NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fe Electrode
3.3. Preparation of Ni Electrode
3.4. Preparation of NiFe Electrode
3.5. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [Green Version]
- Peera, S.G.; Koutavarapu, R.; Liu, C.; Rajeshkhanna, G.; Asokan, A.; Reddy, C.V. Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis. Energies 2021, 14, 1320. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Chao, L.; Singh, L.; Murugadoss, G.; Rajeshkhanna, G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. Micromachines 2022, 13, 1499. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748. [Google Scholar] [CrossRef]
- Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266. [Google Scholar] [CrossRef]
- Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957. [Google Scholar] [CrossRef]
- Zhu, K.; Zhu, X.; Yang, W. Application of in situ techniques for the characterization of NiFe based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 2019, 58, 1252. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337. [Google Scholar] [CrossRef]
- Bediako, D.K.; Surendranath, Y.; Nocera, D.G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662. [Google Scholar] [CrossRef]
- Jothi, V.R.; Bose, R.; Rajan, H.; Jung, C.; Yi, S.C. Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv. Energy Mater. 2018, 8, 1802615. [Google Scholar] [CrossRef]
- Ng, J.W.D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T.F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053. [Google Scholar] [CrossRef] [Green Version]
- Su, C.Y.; Cheng, H.; Li, W.; Liu, Z.Q.; Li, N.; Hou, Z.; Bai, F.Q.; Zhang, H.X.; Ma, T.Y. Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 2017, 7, 1602420. [Google Scholar] [CrossRef]
- Chakrapani, K.; Ozcan, F.; Ortega, K.F.; Machowski, T.; Behrens, M. Composition-dependent effect of the calcination of cobalt, nickel and gallium based layered double hydroxides to mixed metal oxides in the oxygen evolution reaction. ChemElectroChem 2018, 5, 93. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Cao, W.; Huttula, M.; Kayser, Y.; Hoenicke, P.; Beckhoff, B.; Lai, F.; Dong, R.; Sun, H.; Geng, B. Fabrication of FeNi hydroxides double-shell nanotube arrays with enhanced performance for oxygen evolution reaction. Appl. Catal. B Environ. 2020, 261, 118193. [Google Scholar] [CrossRef]
- Corrigan, D.A.; Conell, R.S.; Fierro, C.A.; Scherson, D.A. In Situ Mossbauer study of redox processes in a composite hydroxide of iron and nickel. J. Phys. Chem. 1987, 91, 5009. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; Zhou, J.; Gu, S.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFeprussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286. [Google Scholar] [CrossRef]
- Song, F.; Busch, M.M.; Lassalle-Kaiser, B.; Hsu, C.S.; Petkucheva, E.; Bensimon, M.; Chen, H.M.; Corminboeuf, C.; Hu, X. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Central. Sci. 2019, 5, 558. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.Y.; Lopes, P.P.; Martins, P.F.B.D.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Dynamic stability of active sites in hydr(oxy) oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222. [Google Scholar] [CrossRef]
- Hu, Q.; Li, G.M.; Liu, X.F.; Zhu, B.; Chai, X.Y.; Zhang, Q.L.; Liu, J.H.; He, C.X. Superhydrophilic phytic acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew. Chem. Int. Edit. 2019, 58, 4318. [Google Scholar] [CrossRef]
- Han, X.P.; Zhang, W.; Ma, X.Y.; Zhong, C.; Zhao, N.Q.; Hu, W.B.; Deng, Y.D. Identifying the activation of bimetallic sites in NiCo2S4@gC3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mat. 2019, 31, 1808281. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y.; Zhao, M.; Luo, R.; Yang, Y.; Peng, T.; Yan, H.; Liu, X.; Luo, Y. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrode for flexible supercapattery device and oxygen evolution reaction. ACS Nano 2019, 13, 12206. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, F.; Chen, W.; Ma, Y.; Wu, Y.; Gu, X.; Qin, Y.; Tao, P.; Song, C.; Shang, W.; et al. In-situ vertical growth of Fe-Ni layered double hydroxide arrays on Fe-Ni alloy foil: Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2357. [Google Scholar] [CrossRef]
- Rashid, J.; Parveen, N.; Haq, T.; Iqbal, A.; Talib, S.H.; Awan, S.U.; Hussain, N.; Zaheer, M. g-C3N4/CeO2/Fe3O4 ternary composite as an efficient bifunctional catalyst for overall water splitting. ChemCatChem 2018, 10, 5587. [Google Scholar] [CrossRef]
- Xu, H.; Cao, J.; Shan, C.; Wang, B.; Xi, P.; Liu, W.; Tang, Y. MOF-merived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. 2018, 130, 8790. [Google Scholar] [CrossRef]
- Demir, E.; Akbayrak, S.; Onal, A.M.; Ozkar, S. Nanoceria-supported ruthenium(0) nanoparticles: Highly active and stable catalysts for hydrogen evolution from water. ACS Appl. Mater. Interfaces 2019, 534, 704. [Google Scholar] [CrossRef]
- Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J.K.; Nakabayashi, M.; Shibata, N.; Delaunay, J.J. Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 2019, 9, 1605. [Google Scholar] [CrossRef]
- Kaleeswarran, P.; Praveen Kumar, M.; Mangalaraja, R.V.; Hartley, U.W.; Sasikumar, M.; Venugopalan, R.; Rajesh Kumar, M.; Rajabathar, J.R.; Peera, S.G.; Murugadoss, G. FeTiO3 Perovskite Nanoparticles for Efficient Electrochemical Water Splitting. Catalysts 2021, 11, 1028. [Google Scholar] [CrossRef]
- Zaman, S.; Tian, X.; Su, Y.Q.; Cai, W.; Yan, Y.; Qi, R.; Douka, A.I.; Chen, S.; You, B.; Liu, H.; et al. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Sci. Bull. 2021, 66, 2207. [Google Scholar] [CrossRef]
- Ali, H.; Zaman, S.; Majeed, I.; Kanodarwala, F.K.; Amtiaz Nadeem, M.; Stride, J.A.; Nadeem, M.A. Porous carbon/rGO composite: An ideal support material of highly efficient palladium electrocatalysts for the formic acid oxidation reaction. ChemElectroChem 2017, 4, 3126. [Google Scholar] [CrossRef]
- Li, M.F.; Huang, L.; Zaman, S.; Guo, W.; Liu, H.; Guo, X.; Xia, B.Y. Corrosion chemistry of electrocatalysts. Adv Mater. 2022. [Google Scholar] [CrossRef]
- Zaman, S.; Wang, M.; Liu, H.; Sun, F.; Yu, Y.; Shui, J.; Chen, M.; Wang, H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem. 2022, 4, 886. [Google Scholar] [CrossRef]
- Zaman, S.; Su, Y.Q.; Dong, C.L.; Qi, R.; Huang, L.; Qin, Y.; Huang, Y.C.; Li, F.M.; You, B.; Guo, W.; et al. Scalable molten salt synthesis of platinum alloys planted in metal–nitrogen–graphene for efficient oxygen reduction. Angew. Chem. Int. Ed. 2022, 61, 202115835. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C. Electro deposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef] [Green Version]
- Novala, V.E.; Carriazoa, J.G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mater. Res. 2019, 22, e20180660. [Google Scholar] [CrossRef] [Green Version]
- Fei, J.; Zhao, J.; Du, C.; Ma, H.; Zhang, H.; Li, J. The facile 3D self-assembly of porous iron hydroxide and oxide hierarchical nanostructures for removing dyes from wastewater. J. Mater. Chem. A 2013, 1, 10300. [Google Scholar] [CrossRef]
- Pramana, Y.B.; Setiawan, B.; Prihono, P.; Utomo, Y.; Subandowo, M.; Budipramana, K. A simple synthesis of nickel oxide nanotube using high voltage electrolysis. J. Neutrino: J. Fis. Apl. 2020, 13, 13. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Z.; Jia, H.; Yang, X.; Lei, X.; Kong, X.; Zhang, F. Partially reduced Ni2+, Fe3+-layered double hydroxide for ethanol electrocatalysis. J. Mater Sci. 2019, 54, 14515. [Google Scholar] [CrossRef]
- Yang, Q.; Li, T.; Lu, Z.; Sun, X.; Liu, J. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 2014, 6, 11789. [Google Scholar] [CrossRef]
- Ali-Löytty, H.; Louie, M.W.; Singh, M.R.; Li, L.; Sanchez Casalongue, H.G.; Ogasawara, H.; Crumlin, E.J.; Liu, Z.; Bell, A.T.; Nilsson, A.; et al. Ambient-pressure XPS study of a Ni−Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 2247. [Google Scholar] [CrossRef]
- Praveen Kumar, M.; Murugesan, P.; Vivek, S.; Ravichandran, S. NiWO3 Nanoparticles Grown on Graphitic Carbon Nitride (g-C3N4) Supported Toray Carbon as an Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Part. Part. Syst. Charact. 2017, 34, 1700043. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883. [Google Scholar] [CrossRef]
- He, Z.; Zhang, J.; Gong, Z.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W.; Zhao, S.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat Commun. 2022, 13, 2191. [Google Scholar] [CrossRef] [PubMed]
- Pascuzzi, M.E.C.; Man, A.J.W.; Goryachev, A.; Hofmann, J.P.; Hensen, E.J.M. Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions. Catal. Sci. Technol. 2020, 10, 5593–5601. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Fang, Z.; Xu, L.; Lu, C.; Hou, W. Ultrafast room-temperature synthesis of self-supported NiFe-layered double hydroxide as large-current–density oxygen evolution electrocatalyst. Small 2022, 18, 2104354. [Google Scholar] [CrossRef]
- Louie, M.W.; Bell, A.T. An Investigation of thin-film Ni−Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Wang, Y.; Jiang, Q.; Nan, Z.-A.; Fan, F.R.; Tian, Z.-Q. Charged droplet-driven fast formation of nickel–Iron (oxy)hydroxides with rich oxygen defects for boosting overall water splitting. J. Mater. Chem. A 2021, 9, 20058–20067. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praveen Kumar, M.; Sasikumar, M.; Arulraj, A.; Rajasudha, V.; Murugadoss, G.; Kumar, M.R.; Gouse Peera, S.; Mangalaraja, R.V. NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction. Catalysts 2022, 12, 1470. https://doi.org/10.3390/catal12111470
Praveen Kumar M, Sasikumar M, Arulraj A, Rajasudha V, Murugadoss G, Kumar MR, Gouse Peera S, Mangalaraja RV. NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction. Catalysts. 2022; 12(11):1470. https://doi.org/10.3390/catal12111470
Chicago/Turabian StylePraveen Kumar, Murugesan, Moorthy Sasikumar, Arunachalam Arulraj, Venugopalan Rajasudha, Govindhasamy Murugadoss, Manavalan Rajesh Kumar, Shaik Gouse Peera, and Ramalinga Viswanathan Mangalaraja. 2022. "NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction" Catalysts 12, no. 11: 1470. https://doi.org/10.3390/catal12111470
APA StylePraveen Kumar, M., Sasikumar, M., Arulraj, A., Rajasudha, V., Murugadoss, G., Kumar, M. R., Gouse Peera, S., & Mangalaraja, R. V. (2022). NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction. Catalysts, 12(11), 1470. https://doi.org/10.3390/catal12111470