Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp.
Abstract
:1. Introduction
2. Results and Discussion
Detection of Phenol Degradative Genes via WGS
3. Materials and Methods
3.1. Bacterial Culture and Medium
3.2. Whole Genome Sequencing
3.2.1. Extraction of Genomic DNA
3.2.2. Genome Sequencing and Assembly
3.2.3. Gene Prediction and Annotation
3.3. Preparation of Cell Extracts
3.4. Enzyme Assay of Catechol 1,2 Dioxygenase (C12O) and Catechol 2,3 Dioxygenase (C23O)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazuki, T.A.T.; Shukor, M.Y.; Ahmad, S.A. Bioremediation of phenol in Antarctic: A mini review. Malays. J. Biochem. Mol. Biol. 2019, 22, 1–6. [Google Scholar]
- Chang, Y.-C.; Fuzisawa, S.; Reddy, M.V.; Kobayashi, H.; Yoshida, E.; Yajima, Y.; Hoshino, T.; Choi, D. Degradation of Toxic Compounds at Low and Medium Temperature Conditions Using Isolated Fungus. CLEAN Soil Air Water 2016, 44, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, H.E.; Peixoto, R.S.; Cury, J.; Van Elsas, J.D.; Rosado, A.S. Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula. Appl. Microbiol. Biotechnol. 2015, 99, 10815–10827. [Google Scholar] [CrossRef] [PubMed]
- Roslee, A.F.A.; Zakaria, N.N.; Convey, P.; Zulkharnain, A.; Lee, G.L.Y.; Gomez-Fuentes, C.; Ahmad, S.A. Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5-07. Extremophiles 2019, 24, 277–291. [Google Scholar] [CrossRef]
- Thompson, B.A.W.; Goldsworthy, P.M.; Riddle, M.J.; Snape, I.; Stark, J.S. Contamination effects by a ‘conventional’ and a ‘biodegradable’ lubricant oil on infaunal recruitment to Antarctic sediments: A field experiment. J. Exp. Mar. Biol. Ecol. 2007, 340, 213–226. [Google Scholar] [CrossRef]
- Zakaria, N.N.; Man, Z.; Zulkharnain, A.; Ahmad, S.A. Psychrotolerant biosurfactant-producing bacteria for hydrocarbon degradation: A mini review. Malays. J. Biochem. Mol. Biol. 2019, 21, 52–59. [Google Scholar]
- Powell, S.M.; Harvey, P.M.; Stark, J.S.; Snape, I.; Riddle, M.J. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar. Pollut. Bull. 2007, 54, 434–440. [Google Scholar] [CrossRef]
- Abdulrasheed, M.; Zakaria, N.N.; Roslee, A.F.A.; Shukor, M.Y.; Zulkharnain, A.; Napis, S.; Convey, P.; Alias, S.A.; Gonzalez-Rocha, G.; Ahmad, S.A. Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. from Antarctica. Antarct. Sci. 2020, 32, 341–353. [Google Scholar] [CrossRef]
- Lana, N.B.; Berton, P.; Covaci, A.; Ciocco, N.F.; Barrera-Oro, E.; Atencio, A.; Altamirano, J.C. Fingerprint of persistent organic pollutants in tissues of Antarctic notothenioid fish. Sci. Total Environ. 2014, 499, 89–98. [Google Scholar] [CrossRef]
- Subramaniam, K.; Ahmad, S.A.; Shaharuddin, N.A. Mini review on phenol biodegradation in Antarctica using native microorganisms. Asia Pac. J. Mol. Biol. Biotechnol. 2020, 28, 77–89. [Google Scholar] [CrossRef]
- Vecchiato, M.; Zambon, S.; Argiriadis, E.; Barbante, C.; Gambaro, A.; Piazza, R. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Antarctic ice-free areas: Influence of local sources on lakes and soils. Microchem. J. 2015, 120, 26–33. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [PubMed]
- Koshy, J.; Chandran, N.; Nambisan, P. Biodegradation of phenol using spent substrate of Pleurotus sp. World J. Pharm. Pharm. Sci. 2012, 1, 656–661. [Google Scholar]
- Jame, S.A.; Alam, A.R.; Alam, M.K.; Fakhruddin, A. Isolation and Identification of Phenol and Monochlorophenols-Degrading Bacteria: Pseudomonas and Aeromonas Species. Bangladesh J. Microbiol. 1970, 25, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.A.; Syed, M.A.; Arif, N.M.; Shukor, M.Y.A.; Shamaan, N.A. Isolation, identification and characterization of elevated phenol degrading Acinetobacter sp. strain AQ5NOL 1. Aust. J. Basic Appl. Sci. 2011, 5, 1035–1045. [Google Scholar]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, K.; Shaharuddin, N.A.; Tengku-Mazuki, T.A.; Zulkharnain, A.; Khalil, K.A.; Convey, P.; Ahmad, S.A.; Survey, N.B.A. Statistical optimisation for enhancement of phenol biodegradation by the Antarctic soil bacterium Arthrobacter sp. strain AQ5-15 using response surface methodology. J. Environ. Biol. 2020, 41, 1560–1569. [Google Scholar] [CrossRef]
- O’Neill, T.A.; Aislabie, J.; Balks, M.R. Human Impacts on Soils. In The Soils of Antarctica; Bockheim, J.G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 281–303. [Google Scholar] [CrossRef]
- Basha, K.M.; Rajendran, A.; Thangavelu, V. Recent advances in the biodegradation of phenol: A review. Asian J. Exp. Biol. Sci. 2010, 1, 219–234. [Google Scholar]
- Zakaria, N.N.; Ahmad, S.A.; Yin, G.L.L.; Yasid, N.A.; Manogaran, M.; Nawawi, N.M.; Shukor, M.Y. Biodegradation of phenol by Antarctic bacterium Rhodococcus baikonurensis strain AQ5-001 in the presence of heavy metals. Malays. J. Biochem. Mol. Biol. 2018, 21, 29–36. [Google Scholar]
- Liu, Z.; Xie, W.; Li, D.; Peng, Y.; Li, Z.; Liu, S. Biodegradation of Phenol by Bacteria Strain Acinetobacter calcoaceticus PA Isolated from Phenolic Wastewater. Int. J. Environ. Res. Public Health 2016, 13, 300. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.A.; Asokan, G.; Yasid, N.A.; Nawawi, N.M.; Subramaniam, K.; Zakaria, N.N.; Shukor, M.Y. Effect of heavy metals on biodegradation of phenol by Antarctic bacterium: Arthrobacter bambusae strain AQ5-003. Malays. J. Biochem. Mol. Biol. 2018, 21, 47–51. [Google Scholar]
- Fernández, P.M.; Martorell, M.M.; Blaser, M.G.; Ruberto, L.A.M.; de Figueroa, L.I.C.; Mac Cormack, W.P. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017, 21, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Abdulrasheed, M.; Zulkharnain, A.; Zakaria, N.N.; Roslee, A.; Khalil, K.A.; Napis, S.; Convey, P.; Gomez-Fuentes, C.; Ahmad, S. Response Surface Methodology Optimization and Kinetics of Diesel Degradation by a Cold-Adapted Antarctic Bacterium, Arthrobacter sp. Strain AQ5-05. Sustainability 2020, 12, 6966. [Google Scholar] [CrossRef]
- Tengku-Mazuki, T.A.; Subramaniam, K.; Zakaria, N.N.; Convey, P.; Khalil, K.A.; Lee, G.L.Y.; Zulkharnain, A.; Shaharuddin, N.A.; Ahmad, S.A. Optimization of phenol degradation by Antarctic bacterium Rhodococcus sp. Antarct. Sci. 2020, 32, 486–495. [Google Scholar] [CrossRef]
- Shibata, A.; Inoue, Y.; Katayama, A. Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils. Sci. Total Environ. 2006, 367, 979–987. [Google Scholar] [CrossRef]
- Arora, P.K.; Bae, H. Integration of bioinformatics to biodegradation. Biol. Proced. Online 2014, 16, 8. [Google Scholar] [CrossRef]
- Darham, S.; Gomez-Fuentes, C.; Zulkharnain, A.; Sabri, S.; Calisto-Ulloa, N.; Ramírez-Moreno, N.; Ahmad, S.A. Isolation and identification of molybdenum-reducing cold-adapted marine bacteria isolated from Bernardo O’Higgins Riquelme Base Station, Antarctica. Malay. J. Biochem. Mol. Biol. 2019, 22, 16–19. [Google Scholar]
- Ibrahim, S.; Zahri, K.N.M.; Convey, P.; Khalil, K.A.; Gomez-Fuentes, C.; Zulkarnain, A.; Alias, S.A.; González-Rocha, G.; Ahmad, S.A. Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. AQ5-07 from Antarctica. Electron. J. Biotechnol. 2020, 48, 1–12. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, D.; Swarnkar, M.K.; Singh, A.K.; Kumar, S. Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J. Biotechnol. 2016, 220, 86–87. [Google Scholar] [CrossRef]
- Nakatsu, C.H.; Barabote, R.; Thompson, S.; Bruce, D.; Detter, C.; Brettin, T.; Han, C.; Beasley, F.; Chen, W.; Konopka, A.; et al. Complete genome sequence of Arthrobacter sp. strain FB24. Stand. Genom. Sci. 2013, 9, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Couger, M.B.; Hanafy, R.A.; Edens, C.; Budd, C.; French, D.P.; Hoff, W.D.; Elshahed, M.S.; Youssef, N.H. Draft Genome of the Arthrobacter sp. Strain Edens01. Genome Announc. 2015, 3, e01475-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincheloe, G.N.; Eisen, J.A.; Coil, D.A. Draft Genome Sequence of Arthrobacter sp. Strain UCD-GKA (Phylum Actinobacteria). Genome Announc. 2017, 5, e01599-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzanera, M.; Santa-Cruz-Calvo, L.; Vílchez, J.I.; García-Fontana, C.; Silva-Castro, G.A.; Calvo, C.; González-López, J. Genome Sequence of Arthrobacter siccitolerans 4J27, a Xeroprotectant-Producing Desiccation-Tolerant Microorganism. Genome Announc. 2014, 2, e00526-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastre, D.E.; Santos, L.P.; Kagohara, E.; Andrade, L.H. Draft Whole-Genome Sequence of Psychrotrophic Arthrobacter sp. Strain 7749, Isolated from Antarctic Marine Sediments with Applications in Enantioselective Alcohol Oxidation. Genome Announc. 2017, 5, e01197-17. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.J.; Kim, S.H.; Moon, Y.-J.; Park, S.-J.; Kim, S.I.; Kahng, H.-Y.; Chung, Y.-H. Genome Sequence of Arthrobacter sp. MWB30, Isolated from a Crude Oil-Contaminated Seashore. Genome Announc. 2015, 3, e00013-15. [Google Scholar] [CrossRef] [Green Version]
- Lau, Y.Y.; Yin, W.-F.; Chan, K.-G. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium. Sensors 2014, 14, 13913–13924. [Google Scholar] [CrossRef]
- Keto-Timonen, R.; Hietala, N.; Palonen, E.; Hakakorpi, A.; Lindström, M.; Korkeala, H. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Front. Microbiol. 2016, 7, 1151. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lee, Y.K.; Lee, H.K.; Im, H. Characterization of Cold-Shock Protein A of Antarctic Streptomyces sp. AA8321. J. Protein Chem. 2007, 26, 51–59. [Google Scholar] [CrossRef]
- Uh, J.-H.; Jung, Y.H.; Lee, Y.K.; Lee, H.K.; Im, H. Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228. J. Microbiol. 2010, 48, 798–802. [Google Scholar] [CrossRef]
- Dsouza, M.; Taylor, M.W.; Turner, S.J.; Aislabie, J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genom. 2015, 16, 36. [Google Scholar] [CrossRef] [Green Version]
- Uppal, S.; Akkipeddi, V.S.R.; Jawali, N. Posttranscriptional regulation of cspE in Escherichia coli: Involvement of the short 5′-untranslated region. FEMS Microbiol. Lett. 2008, 279, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.H.; Yi, J.-Y.; Jung, H.J.; Lee, Y.K.; Lee, H.K.; Naicker, M.C.; Uh, J.-H.; Jo, I.S.; Jung, E.J.; Im, H. Overexpression of Cold Shock Protein A of Psychromonas arctica KOPRI 22215 Confers Cold-Resistance. J. Protein Chem. 2010, 29, 136–142. [Google Scholar] [CrossRef]
- Cohen-Or, I.; Shenhar, Y.; Biran, D.; Ron, E.Z. CspC regulates rpoS transcript levels and complements hfq deletions. Res. Microbiol. 2010, 161, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Phadtare, S.; Inouye, M. Role of CspC and CspE in Regulation of Expression of RpoS and UspA, the Stress Response Proteins in Escherichia coli. J. Bacteriol. 2001, 183, 1205–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenhar, Y.; Biran, D.; Ron, E.Z. Resistance to environmental stress requires the RNA chaperones CspC and CspE. Environ. Microbiol. Rep. 2012, 4, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qu, Y.; Xu, P.; Tang, H. Genome Sequence of a Versatile Aromatic Hydrocarbon-Degrading Bacterium, Arthrobacter sp. W1. Genome Announc. 2015, 3, e00387-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herschend, J.; Raghupathi, P.K.; Røder, H.L.; Sørensen, S.J.; Burmølle, M. Genome Sequence of Arthrobacter antarcticus Strain W2, Isolated from a Slaughterhouse. Genome Announc. 2016, 4, e00073-16. [Google Scholar] [CrossRef]
- See-Too, W.-S.; Ee, R.; Lim, Y.-L.; Convey, P.; Pearce, D.A.; Mohidin, T.B.M.; Yin, W.-F.; Chan, K.G. Complete genome of Arthrobacter alpinus strain R3.8, bioremediation potential unraveled with genomic analysis. Stand. Genom. Sci. 2017, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Nair, C.I.; Jayachandran, K.; Shashidhar, S. Biodegradation of phenol. Afr. J. Biotechnol. 2008, 7, 4951–4958. [Google Scholar]
- Batra, R.; Christendat, D.; Edwards, A.; Arrowsmith, C.; Tong, L. Crystal structure of MTH169, a crucial component of phosphoribosylformylglycinamidine synthetase. Proteins Struct. Funct. Bioinform. 2002, 49, 285–288. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Cronan, J.E. Isolation and Characterization of β-Ketoacyl-Acyl Carrier Protein Reductase ( fabG ) Mutants of Escherichia coli and Salmonella enterica Serovar Typhimurium. J. Bacteriol. 2004, 186, 1869–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machovina, M.M.; Usselman, R.J.; DuBois, J.L. Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J. Biol. Chem. 2016, 291, 17816–17828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, M.N.; Pandit, A.S.; Sharma, A.; Pandya, R.V.; Desai, S.M.; Saxena, A.K.; Bagatharia, S.B. Draft Genome Sequence of Arthrobacter crystallopoietes Strain BAB-32, Revealing Genes for Bioremediation. Genome Announc. 2013, 1, e00452-13. [Google Scholar] [CrossRef] [Green Version]
- Wietz, M.; Månsson, M.; Bowman, J.S.; Blom, N.S.; Ng, Y.; Gram, L. Wide Distribution of Closely Related, Antibiotic-Producing Arthrobacter Strains throughout the Arctic Ocean. Appl. Environ. Microbiol. 2012, 78, 2039–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Yan, Y.; Ping, S.; Chen, M.; Zhang, W.; Li, L.; Lin, W.; Geng, L.; Liu, W.; Lin, M. Genome-wide investigation and functional characterization of the β-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeriA1501. BMC Microbiol. 2010, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.D.L.; Sânchez-Porro, C.; Piubeli, F.; Frias, L.; García, M.T.; Mellado, E. Cloning, Characterization and Analysis of cat and ben Genes from the Phenol Degrading Halophilic Bacterium Halomonas organivorans. PLoS ONE 2011, 6, e21049. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Ichimura, A.; Ogawa, N.; Hasebe, A.; Miyashita, K. Differential Expression of Two Catechol 1,2-Dioxygenases in Burkholderia sp. Strain TH2. J. Bacteriol. 2002, 184, 5714–5722. [Google Scholar] [CrossRef] [Green Version]
- Haußmann, U.; Qi, S.-W.; Wolters, D.; Rögner, M.; Liu, S.-J.; Poetsch, A. Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source—A membrane proteome-centric view. Proteomics 2009, 9, 3635–3651. [Google Scholar] [CrossRef]
- Brinkrolf, K.; Brune, I.; Tauch, A. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet. Mol. Res. 2006, 5, 773–789. [Google Scholar]
- Cramer, A.; Gerstmeir, R.; Schaffer, S.; Bott, M.; Eikmanns, B.J. Identification of RamA, a Novel LuxR-Type Transcriptional Regulator of Genes Involved in Acetate Metabolism of Corynebacterium glutamicum. J. Bacteriol. 2006, 188, 2554–2567. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Wu, Q.; Zhang, J.; Guo, W.; Wu, H.; Sun, M. Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process. Sci. Rep. 2017, 7, 4863. [Google Scholar] [CrossRef] [PubMed]
- Ferrández, A.; Miñambres, B.; García, B.; Olivera, E.R.; Luengo, J.M.; García, J.L.; Diaz, E. Catabolism of Phenylacetic Acid in Escherichia coli characterization of a new aerobic hybrid pathway. J. Biol. Chem. 1998, 273, 25974–25986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropel, D.; van der Meer, J.R. Bacterial Transcriptional Regulators for Degradation Pathways of Aromatic Compounds. Microbiol. Mol. Biol. Rev. 2004, 68, 474–500. [Google Scholar] [CrossRef] [Green Version]
- Rucká, L.; Nešvera, J.; Pátek, M. Biodegradation of phenol and its derivatives by engineered bacteria: Current knowledge and perspectives. World J. Microbiol. Biotechnol. 2017, 33, 174. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, M.; Harayama, S.; Watanabe, K. PhcS Represses Gratuitous Expression of Phenol-Metabolizing Enzymes in Comamonas testosteroni R5. J. Bacteriol. 2001, 183, 4227–4234. [Google Scholar] [CrossRef] [Green Version]
- Arai, H.; Akahira, S.; Ohishi, T.; Kudo, T. Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans-acting factor. Mol. Microbiol. 2002, 33, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalid, T.; El-Naas, M. Aerobic Biodegradation of Phenols: A Comprehensive Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1631–1690. [Google Scholar] [CrossRef]
- Kirchner, U.; Westphal, A.H.; Müller, R.; van Berkel, W.J.H. Phenol Hydroxylase from Bacillus thermoglucosidasius A7, a Two-protein Component Monooxygenase with a Dual Role for FAD. J. Biol. Chem. 2003, 278, 47545–47553. [Google Scholar] [CrossRef] [Green Version]
- Eulberg, D.; Schlömann, M. The putative regulator of catechol catabolism in Rhodococcus opacus 1CP--an IclR-type, not a LysR-type transcriptional regulator. Antonie Leeuwenhoek 1998, 74, 71–82. [Google Scholar] [CrossRef]
- Kim, S.I.; Ha, K.-S.; Leem, S.-H. Differential organization and transcription of the cat2 gene cluster in aniline-assimilating Acinetobacter lwoffii K24. J. Biosci. Bioeng. 1999, 88, 250–257. [Google Scholar] [CrossRef]
- Matsumura, E.; Sakai, M.; Hayashi, K.; Murakami, S.; Takenaka, S.; Aoki, K. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodococcus species AN-22: Production, purification, characterization and gene analysis of CatA, CatB and CatC. Biochem. J. 2005, 393, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Kim, S.W.; Choi, K.Y.; Lee, J.S.; Kim, E. Molecular cloning and functional characterization of  the genes encoding benzoate and p-hydroxybenzoate degradation by the halophilic Chromohalobacter sp. strain HS-2. FEMS Microbiol. Lett. 2008, 280, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrauchan, M.A.; Florizone, C.; Dosanjh, M.; Mohn, W.W.; Davies, J.; Eltis, L.D. Catabolism of Benzoate and Phthalate in Rhodococcus sp. Strain RHA1: Redundancies and Convergence. J. Bacteriol. 2005, 187, 4050–4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, K.; Unell, M.; Jansson, J.K. Novel 4-Chlorophenol Degradation Gene Cluster and Degradation Route via Hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl. Environ. Microbiol. 2005, 71, 6538–6544. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Shi, S.; Zhou, H.; Ma, Q.; Li, X.; Zhang, X.; Zhou, J. Characterization of a Novel Phenol Hydroxylase in Indoles Biotranformation from a Strain Arthrobacter sp. W1. PLoS ONE 2012, 7, e44313. [Google Scholar] [CrossRef]
- Kälin, M.; Neujahr, H.Y.; Weissmahr, R.N.; Sejlitz, T.; Jöhl, R.; Fiechter, A.; Reiser, J. Phenol hydroxylase from Trichosporon cutaneum: Gene cloning, sequence analysis, and functional expression in Escherichia coli. J. Bacteriol. 1992, 174, 7112–7120. [Google Scholar] [CrossRef] [Green Version]
- Eppink, M.H.M.; Van Berkel, W.J.H.; Schreuder, H.A. Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci. 2008, 6, 2454–2458. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.S.; Camargo, F.; Andreazza, R.; Jacques, R.J.S.; Baldoni, D.B.; Bento, F.M. Enzymatic activity of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans. Química Nova 2012, 35, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.-H.; Ye, C.-C.; Zhou, Q.-Z.; Wu, X.-Y.; Yuan, J.-P.; Peng, J.; Deng, H.; Wang, J.-H. Genome Sequencing Reveals the Potential of Achromobacter sp. HZ01 for Bioremediation. Front. Microbiol. 2017, 8, 1507. [Google Scholar] [CrossRef]
- Li, F.; Song, W.; Wei, J.; Liu, C.; Yu, C. Comparative proteomic analysis of phenol degradation process by Arthrobacter. Int. Biodeterior. Biodegrad. 2016, 110, 189–198. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shamaan, N.A.; Syed, M.A.; Khalid, A.; Ab Rahman, N.A.; Khalil, K.A.; Dahalan, F.A.; Shukor, M.Y. Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rendiconti Lincei 2016, 28, 1–9. [Google Scholar] [CrossRef]
- Margesin, R.; Bergauer, P.; Gander, S. Degradation of phenol and toxicity of phenolic compounds: A comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida. Extremophiles 2004, 8, 201–207. [Google Scholar] [CrossRef]
- Tavakoli, A.; Hamzah, A. Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia. Biol. J. Microorg. 2017, 5, 71–80. [Google Scholar]
- Margesin, R.; Gander, S.; Zacke, G.; Gounot, A.M.; Schinner, F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003, 7, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Guzik, U.; Hupert-Kocurek, K.; Sitnik, M.; Wojcieszyńska, D. High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie Leeuwenhoek 2013, 103, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
- Briganti, F.; Pessione, E.; Giunta, C.; Mazzoli, R.; Scozzafava, A. Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. J. Protein Chem. 2000, 19, 709–716. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Shi, Y.; Song, W.; Zhang, C. Cloning, Expression and Characterization of a Mesophilic Catechol 1,2-dioxygenase from Rhodococcus ruber OA1. Biotechnol. 2016, 16, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.L.Y.; Ahmad, S.A.; Yasid, N.A.; Zulkharnain, A.; Convey, P.; Johari, W.L.W.; Alias, S.A.; Gonzalez-Rocha, G.; Shukor, M.Y. Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol. 2017, 41, 553–562. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, V.M.; Mavrommatis, K.; Ivanova, N.; Chen, I.-M.A.; Chu, K.; Kyrpides, N. IMG ER: A system for microbial genome annotation expert review and curation. Bioinformatics 2009, 25, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Bedell, J.A.; Korf, I.; Gish, W. MaskerAid: A performance enhancement to RepeatMasker. Bioinformatics 2000, 16, 1040–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.M.; Eddy, S. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Moxon, S.; Marshall, M.; Khanna, A.; Eddy, S.R.; Bateman, A. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2004, 33, D121–D124. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
Feature | Count/Value | |
---|---|---|
AQ5-05 | AQ5-06 | |
Genome size (bp) | 4,647,352 | 4,139,264 |
GC content (%) | 65.7 | 64.9 |
Number of contigs | 116 | 70 |
Length of the longest contig (bp) | 554,363 | 406,582 |
Number of Subsystems | 415 | 411 |
Number of CDSs | 4294 | 3981 |
Number of rRNAs | 9 | 3 |
Number of tRNAs | 57 | 50 |
ORF | Putative Functions |
---|---|
1 | Phosphoribosylformylglycinamidine synthase subunit, purS |
2 | Phosphoribosylformylglycinamidine synthase subunit, purQ |
3 | Phosphoribosylformylglycinamidine synthase subunit, purl |
4 | Hypothetical protein |
5 | Hypothetical protein |
6 | Phenol 2-monooxygenase, PheA/TdfB family |
7 | 3-oxoacyl-[acyl-carrier protein] reductase |
8 | Antibiotic biosynthesis monooxygenase |
9 | LuxR family transcriptional regulator |
10 | Catechol 1,2-dioxygenase, catA |
11 | Flavin reductase |
12 | Hypothetical protein |
13 | Pimeloyl-ACP methyl ester carboxylesterase |
14 | LuxR family transcriptional regulator |
15 | AAHS family benzoate transporter-like MFS transporter, benK |
16 | 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase, benD |
17 | Benzoate 1,2-dioxygenase reductase subunit, benC |
18 | Benzoate 1,2-dioxygenase beta subunit, benB |
19 | Benzoate 1,2-dioxygenase alpha subunit, benA |
20 | Benzoate membrane transport protein, benE |
ORF | Predicted Functions |
---|---|
1 | GntR family transcriptional regulator |
2 | Hypothetical protein |
3 | Phenol 2-monooxygenase, PheA/tdfB family |
4 | Hypothetical protein |
5 | Benzoate transport protein, benE |
6 | Muconolactone isomerase, catC |
7 | Muconate cycloisomerase, catB |
8 | Catechol 1,2- dioxygenase, catA |
9 | Benzoate 1,2-dioxygenase alpha subunit, benA |
10 | Benzoate 1,2-dioxygenase beta subunit, benB |
11 | Benzoate 1,2-dioxygenase reductase subunit, benC |
12 | 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase, benD |
13 | LuxR family transcriptional regulator |
Gene Name (Locus Tag) | Gene Product | Amino Acid Residues (aa) | COG No. | KEGG No. | EC No. |
---|---|---|---|---|---|
PheA (STRA2_03637) | Phenol 2-monooxygenase | 634 | COG2871 | K03380 | EC:1.14.13.7 |
CatA (STRA2_03962) | Catechol 1,2-dioxygenase | 284 | COG3485 | K03381 | EC:1.13.11.1 |
CatB (STRA2_03993) | Muconate cycloisomerase | 366 | COG4948 | K01856 | EC:5.5.1.1 |
CatC (STRA2_03992) | Muconolactone isomerase | 92 | COG4829 | K03464 | EC:5.3.3.4 |
PcaD (STRA2_02926) | 3-oxoadipate enol-lactonase | 271 | COG0596 | K01055 | EC:3.1.1.24 |
PcaI (STRA2_02962) | 3-oxoadipate coa-transferase, alpha subunit | 224 | COG1788 | K01031 | EC:2.8.3.6 |
PcaJ (STRA2_02963) | 3-oxoadipate coa-transferase, beta subunit | 223 | COG2057 | K01032 | EC:2.8.3.6 |
FadA, FadI(STRA2_00274) | Acetyl-coa acyltransferase | 412 | COG0183 | K00632 | EC:2.3.1.16 |
Gene Name (Locus Tag) | Gene Products | Amino Acid Residues (aa) | COG No. | KEGG No. | EC No. |
---|---|---|---|---|---|
PheA (ASC_01925) | Phenol 2-monooxygenase | 640 | COG0654 | K03380 | EC:1.14.13.7 |
CatA (ASC_01930) | Catechol 1,2-dioxygenase | 294 | COG3485 | K03381 | EC:1.13.11.1 |
CatB (ASC_01929) | Muconate cycloisomerase | 359 | COG4948 | K01856 | EC:5.5.1.1 |
CatC (ASC_01928) | Muconolactone isomerase | 92 | COG4829 | K03464 | EC: 5.3.3.4 |
PcaD (ASC_02352) | 3-oxoadipate enol-lactonase | 272 | COG0596 | K01055 | EC:3.1.1.24 |
PcaI (ASC_02349) | 3-oxoadipate coa-transferase, alpha subunit | 219 | COG1788 | K01031 | EC:2.8.3.6 |
PcaJ (ASC_02348) | 3-oxoadipate coa-transferase, beta subunit | 226 | COG2057 | K01032 | EC:2.8.3.6 |
PcaF (ASC_03031) | 3-oxoadipyl-CoA thiolase | 413 | COG0183 | K07823 | EC:2.3.1.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.L.Y.; Zakaria, N.N.; Futamata, H.; Suzuki, K.; Zulkharnain, A.; Shaharuddin, N.A.; Convey, P.; Zahri, K.N.M.; Ahmad, S.A. Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts 2022, 12, 1422. https://doi.org/10.3390/catal12111422
Lee GLY, Zakaria NN, Futamata H, Suzuki K, Zulkharnain A, Shaharuddin NA, Convey P, Zahri KNM, Ahmad SA. Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts. 2022; 12(11):1422. https://doi.org/10.3390/catal12111422
Chicago/Turabian StyleLee, Gillian Li Yin, Nur Nadhirah Zakaria, Hiroyuki Futamata, Kenshi Suzuki, Azham Zulkharnain, Noor Azmi Shaharuddin, Peter Convey, Khadijah Nabilah Mohd Zahri, and Siti Aqlima Ahmad. 2022. "Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp." Catalysts 12, no. 11: 1422. https://doi.org/10.3390/catal12111422
APA StyleLee, G. L. Y., Zakaria, N. N., Futamata, H., Suzuki, K., Zulkharnain, A., Shaharuddin, N. A., Convey, P., Zahri, K. N. M., & Ahmad, S. A. (2022). Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts, 12(11), 1422. https://doi.org/10.3390/catal12111422