rev. B Condens. Matter 2012, 86, 035105. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Ouyang, C.; Shi, S.; Lei, M. Ab Initio Studies on Atomic and Electronic Structures of Black Phosphorus. Solid State Sci. 2010, 107, 093718. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, K.; Sun, R.; Ma, J. Biorefinery-Assisted Ultra-High Hydrogen Evolution via Metal-Free Black Phosphorus Sensitized Carbon Nitride Photocatalysis. Chem. Eng. J. 2022, 446, 137128. [Google Scholar] [CrossRef]
- Ma, X.D.; Ji, C.; Li, X.K.; Liu, Y.K.; Xiong, X.Y. Red@Black phosphorus core–shell heterostructure with superior air stability for high-rate and durable sodium-ion battery. Materialstoday 2022. [Google Scholar] [CrossRef]
- Pedersen, S.V.; Muramutsa, F.; Wood, J.D.; Husko, C.; Estrada, D.; Jaques, B.J. Mechanochemical Conversion Kinetics of Red to Black Phosphorus and Scaling Parameters for High Volume Synthesis. NPJ 2D Mater. Appl. 2020, 4, 36. [Google Scholar] [CrossRef]
- Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M.S. The Renaissance of Black Bhosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, S.; Matsumoto, K.; Hagiwara, R. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 10891–10901. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jiang, Y.; Wang, H.; Jiang, X. One-Step Stirring Preparation of Room Temperature Liquid Metal Negative Electrode for the Lithium-Ion Battery. Appl. Phys. 2020, 2001, 357. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Jiang, Y.; Jiang, X. Preparation of Room Temperature Liquid Metal Negative Electrode for Lithium Ion Battery in One Step Stirring. Mater. Lett. 2020, 276, 128261. [Google Scholar] [CrossRef]
- Yang, J.; Mo, F.; Huang, L.; Liang, H.; Sun, G.; Peng, S. Building a C-P Bond to Unlock the Reversible and Fast Lithium Storage Performance of Black Phosphorus in All-Solid-State Lithium-Ion Batteries. Mater. Today Energy 2021, 20, 100662. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhang, Z.; Zhao, R.; Zhao, D.; Ma, R.; Yin, L. Layered Materials for Supercapacitors and Batteries: Applications and Challenges. Prog. Mater. Sci. 2020, 118, 100763. [Google Scholar] [CrossRef]
- Mei, J.; He, T.; Zhang, Q.; Liao, T.; Du, A.; Ayoko, G.A.; Sun, Z. Carbon-Phosphorus Bonds-Enriched 3D Graphene by Self-Sacrificing Black Phosphorus Nanosheets for Elevating Capacitive Lithium Storage. ACS Appl. Mater. Interfaces 2020, 12, 21720–21729. [Google Scholar] [CrossRef] [PubMed]
- Forouzandeh, P.; Pillai, S.C. Two-dimensional (2D) Electrode Materials for Supercapacitors. Mater. Today Proc. 2020, 41, 498–505. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Z.; Ren, X.; Chen, X.; Qiao, H.; Tang, P.; Qi, X. P25/Black Phosphorus/Graphene Hybrid for Enhanced Photocatalytic Activity. J. Mater. Sci. Mater. Electron. 2017, 29, 4441–4448. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Yang, F.; Dai, W.L. Facile Construction of Flower-Like Black Phosphorus Nanosheet@ZnIn2S4 Composite with Highly Efficient Catalytic Performance in Hydrogen Production. Appl. Surf. Sci. 2019, 504, 144366. [Google Scholar] [CrossRef]
- Xingjiang, W.; Yijun, X.; Ying, H.; Wu, G.; Cheng, H.; Yu, Q.; Zhang, K.; Chen, W.; Chen, S. Microfluidic-spinning Construction of Black-Phosphorus-Hybrid Microfibres for Non-woven Fabrics toward a High Energy Density Flexible Supercapacitor. Nat. Commun. 2018, 9, 4573. [Google Scholar]
- Wu, Q.; Liang, M.; Zhang, S.; Liu, X.; Wang, F. Development of Functional Black Phosphorus Nanosheets with Remarkable Catalytic and Antibacterial Performance. Nanoscale 2018, 10, 10428–10435. [Google Scholar] [CrossRef]
- Gu, C.; Kong, X.; Yan, S.; Gai, P.; Li, F. Glucose Dehydrogenase-like Nanozyme Based on Black Phosphorus Nanosheets for High-Performance Biofuel Cells. ACS Sustain. Chem. Eng. 2020, 8, 16549–16554. [Google Scholar] [CrossRef]
- Lei, W.; Liu, G.; Jin, Z.; Liu, M. Black Phosphorus Nanostructures: Recent Advances in Hybridization, Doping and Functionalization. Chem. Soc. Rev. 2017, 46, 3492–3509. [Google Scholar] [CrossRef]
- Hu, H.; Shi, Z.; Khan, K.; Cao, R.; Liang, W.; Tareen, A.K.; Zhang, Y.; Huang, W.; Guo, Z.; Luo, X.; et al. Recent Advances in Doping Engineering of Black Phosphorus. J. Mater. Chem. A 2020, 8, 5421–5441. [Google Scholar] [CrossRef]
- Kumar, A.; Telesio, F.; Prezzi, D.; Cardoso, C.; Catellani, A.; Forti, S.; Coletti, C.; Serrano−Ruiz, M.; Peruzzini, M.; Beltram, F.; et al. Black Phosphorus n-Type Doping by Cu: A Microscopic Surface Investigation. J. Phys. Chem. C 2021, 125, 13477–13484. [Google Scholar] [CrossRef]
- Liu, M.; Feng, S.; Hou, Y.; Zhao, S.; Tang, L.; Liu, J.; Wang, F.; Liu, B. High Yield Growth and Doping of Black Phosphorus with Tunable Electronic Properties. Mater. Today 2020, 36, 91–101. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, S.; Guan, R.; Shao, X.; Jiang, S.; Hu, Y.; Wang, S.; Yue, Q. Black Phosphorus Quantum Dots as Photocatalyst for Dye Degradation with a High Efficiency and Rate Constant. J. Mol. Struct. 2022, 1252, 132163. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, S.; Zhao, X.; Gu, M.; Zhang, Y.; Jin, M.; Wang, Y.; Cheng, Y.; Zhang, J. Violet Phosphorus Quantum Dots. J. Mater. Chem. A 2022, 10, 245–250. [Google Scholar] [CrossRef]
- Hou, C.; Yang, L.; Li, B.; Zhang, Q.; Li, Y.; Yue, Q.; Wang, Y.; Yang, Z.; Dong, L. Plasmon-Enhanced Photovoltaic Characteristics of Black Phosphorus-MoS2 Heterojunction. IEEE Conf. Nanotechnol. 2021, 2, 41–51. [Google Scholar]
- Jiang, X.; Zhang, M.; Liu, L.; Shi, X.; Yang, Y.; Zhang, K.; Zhu, H.; Chen, L.; Liu, X.; Sun, Q.; et al. Multifunctional Black Phosphorus/MoS2 Van Der Waals Heterojunction. Nanophotonics 2020, 9, 2487–2493. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wei, J.; Bian, B.; Liao, B.; Wang, G. Tunable Schottly Barrier in Planar Two-dimensional Metal/Black Phosphorus Heterojunctions. Phys. E Low Dimens. Syst. Nanostruct. 2021, 130, 114702. [Google Scholar] [CrossRef]
- Kim, S.; Myeong, G.; Park, J.; Watanabe, K.; Taniguchi, T.; Cho, S. Monolayer Hexagonal Boron Nitride Tunnel Barrier Contact for Low-Power Black Phosphorus Heterojunction Tunnel Field-Effect Transistors. Nano Lett. 2020, 20, 3963–3969. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Zhou, G.; Jin, M.; Li, X. In-Situ Growth of Metal Phosphide-Black Phosphorus Heterojunction for Highly Selective and Efficient Photocatalytic Carbon Dioxide Conversion. J. Colloid Interface Sci. 2022, 616, 641–648. [Google Scholar] [CrossRef]
- Li, J.; Yi, S.; Wang, K.; Liu, Y.; Li, J. Alkene-Catalyzed Rapid Layer-by-Layer Thinning of Black Phosphorus for Precise Nanomanufacturing. ACS Nano 2022, 16, 13111–13122. [Google Scholar] [CrossRef]
- Zou, J.; Zou, Y.; Wang, H.; Wu, P.; Arramel, A.; Jiang, J.; Li, X. Tailoring the Electronic Acceptor-donor Heterointerface between Black Phosphorus and Co3O4 for Boosting Oxygen Bifunctional Electrocatalysis. Chin. Chem. Lett. 2022, 3, 101, in press. [Google Scholar] [CrossRef]
- Dora, J.K.; Ghosh, S.; Yedla, N. Silicon Acetylene Black–Carbon Composite as an Anode for Lithium-Ion Battery. In Recent Research Trends in Energy Storage Devices; Springer: Singapore, 2020; Volume 15, pp. 73–80. [Google Scholar]
- Wang, Y.; Sang, H.Q.; Zhang, W.; Qi, Y.; He, R.-X.; Chen, B.; Sun, W.; Zhao, X.-Z.; Fu, D.; Liu, Y. Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Appl. Mater. Interfaces 2020, 12, 51563–51572. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Yang, B.; Wen, F.; Xiang, J.; Li, L.; Wang, W.; Zeng, Z.; Xu, B.; Zhao, Z.; Liu, Z.; et al. Flexible All-Solid-State Supercapacitors based on Liquid-Exfoliated Black-Phosphorus Nanoflakes. Adv. Mater. 2016, 28, 3194–3201. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-Q.; Li, M.-J.; Sun, K.; Yu, S.H.; Wang, R.S.; Xie, H.M. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2012, 116, 14772–14779. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.H.; Zhang, W.X.; Li, T.T. GeSe/BP Van Der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries. J. Phys. Chem. C 2019, 123, 5157–5163. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Ramireddy, T.; Chen, Y.; Glushenkov, A.M. High Capacity Potassium-Ion Battery Anodes Based on Black Phosphorus. J. Mater. Chem. A 2017, 5, 23506–23512. [Google Scholar] [CrossRef]
- Kotzias, D.; Binas, V.; Kiriakidis, G. Smart Surfaces: Heterogeneous Photo-Catalysis on TiO2 Based Coatings for De-pollution Purposes in Indoor and Outdoor Environments. Top. Catal. 2020, 63, 875–881. [Google Scholar] [CrossRef]
- Mecha, A.C.; Chollom, M.N. Photocatalytic Ozonation of Wastewater: A Review. Environ. Chem. Lett. 2020, 18, 1491–1507. [Google Scholar] [CrossRef]
- Jones, W.; Burnett, J.; Shi, J.; Howe, R.F.; Wang, X. Improving Photocatalytic Energy Conversion via NAD(P)H. Joule 2020, 4, 2055–2059. [Google Scholar] [CrossRef]
- Al-Farawati, R.K.; Shaban, Y.A.; Turki, A.J.; Kavil, Y.N.; Alzubiadi, M. Solar Photocatalytic Removal of Arsenic from Polluted Water using Carbon-Modified Titanium Oxide Nanoparticles Supported on Activated Carbon. Environ. Chem. 2021, 17, 568–578. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent Advances in Semiconductor Metal Oxides with Enhanced Methods for Solar Photocatalytic Applications. J. Alloy. Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.; Torlakcik, H.; Nelson, B.J.; Pané, S. Enhanced Catalytic Degradation of Organic Pollutants by Multi-stimuli Activated Multiferroic Nanoarchitectures. Nano Res. 2020, 13, 2183–2191. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, S.; Wang, W.; Liu, J.; Liu, Z.; Jimmy, C.Y. A Black–Red Phosphorus Heterostructure for Efficient Visible-Light-Driven Photocatalysis. J. Mater. Chem. A 2015, 3, 3285–3288. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A.M.; Chen, Y.; Wang, X. Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation. Adv. Funct. Mater. 2018, 28, 1705407. [Google Scholar] [CrossRef]
- Shetty, K.; Prathibha, B.S.; Rangappa, D.; Anatharaju, K.S.; Nagaswarupa, H.; Prashantha, S.C. Fabrication of MgFe2O4-ZnO Nanocomposites for Photocatalysis of Organic Pollutants under Solar Light Radiation. Asian J. Chem. 2019, 31, 2995–3003. [Google Scholar] [CrossRef]
- Chen, H.L.; Liu, F.Y.; Xiao, X.; Hu, J.; Gao, B.; Zou, D.; Chen, C.C. Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by MFeO2 (M = Li, Na, or K). J. Colloid Interface Sci. 2021, 601, 758–772. [Google Scholar] [CrossRef]
- Kumar, S.; Terashima, C.; Fujishima, A.; Krishnan, V.; Pitchaimuthu, S. Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. In A New Generation Material Graphene: Applications in Water Technology; Springer: Cham, Switzerland, 2019; Volume 8, pp. 413–438. [Google Scholar]
- Saravanakumar, K.; Muthupoongodi, S.; Muthuraj, V. A Novel n-CeO2/n-CdO Heterojunction Nanocomposite for Enhanced Photodegradation of Organic Pollutants under Visible Light Irradiation. J. Rare Earths 2019, 37, 853–860. [Google Scholar] [CrossRef]
- Daimon, T.; Nosaka, Y. Formation and Behavior of Singlet Molecular Oxygen in TiO2 Photocatalysis Studied by Detection of Near-Infrared Phosphorescence. J. Phys. Chem. C 2007, 111, 4420–4424. [Google Scholar] [CrossRef]
- Saito, H.; Nosaka, Y. Phosphorescence Detection of the Singlet Molecular Oxygen Generated by Visible-light Irradiation on Gold-nanoparticle-deposited TiO2 Photocatalysts. Chem. Lett. 2012, 41, 1591–1593. [Google Scholar] [CrossRef]
- Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, H.; Yang, D.; Fan, J.; Hu, X.; Liu, E. Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C 2020, 124, 13771–13778. [Google Scholar] [CrossRef]
- Wen, M.; Wang, J.; Tong, R.; Liu, D.; Huang, H.; Yu, Y.; Zhou, Z.K.; Chu, P.K.; Yu, X.F. A Low-Cost Metal-Free Photocatalyst Based on Black Phosphorus. Adv. Sci. 2019, 6, 1801321. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, H.; Zhang, X.; Wang, S.; Jin, S.; Xu, X.; Liu, W.; Zhao, Z.; Xie, Y. Exciton-Mediated Energy Transfer in Heterojunction Enables Infrared Light Photocatalysis. Angew. Chem. 2021, 60, 12891–12896. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.-J.; Wang, P.; Li, Z.; Wu, Y.; Bai, W.; Su, Y.; Guan, J.; Wu, S.; Zhong, J.; Yu, Z.; et al. The Role of Bandgap and Interface in Enhancing Photocatalytic H2 Generation Activity of 2D-2D Black Phosphorus/MoS2 Photocatalyst. Appl. Catal. B Environ. 2019, 242, 1–8. [Google Scholar] [CrossRef]
- Bian, S.; Wen, M.; Wang, J.; Yang, N.; Chu, P.K.; Yu, X.F. Edge-Rich Black Phosphorus for Photocatalytic Nitrogen Fixation. J. Phys. Chem. Lett. 2020, 11, 1052–1058. [Google Scholar] [CrossRef]
- Shen, Z.-K.; Cheng, M.; Yuan, Y.-J.; Pei, L.; Zhong, J.; Guan, J.; Li, X.; Li, Z.-J.; Bao, L.; Zhang, X.; et al. Identifying the Role of Interface Chemical Bonds in Activating Charge Transfer for Enhanced Photocatalytic Nitrogen Fixation of Ni2P-Black Phosphorus Photocatalysts. Appl. Catal. B Environ. 2021, 295, 120274. [Google Scholar] [CrossRef]
- Qiu, P.; Xu, C.; Zhou, N.; Chen, H.; Jiang, F. Metal-Free Black Phosphorus Nanosheets-Decorated Graphitic Carbon Nitride Nanosheets with C-P Bonds for Excellent Photocatalytic Nitrogen Fixation. Appl. Catal. B Environ. 2018, 221, 27–35. [Google Scholar] [CrossRef]
- Dong, G.; Huang, X.; Bi, Y. Anchoring Black Phosphorus Quantum Dots on Fe-Doped W18O49 Nanowires for Efficient Photocatalytic Nitrogen Fixation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204271. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y.; Yan, Y.; Liu, F.; Huang, Z.; Ren, X.; Zhang, H.; Li, Y.; Ye, J. Synergy of Heterojunction and Interfacial Strain for Boosting Photocatalytic H2 Evolution of Black Phosphorus Nanosheets. J. Colloid Interface Sci. 2022, 627, 969–977. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Arif, N.; Jiang, W.-C.; Zeng, Y.-J. 2D Material Based Heterostructures for Solar Light Driven Photocatalytic H2 Production. Mater. Adv. 2022, 3, 3389–3417. [Google Scholar] [CrossRef]
- Guan, R.; Wang, L.; Wang, D.; Li, K.; Tan, H.; Chen, Y.; Cheng, X.; Zhao, Z.; Shang, Q.; Sun, Z. Boosting Photocatalytic Hydrogen Production via Enhanced Exciton Dissociation in Black Phosphorus Quantum Dots/TiO2 Heterojunction. Chem. Eng. J. 2022, 435, 135138. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Shen, Z.-K.; Song, S.; Guan, J.; Bao, L.; Pei, L.; Su, Y.; Wu, S.; Bai, W.; Yu, Z.-T.; et al. Co–P Bonds as Atomic-Level Charge Transfer Channel To Boost Photocatalytic H2 Production of Co2P/Black Phosphorus Nanosheets Photocatalyst. ACS Catal. 2019, 9, 7801–7807. [Google Scholar] [CrossRef]
- Song, K.; Gou, J.; Wu, L.; Zeng, C. Two-dimension Black phosphorus modified Cs2AgBiBr6 with Efficient Charge Separation for Enhanced Visible-light Photocatalytic H2 Evolution. J. Mater. Chem. C 2022. [Google Scholar] [CrossRef]
- Tian, B.; Tian, B.; Smith, B.; Scott, M.C.; Lei, Q.; Hua, R.; Tian, Y.; Liu, Y. Facile Bottom-up Synthesis of Partially Oxidized Black Phosphorus Nanosheets as Metal-free Photocatalyst for Hydrogen Evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350. [Google Scholar] [CrossRef] [PubMed]
- Davydov, S.Y.; Makarov, V.N.; Apakashev, R.A.; Makarov, N.V.; Kozhushko, G.G. Universal Booster Device for Moving and Lifting Bulk Materials in Two- and Three-Phase Flows. Refract. Ind. Ceram. 2021, 61, 490–493. [Google Scholar] [CrossRef]
- Li, P.; Lu, J.; Cui, H.; Ruan, S.; Zeng, Y.-J. The Development, Application, and Performance of Black Phosphorus in Energy Storage and Conversion. Mater. Adv. 2021, 2, 2483–2509. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, J.; Jing, J.; Li, J.; Shi, F. Preparations, Properties and Applications of Low-Dimensional Black Phosphorus. Chem. Eng. J. 2019, 370, 120–135. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Ning, P.; Chen, X.; Liang, J.; Yao, X.; Chen, D.; Qin, L.; Huang, Y.; Wen, Z. 2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. ACS Nano 2021, 15, 12418–12428. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L.; Zhou, L.; Xu, Q.; Weng, J.; Xu, J.; Liu, B. Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angew. Chem. Int. Ed. Engl. 2020, 59, 21106–21113. [Google Scholar] [CrossRef]
- Qiao, H.; Liu, H.; Huang, Z.; Ma, Q.; Luo, S.; Li, J.; Liu, Y.; Zhong, J.; Qi, X. Black Phosphorus Nanosheets Modified with Au Nanoparticles as High Conductivity and High Activity Electrocatalyst for Oxygen Evolution Reaction. Adv. Energy Mater. 2020, 10, 2002424. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, L.; Wang, B.; Zhu, L.; Shao, B.; Niu, Y.; Zhang, X.; Yin, P.; Ge, Y.; Sun, W.; et al. Recent Applications of Black Phosphorus and its Related Composites in Electrochemistry and Bioelectrochemistry: A Mini Review. Electrochem. Commun. 2021, 129, 107095. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Bian, S.; Liu, Q.; Gao, Y.; Wang, X.; Chu, P.K.; Yu, X. Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Adv. Funct. Mater. 2020, 30, 2002731. [Google Scholar] [CrossRef]
- Yang, B.; Wan, B.; Zhou, Q.; Wang, Y.; Hu, W.; Lv, W.; Chen, Q.; Zeng, Z.; Wen, F.; Xiang, J. Te-Doped Black Phosphorus Field-Effect Transistors. Adv. Mater. 2016, 28, 9408–9415. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.C.; Sofer, Z.; Pumera, M. Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems. ACS Nano 2019, 13, 13217–13224. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Huang, C.; Wu, Q.; Wu, J.; Xia, L.; Xu, Q.; Yao, W. Modification of Black Phosphorus Nanosheets with a Ni-Containing Carbon Layer as Efficient and Stable Hydrogen Production Electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 54619–54626. [Google Scholar] [CrossRef]
- Wang, X.; Bai, L.; Lu, J.; Zhang, X.; Liu, D.; Yang, H.; Wang, J.; Chu, P.K.; Ramakrishna, S.; Yu, X. Rapid Activation of Platinum with Black Phosphorus for Efficient Hydrogen Evolution. Angew. Chem. 2019, 131, 19236–19242. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, T.; Jiang, D.; Duan, H.; Sun, Z.; Zhang, M.; Jin, H.; Guan, R.; Liu, Y.; Chen, M. Stabilizing Black Phosphorus Nanosheets Via Edge-selective Bonding of Sacrificial C60 Molecules. Nat. Commun. 2018, 9, 4177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ying, D.; Chen, H.; Ma, Y.; Jing, B.; Zhuang, C.; Duan, Y.; Bo, T.; Zou, J. Carbon-Thin-Layer Protected WP with No Passivation Supported on Acid-Treated Expanded Graphite as Efficient Pt Co-catalysts for Methanol Oxidation and Oxygen reduction reactions. J. Mater. Chem. A 2018, 6, 22636–22644. [Google Scholar] [CrossRef]
- Zandi, O.; Hamann, T.W. Enhanced Water Splitting Efficiency Through Selective Surface State Removal. J. Phys. Chem. Lett. 2014, 5, 1522–1526. [Google Scholar] [CrossRef]
- Bellani, S.; Antognazza, M.R.; Bonaccorso, F. Carbon-based Photocathode Materials for Solar Hydrogen Production. Adv. Mater. 2019, 31, 1801446. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhang, X. Synthesis of a Cu2O/Carbon Film/NiCoB-Graphene Oxide Heterostructure as Photocathode for Photoelectrochemical Water Splitting. ChemElectroChem 2019, 6, 2004–2012. [Google Scholar] [CrossRef]
- Zou, J.; Yu, J.G. Nafion-stabilized Black Phosphorus Nanosheets-maltosyl-β-cyclodextrin as a Chiral Sensor for Tryptophan Enantiomers. Mater. Sci. Eng. C 2020, 112, 110910. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Peng, Z.; Hu, M.; Xu, X.; Lou, S.; Yan, S. Review on the Energy Transformation Application of Black Phosphorus and Its Composites. Catalysts 2022, 12, 1403. https://doi.org/10.3390/catal12111403
Liu H, Peng Z, Hu M, Xu X, Lou S, Yan S. Review on the Energy Transformation Application of Black Phosphorus and Its Composites. Catalysts. 2022; 12(11):1403. https://doi.org/10.3390/catal12111403
Chicago/Turabian StyleLiu, Hao, Zehui Peng, Mengdi Hu, Xin Xu, Shuai Lou, and Shancheng Yan. 2022. "Review on the Energy Transformation Application of Black Phosphorus and Its Composites" Catalysts 12, no. 11: 1403. https://doi.org/10.3390/catal12111403
APA StyleLiu, H., Peng, Z., Hu, M., Xu, X., Lou, S., & Yan, S. (2022). Review on the Energy Transformation Application of Black Phosphorus and Its Composites. Catalysts, 12(11), 1403. https://doi.org/10.3390/catal12111403