Application of Dithiocarbamate Chitosan Modified SBA-15 for Catalytic Reductive Removal of Vanadium(V)
Abstract
:1. Introduction
2. Result and Discussion
2.1. Structural Characterizations of Modified CS2C@SBA−1,2,3
2.2. Adsorption Properties on Vanadium (V) Elimination
2.2.1. Effects of pH
2.2.2. Effects of the Dosage of CS2C@SBA−3
2.3. Adsorption Kinetics
2.4. Adsorption Isotherm
2.5. Effects of Competing Anions
2.6. The Elimination of V(V) in Real Waters
2.7. Mechanism for V(V) Removal by CS2C@SBA−3
2.8. Recycling Application
3. Materials and Methods
3.1. Materials
3.2. Preparation of SBA-15, CS2−Chitosan and CS2C@SBA
3.3. Characterizations
3.4. Adsorption Experiments
3.5. Regeneration and Recycle Experiments
3.6. Effects of Groundwater Impurities
3.7. V(V) Elimination Assays in Spiked Real Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, Z.L.; Zhang, B.G.; He, C.; Shi, J.X.; Wu, M.X.; Guo, J.H. Sulfur−based Mixotrophic Vanadium (V) Bio−reduction towards Lower Organic Requirement and Sulfate Accumulation. Water Res. 2021, 189, 116655. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, J.; Wang, Y.D.; Liu, T.Y. Enhanced elimination of V5+ in wastewater using zero−valent iron activated by ball milling: The overlooked crucial roles of energy input and sodium chloride. J. Hazard. Mater. 2022, 435, 129050. [Google Scholar] [CrossRef]
- Sun, F.J.; Liu, M.; Yuan, B.; He, J.; Wu, P.; Liu, C.J.; Jiang, W. Separation of vanadium and chromium by selective adsorption by titanium−based microspheres. Chem. Eng. J. 2022, 450, 138039. [Google Scholar] [CrossRef]
- Aregay, G.G.; Ali, J.; Shahzad, A.; Ifthikar, J.; Oyekunle, D.T.; Chen, Z. Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O4(2−)) for efficient and selective removal of vanadium (V) from diverse aqueous medium. Sci. Total Environ. 2021, 792, 148543. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, S.; Liber, K. Toxicity of aqueous vanadium to zooplankton and phytoplankton species of relevance to the athabasca oil sands region. Ecotoxicol. Environ. Saf. 2017, 137, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Chen, N.; Feng, C.P.; Deng, Y. Synchronous microbial V(V) reduction and denitrification using corn straw as the sole carbon source. Sci. Total Environ. 2022, 839, 156343. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.R.; Hu, W.F.; Gao, J.; Yang, J.Y. Vanadium in soil−plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef]
- Zhu, X.B.; Li, W.; Zhang, Q.; Zhang, C.X.; Chen, L.J. Separation characteristics of vanadium from leach liquor of red mud by ion exchange with different resins. Hydrometallurgy 2018, 176, 42–48. [Google Scholar] [CrossRef]
- Zhang, B.G.; Li, Y.N.; Fei, Y.M.; Cheng, Y.T. Novel Pathway for Vanadium(V) Bio−Detoxification by Gram−Positive Lactococcus raffinolactis. Environ. Sci. Technol. 2021, 55, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.C.; Leiviska, T. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem. Eng. J. 2020, 385, 123967. [Google Scholar] [CrossRef]
- Kong, X.; Chen, J.; Tang, Y.; Lv, Y.; Chen, T.; Wang, H. Enhanced removal of vanadium(V) from groundwater by layered double hydroxide−supported nanoscale zerovalent iron. J. Hazard. Mater. 2020, 392, 122392. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Foley, S.R.; Wilson, L.D. An Overview of Modified Chitosan Adsorbents for the Removal of Precious Metals Species from Aqueous Media. Molecules 2022, 27, 978. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Akman, F.; Malyar, Y.N.; Issaoui, N.; Vasilieva, N.Y.; Karacharov, A.A. Synthesis optimization, DFT and physicochemical study of chitosan sulfates. J. Mol. Struc. 2021, 1245, 131083. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin−Crini, N. Conventional and non−conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar]
- Steiger, B.G.K.; Wilson, L.D. Modular Chitosan−Based Adsorbents for Tunable Uptake of Sulfate from Water. Int. J. Mol. Sci. 2020, 21, 7130. [Google Scholar] [CrossRef]
- Nuryono, N.; Miswanda, D.; Sakti, S.C.W.; Rusdiarso, B.; Krisbiantoro, P.A.; Utami, N.; Otomo, R.; Kamiya, Y. Chitosan−functionalized natural magnetic particle@silica modified with (3−chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Mater. Chem. Phys. 2020, 255, 123507. [Google Scholar] [CrossRef]
- Zhuang, S.T.; Zhu, K.K.; Wang, J.L. Fibrous chitosan cellulose composite as an efficient adsorbent for Co(II) removal. J. Clean. Prod. 2021, 285, 124911. [Google Scholar] [CrossRef]
- Bui, T.H.; Lee, W.; Jeon, S.B.; Kim, K.W.; Lee, Y. Enhanced Gold(III) adsorption using glutaraldehyde−crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Sep. Purif. Technol. 2020, 248, 116989. [Google Scholar]
- Bilican, I.; Pekdemir, S.; Onses, M.S.; Akyuz, L.; Altuner, E.M.; Koc−Bilican, B.; Zang, L.S.; Mujtaba, M.; Mulercikas, P.; Kaya, M. Chitosan Loses Innate Beneficial Properties after Being Dissolved in Acetic Acid: Supported by Detailed Molecular Modeling. ACS Sustain. Chem. Eng. 2020, 8, 18083–18093. [Google Scholar] [CrossRef]
- Yin, Z.; Qiu, D.; Zhang, M.Y. Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan. Environ. Pollut. 2021, 271, 116322. [Google Scholar] [CrossRef] [PubMed]
- Ifthikar, J.; Chen, Z.; Chen, Z.; Jawad, A. A self−gating proton−coupled electron transfer reduction of hexavalent chromium by core−shell SBA−Dithiocarbamate chitosan composite. J. Hazard. Mater. 2020, 384, 121257. [Google Scholar] [CrossRef]
- Ifthikar, J.; Zhao, M.; Shahzad, A.; Shahib, I.I.; Wang, J.; Wang, H.B.; Sellaoui, L.; Chen, Z.Q.; Chen, Z.L. Recyclable process modeling study of hexavalent chromium elimination by thiol−based electron donor: Implications for practical applicability. J. Environ. Chem. Eng. 2021, 9, 105645. [Google Scholar] [CrossRef]
- Roncevic, S.; Nemet, I.; Ferri, T.Z.; Matkovic−Calogovic, D. Characterization of nZVI nanoparticles functionalized by EDTA and dipicolinic acid: A comparative study of metal ion removal from aqueous solutions. RSC Adv. 2019, 9, 31043–31051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ifthikar, J.; Jiao, X.; Ngambia, A.; Wang, T.; Khan, A.; Jawad, A.; Xue, Q.; Liu, L.; Chen, Z. Facile One−Pot Synthesis of Sustainable Carboxymethyl Chitosan − Sewage Sludge Biochar for Effective Heavy Metal Chelation and Regeneration. Bioresour. Technol. 2018, 262, 22–31. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Said, N.; Rauser, M.; Yan, K.; Qin, F.; Theyssen, N.; Leitner, W. Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: How do solvent effects during material synthesis affect catalytic properties? Green Chem. 2017, 19, 977–986. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Akman, F.; Vasilieva, N.Y.; Issaoui, N.; Malyar, Y.N.; Kondrasenko, A.A.; Borovkova, V.S.; Miroshnikova, A.V.; Kazachenko, A.S.; Al−Dossary, O.; et al. Catalytic Sulfation of Betulin with Sulfamic Acid: Experiment and DFT Calculation. Int. J. Mol. Sci. 2022, 23, 1602. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Akman, F.; Vasilieva, N.Y.; Malyar, Y.N.; Fetisova, O.Y.; Lutoshkin, M.A.; Berezhnaya, Y.D.; Miroshnikova, A.V.; Issaoui, N.; Xiang, Z.Y. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers 2022, 14, 3000. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.; Akman, F.; Medimagh, M.; Issaoui, N.; Vasilieva, N.; Malyar, Y.N.; Sudakova, I.G.; Karacharov, A.; Miroshnikova, A.; Al−Dossary, O.M. Sulfation of Diethylaminoethyl−Cellulose: QTAIM Topological Analysis and Experimental and DFT Studies of the Properties. Acs Omega 2021, 6, 22603–22615. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, D.; Tantai, X.; Jiang, B.; Sun, Y.; Yang, N. Synthesis of Three−Dimensional Hierarchical Flower−Like Mg–Al Layered Double Hydroxides with Excellent Adsorption Performance for Organic Anionic Dyes. Trans. Tianjin Univ. 2020, 27, 394–408. [Google Scholar] [CrossRef]
- Hongmanorom, P.; Ashok, J.; Zhang, G.H.; Bian, Z.F.; Wai, M.H.; Zeng, Y.Q.; Xi, S.B.; Borgna, A.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Appl. Catal. B-Environ. 2021, 282, 119564. [Google Scholar] [CrossRef]
- Alkafajy, A.M.; Albayati, T.M. High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation. Mater. Today Commun. 2020, 23, 100890. [Google Scholar] [CrossRef]
- Betiha, M.A.; Moustafa, Y.M.; El−Shahat, M.F.; Rafik, E. Polyvinylpyrrolidone−Aminopropyl−SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. J. Hazard. Mater. 2020, 397, 122675. [Google Scholar] [CrossRef] [PubMed]
- Daoura, O.; Fornasieri, G.; Boutros, M.; El Hassan, N.; Beaunier, P.; Thomas, C.; Selmane, M.; Miche, A.; Sassoye, C.; Ersen, O.; et al. One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming. Appl. Catal. B-Environ. 2021, 280, 119417. [Google Scholar] [CrossRef]
- Shimon, D.; Chen, C.H.; Lee, J.J.; Didas, S.A.; Sievers, C.; Jones, C.W.; Hayes, S.E. (15)N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3−Aminopropylsilyl Grafted to SBA-15 Mesoporous Silica. Environ. Sci. Technol. 2018, 52, 1488–1495. [Google Scholar] [CrossRef]
- Cao, T.; Li, Z.; Xiong, Y.; Yang, Y.; Xu, S.; Bisson, T.; Gupta, R.; Xu, Z. Silica−Silver Nanocomposites as Regenerable Sorbents for Hg(0) Removal from Flue Gases. Environ. Sci. Technol. 2017, 51, 11909–11917. [Google Scholar] [CrossRef]
- Dong, W.C.; Liu, J.; Hao, J.M.; Zeng, Y. Adsorption of DTC−CTS on sphalerite (110) and Cu−activated sphalerite (110) surfaces: A DFT study. Appl. Surf. Sci. 2021, 551, 149466. [Google Scholar] [CrossRef]
- Ifthikar, J.; Shahib, I.I.; Sellaoui, L.; Jawad, A.; Zhao, M.M.; Chen, Z.Q.; Chen, Z.L. pH tunable anionic and cationic heavy metal reduction coupled adsorption by thiol cross−linked composite: Physicochemical interpretations and fixed−bed column mathematical model study. Chem. Eng. J. 2020, 401, 126041. [Google Scholar] [CrossRef]
- Ifthikar, J.; Wang, J.; Wang, Q.L.; Wang, T.; Wang, H.B.; Khan, A.; Jawad, A.; Sun, T.T.; Jiao, X.; Chen, Z.Q. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications. Bioresour. Technol. 2017, 238, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.B.; Lin, H.; Zhao, Y.M.; Menzembere, E. Remediation of vanadium−contaminated soils by the combination of natural clay mineral and humic acid. J. Clean. Prod. 2021, 279, 123874. [Google Scholar] [CrossRef]
- Gogoi, H.; Zhang, R.C.; Matusik, J.; Leiviska, T.; Ramo, J.; Tanskanen, J. Vanadium removal by cationized sawdust produced through iodomethane quaternization of triethanolamine grafted raw material. Chemosphere 2021, 278, 130445. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.Y.; Luo, H.Q.; Yang, J.Y. Characteristic of adsorption, desorption, and co−transport of vanadium on humic acid colloid. Ecotox. Environ. Safe. 2020, 190, 110087. [Google Scholar] [CrossRef]
- Zhu, X.B.; Li, W.; Zhang, C.X. Extraction and removal of vanadium by adsorption with resin 201*7 from vanadium waste liquid. Environ. Res. 2020, 180, 108865. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.D.; Liu, M.; Lu, J.; Yang, J.Y. Adsorption and Desorption Characteristics of Vanadium (V) on Silica. Water Air Soil Poll. 2020, 231, 10. [Google Scholar] [CrossRef]
- He, C.; Zhang, B.G.; Lu, J.P.; Qiu, R. A newly discovered function of nitrate reductase in chemoautotrophic vanadate transformation by natural mackinawite in aquifer. Water Res. 2021, 189, 116664. [Google Scholar] [CrossRef]
- Li, M.; Zhang, B.G.; Zou, S.Q.; Liu, Q.S.; Yang, M. Highly selective adsorption of vanadium (V) by nano−hydrous zirconium oxide−modified anion exchange resin. J. Hazard. Mater. 2020, 384, 121386. [Google Scholar] [CrossRef]
- Zhang, B.G.; Jiang, Y.F.; Zuo, K.C.; He, C.; Dai, Y.R.; Ren, Z.J. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater. J. Hazard. Mater. 2020, 382, 121228. [Google Scholar] [CrossRef]
- Aregay, G.G.; Ali, J.; Du, Y.S.; Shahzad, A.; Chen, Z.Q. Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes. J. Mol. Liq. 2019, 294, 111532. [Google Scholar] [CrossRef]
- Yong, S.K.; Skinner, W.M.; Bolan, N.S.; Lombi, E.; Kunhikrishnan, A.; Ok, Y.S. Sulfur crosslinks from thermal degradation of chitosan dithiocarbamate derivatives and thermodynamic study for sorption of copper and cadmium from aqueous system. Environ. Sci. Pollut. Res. 2016, 23, 1050–1059. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Vasilieva, N.Y.; Fetisova, O.Y.; Sychev, V.V.; Elsuf’ev, E.V.; Malyar, Y.N.; Issaoui, N.; Miroshnikova, A.V.; Borovkova, V.S.; Kazachenko, A.S.; et al. New reactions of betulin with sulfamic acid and ammonium sulfamate in the presence of solid catalysts. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Akman, F.; Abdelmoulahi, H.; Issaoui, N.; Malyar, Y.N.; Al−Dossary, O.; Wojcik, M.J. Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J. Mol. Liq. 2021, 342, 117475. [Google Scholar] [CrossRef]
- Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P.M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y.; et al. Nickel−vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167–175. [Google Scholar] [CrossRef]
- Brandt, N.N.; Chikishev, A.Y.; Kruzhilin, V.N. Raman study of the cleavage of disulphide bonds in albumin, chymotrypsin, and thrombin. Vib. Spectrosc. 2017, 89, 75–80. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, P.; Ghosh, R.; Paul, S.; Mondal, S.; Panja, A.; Nandi, A.K. Folic Acid−Polyaniline Hybrid Hydrogel for Adsorption/Reduction of Chromium(VI) and Selective Adsorption of Anionic Dye from Water. ACS Sustain. Chem. Eng. 2017, 5, 9325–9337. [Google Scholar] [CrossRef]
- Veerakumar, P.; Thanasekaran, P.; Lin, K.−C.; Liu, S.−B. Biomass Derived Sheet−like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium. ACS Sustain. Chem. Eng. 2017, 5, 5302–5312. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Medimagh, M.; Issaoui, N.; Al−Dossary, O.; Wojcik, M.J.; Kazachenko, A.S.; Miroshnokova, A.V.; Malyar, Y.N. Sulfamic acid/water complexes (SAA−H2O((1−8))) intermolecular hydrogen bond interactions: FTIR,X-ray, DFT and AIM analysis. J. Mol. Struct. 2022, 1265, 133394. [Google Scholar] [CrossRef]
- Levdansky, A.V.; Vasilyeva, N.Y.; Malyar, Y.N.; Kondrasenko, A.A.; Fetisova, O.Y.; Kazachenko, A.S.; Levdansky, V.A.; Kuznetsov, B.N. An Efficient Method of Birch Ethanol Lignin Sulfation with a Sulfaic Acid−Urea Mixture. Molecules 2022, 27, 6356. [Google Scholar] [CrossRef]
- He, W.Y.; Liao, W.; Yang, J.Y.; Jeyakumar, P.; Anderson, C. Removal of vanadium from aquatic environment using phosphoric acid modified rice straw. Bioremediation J. 2020, 24, 80–89. [Google Scholar] [CrossRef]
- Yang, J.Y.; Luo, H.Q.; Zhu, Y.Y.; Yu, Y.Q.; He, W.Y.; Wu, Z.Z.; Wang, B. Adsorption-desorption and co-migration of vanadium on colloidal kaolinite. Environ. Sci. Pollut. R. 2020, 27, 17910–17922. [Google Scholar] [CrossRef]
- Yap, P.L.; Auyoong, Y.L.; Hassan, K.; Farivar, F.; Tran, D.N.H.; Ma, J.; Losic, D. Multithiol functionalized graphene bio−sponge via photoinitiated thiol−ene click chemistry for efficient heavy metal ions adsorption. Chem. Eng. J. 2020, 395, 124965. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Bakry, B.M.; Adlii, A.; Yakout, S.M.; El−Zaidy, M.E. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. J. Hazard. Mater. 2019, 374, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Shahat, A.; Hassan, H.M.A.; Azzazy, H.M.E.; El−Sharkawy, E.A.; Abdou, H.M.; Awual, M.R. Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem. Eng. J. 2018, 332, 377–386. [Google Scholar] [CrossRef]
Adsorbent | Elemental Composition a (wt%) | Degree of CS2 Substitution (%) | |||
---|---|---|---|---|---|
C | H | N | S | ||
SBA-15 | 0.09 | 1.17 | 0.03 | 0.01 | NA |
CS2Chitosan | 42.54 | 7.42 | 7.92 | 3.92 | 20.96 |
CS2C@SBA−1 | 32.83 | 6.21 | 4.50 | 1.97 | 19.19 |
CS2C@SBA−2 | 25.40 | 5.35 | 3.52 | 1.73 | 21.52 |
CS2C@SBA−3 | 18.99 | 4.21 | 2.62 | 1.36 | 22.72 |
Models | Parameters | ||
---|---|---|---|
Pseudo−first−order model | K1 (min−1) | Qe (mg∙g−1) | R2 |
0.014 | 39.813 | 0.9851 | |
Pseudo−second−order model | K2 (mg∙g−1∙min−1) | Qe (mg∙g−1) | R2 |
0.001 | 98.045 | 0.9999 | |
Elovich model | α (mg∙min∙g−1) | β (mg∙g−1) | R2 |
41.341 | 9.057 | 0.8788 | |
Langmuir model | Qm (mg∙g−1) | KL (L∙mg−1) | R2 |
221.193 | 0.260 | 0.9982 | |
Freundlich model | n | Kf (mg1−n∙Ln∙g−1) | R2 |
4.252 | 65.663 | 0.9218 |
Adsorbent | Elemental Composition a (wt %) | |||||
---|---|---|---|---|---|---|
C | Si | O | N | S | V | |
CS2C@SBA−3 before adsorption CS2C@SBA−3 after adsorption b | 55.2 | 4.5 | 32.7 | 5.5 | 1.8 | 0.0 |
46.3 | 5.8 | 32.6 | 2.7 | 0.4 | 12.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, J.; Li, M.; You, Z. Application of Dithiocarbamate Chitosan Modified SBA-15 for Catalytic Reductive Removal of Vanadium(V). Catalysts 2022, 12, 1469. https://doi.org/10.3390/catal12111469
Huang Y, Wang J, Li M, You Z. Application of Dithiocarbamate Chitosan Modified SBA-15 for Catalytic Reductive Removal of Vanadium(V). Catalysts. 2022; 12(11):1469. https://doi.org/10.3390/catal12111469
Chicago/Turabian StyleHuang, Yilin, Jia Wang, Mengwei Li, and Zhixiong You. 2022. "Application of Dithiocarbamate Chitosan Modified SBA-15 for Catalytic Reductive Removal of Vanadium(V)" Catalysts 12, no. 11: 1469. https://doi.org/10.3390/catal12111469
APA StyleHuang, Y., Wang, J., Li, M., & You, Z. (2022). Application of Dithiocarbamate Chitosan Modified SBA-15 for Catalytic Reductive Removal of Vanadium(V). Catalysts, 12(11), 1469. https://doi.org/10.3390/catal12111469