Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Experimental Procedure
2.3. Analytical Methods
3. Results and Discussion
3.1. Degradation Efficiency of BPA in Different Systems
3.2. Effect of SO32−/HSO3−
3.3. Effect of S2−/HS−
\ | Removal (%) | kobs (min−1) | Half-Life (t1/2, min) | Initial pH | Final pH |
---|---|---|---|---|---|
SO32− concentration (mM) | |||||
0.1 | 25.1 | 0.0016 | 433.22 | 3.38 | 3.22 |
1.0 | 66.0 | 0.0155 | 44.72 | 5.35 | 3.23 |
10.0 | 2 | / | / | 8.01 | 7.80 |
HSO3− concentration (mM) | |||||
0.1 | 38.8 | 0.0062 | 111.80 | 2.81 | 2.75 |
1.0 | 65.5 | 0.0167 | 41.51 | 2.65 | 2.51 |
10.0 | 41.8 | 0.0022 | 315.07 | 2.44 | 2.27 |
S2− concentration (mM) | |||||
0.1 | 64.1 | 0.012 | 57.76 | 3.19 | 3.11 |
1.0 | 71.9 | 0.0153 | 45.30 | 3.31 | 2.99 |
10.0 | / | / | / | 10.67 | 10.12 |
HS− concentration (mM) | |||||
0.1 | 64.7 | 0.0138 | 50.23 | 2.93 | 2.91 |
1.0 | 82.7 | 0.0216 | 32.09 | 2.78 | 2.77 |
10.0 | / | / | / | 2.65 | 2.63 |
3.4. Influence of the Concentration of Fe(III)
3.5. Influence of Initial pH
3.6. Identification of the Primary Reactive Oxidant Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Chen, Z.; He, Y.; Yi, X.; Zhang, C.; Zhou, Q.; Xiang, X.; Gao, Y.; Huang, M. Activation of persulfate-based advanced oxidation processes by 1t-mos2 for the degradation of imidacloprid: Performance and mechanism. Chem. Eng. J. 2023, 451, 138575. [Google Scholar] [CrossRef]
- Qi, C.; Yu, G.; Huang, J.; Wang, B.; Wang, Y.; Deng, S. Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. Chem. Eng. J. 2018, 353, 490–498. [Google Scholar] [CrossRef]
- Qi, C.; Wen, Y.; Zhao, Y.; Dai, Y.; Li, Y.; Xu, C.; Yang, S.; He, H. Enhanced degradation of organic contaminants by fe(iii)/peroxymonosulfate process with l-cysteine. Chin. Chem. Lett. 2022, 33, 2125–2128. [Google Scholar] [CrossRef]
- Dai, Y.; Qi, C.; Cao, H.; Wen, Y.; Zhao, Y.; Xu, C.; Yang, S.; He, H. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism. Sep. Purif. Technol. 2022, 288, 120716. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Fan, J.; Gu, L.; Wu, D.; Liu, Z. Mackinawite (fes) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species. Chem. Eng. J. 2018, 333, 657–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Guo, Z.; Zheng, X.; Guo, P.; Xu, J.; Lei, Y. The decomplexation of cu-edta by electro-assisted heterogeneous activation of persulfate via acceleration of fe(ii)/fe(iii) redox cycle on fe-mof catalyst. Chem. Eng. J. 2022, 430, 133025. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Liu, C.; Fang, G.; Gao, J.; Wang, Y.; Zhou, D. Mechanism of metal sulfides accelerating fe(ii)/fe(iii) redox cycling to enhance pollutant degradation by persulfate: Metallic active sites vs. Reducing sulfur species. J. Hazard. Mater. 2021, 404, 124175. [Google Scholar] [CrossRef]
- Liang, J.; Duan, X.; Xu, X.; Chen, K.; Wu, F.; Qiu, H.; Liu, C.; Wang, S.; Cao, X. Biomass-derived pyrolytic carbons accelerated fe(iii)/fe(ii) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms. Appl. Catal. B Environ. 2021, 297, 120446. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Li, X.; Zhang, J.; Fang, J.; Guan, Y.; Xie, P. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ. Sci. Technol. 2011, 45, 3925–3930. [Google Scholar] [CrossRef]
- Zou, J.; Ma, J.; Chen, L.; Li, X.; Guan, Y.; Xie, P.; Pan, C. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting fe(iii)/fe(ii) cycle with hydroxylamine. Environ. Sci. Technol. 2013, 47, 11685–11691. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, J.; Li, J.; You, J.; Lai, L.; Liu, R.; Ao, Z.; Yao, G.; Lai, B. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost fe3+/fe2+ cycle for peroxymonosulfate activation. Water Res. 2021, 188, 116529. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, H.; He, Y.; Huang, B.; Zhou, C.; Yao, G.; Lai, B. Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated fe3+/fe2+ cycle and quenching reactions. Appl. Catal. B Environ. 2021, 286, 119900. [Google Scholar] [CrossRef]
- Hou, X.; Huang, X.; Jia, F.; Ai, Z.; Zhao, J.; Zhang, L. Hydroxylamine promoted goethite surface fenton degradation of organic pollutants. Environ. Sci. Technol. 2017, 51, 5118–5126. [Google Scholar] [CrossRef]
- Hou, X.; Shen, W.; Huang, X.; Ai, Z.; Zhang, L. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine b. J. Hazard. Mater. 2016, 308, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Xie, G.; He, D.; Zhang, L. Ascorbic acid promoted magnetite fenton degradation of alachlor: Mechanistic insights and kinetic modeling. Appl. Catal. B Environ. 2020, 267, 118383. [Google Scholar] [CrossRef]
- Liang, C.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Persulfate oxidation for in situ remediation of tce. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 2004, 55, 1213–1223. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Wang, Q.; Xie, P.; Ma, J. Strongly enhanced fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues. Water Res. 2016, 105, 479–486. [Google Scholar] [CrossRef]
- Wu, X.; Gu, X.; Lu, S.; Xu, M.; Zang, X.; Miao, Z.; Qiu, Z.; Sui, Q. Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion. Chem. Eng. J. 2014, 255, 585–592. [Google Scholar] [CrossRef]
- He, J.; Yang, X.; Men, B.; Yu, L.; Wang, D. Edta enhanced heterogeneous fenton oxidation of dimethyl phthalate catalyzed by fe3o4: Kinetics and interface mechanism. J. Mol. Catal. A Chem. 2015, 408, 179–188. [Google Scholar] [CrossRef]
- Han, D.; Wan, J.; Ma, Y.; Wang, Y.; Li, Y.; Li, D.; Guan, Z. New insights into the role of organic chelating agents in fe(ii) activated persulfate processes. Chem. Eng. J. 2015, 269, 425–433. [Google Scholar] [CrossRef]
- Hou, K.; Pi, Z.; Chen, F.; He, L.; Yao, F.; Chen, S.; Li, X.; Dong, H.; Yang, Q. Sulfide enhances the fe(ii)/fe(iii) cycle in fe(iii)-peroxymonosulfate system for rapid removal of organic contaminants: Treatment efficiency, kinetics and mechanism. J. Hazard. Mater. 2022, 435, 128970. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Cediel, N.; Rodríguez, E.; Rodríguez-Chueca, J. Photocatalytic activation of sulfite using fe(ii) and fe(iii) for enterococcus sp. Inactivation in urban wastewater. Chem. Eng. J. 2021, 408, 127326. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, L.; Wan, Y.; Wang, J.; Bai, F.; Xie, P. Enhanced degradation of tetrabromobisphenol a by fe3+/sulfite process under simulated sunlight irradiation. Chemosphere 2021, 285, 131442. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Lin, Q.; Zhang, X.; Huang, Z.; Fu, H.; Xiao, R.; Liu, S.-S. Determining the key factors of nonradical pathway in activation of persulfate by metal-biochar nanocomposites for bisphenol a degradation. Chem. Eng. J. 2020, 391, 123555. [Google Scholar] [CrossRef]
- Harvey, A.E.; Smart, J.A.; Amis, E.S. Simultaneous spectrophotometric determination of iron(ii) and total iron with 1,10-phenanthroline. Anal. Chem. 1955, 27, 26–29. [Google Scholar] [CrossRef]
- Wang, H.; Guo, W.; Yin, R.; Du, J.; Wu, Q.; Luo, H.; Liu, B.; Sseguya, F.; Ren, N. Biochar-induced fe(iii) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chem. Eng. J. 2019, 362, 561–569. [Google Scholar] [CrossRef]
- Liang, C.; Liang, C.-P.; Chen, C.-C. Ph dependence of persulfate activation by edta/fe(iii) for degradation of trichloroethylene. J. Contam. Hydrol. 2009, 106, 173–182. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Xue, Y.; Liu, Z.; Tang, M.; Huang, L.-Z.; Shao, S.; Fang, Z. Degradation of the β-blocker propranolol by sulfite activation using fes. Chem. Eng. J. 2020, 385, 123884. [Google Scholar] [CrossRef]
- Ma, S.; Noble, A.; Butcher, D.; Trouwborst, R.E.; Luther, G.W. Removal of h2s via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries. Estuar. Coast. Shelf Sci. 2006, 70, 461–472. [Google Scholar] [CrossRef]
- Wu, G.; Kong, W.; Gao, Y.; Kong, Y.; Dai, Z.; Dan, H.; Shang, Y.; Wang, S.; Yin, F.; Yue, Q.; et al. Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: Performance, salt resistance, and reaction mechanisms. Chemosphere 2022, 286, 131876. [Google Scholar] [CrossRef]
- Xu, X.-R.; Li, X.-Z. Degradation of azo dye orange g in aqueous solutions by persulfate with ferrous ion. Sep. Purif. Technol. 2010, 72, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, J.; Gao, Y.; Liu, X.; Wei, Y.; Liang, Z. Enhanced atrazine degradation in the fe(iii)/peroxymonosulfate system via accelerating fe(ii) regeneration by benzoquinone. Chem. Eng. J. 2022, 427, 131995. [Google Scholar] [CrossRef]
- Jones, A.M.; Griffin, P.J.; Waite, T.D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, edta and fulvic acid. Geochim. Cosmochim. Acta 2015, 160, 117–131. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Tong, Y.; Liu, Z.; Fang, L.; Wu, Y.; Fang, Z.; Wu, F.; Huang, L.-Z. Radical generation via sulfite activation on nife2o4 surface for estriol removal: Performance and mechanistic studies. Chem. Eng. J. 2019, 368, 495–503. [Google Scholar] [CrossRef]
- Buxton, G.V.; McGowan, S.; Salmon, G.A.; Williams, J.E.; Wood, N.D. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of s(IV): A pulse and γ-radiolysis study. Atmos. Environ. 1996, 30, 2483–2493. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅oh/⋅o−) in aqueous solution. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Shen, L.; Lin, Y.; Yin, K.; Yang, C. Sulfite-based advanced oxidation and reduction processes for water treatment. Chem. Eng. J. 2021, 414, 128872. [Google Scholar] [CrossRef]
- Peng, J.; Lu, X.; Jiang, X.; Zhang, Y.; Chen, Q.; Lai, B.; Yao, G. Degradation of atrazine by persulfate activation with copper sulfide (cus): Kinetics study, degradation pathways and mechanism. Chem. Eng. J. 2018, 354, 740–752. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Zhang, Z.; Sun, L.; Peng, Y. Enhancement of ciprofloxacin degradation in the fe(ii)/peroxymonosulfate system by protocatechuic acid over a wide initial ph range. Chem. Eng. J. 2019, 372, 1113–1121. [Google Scholar] [CrossRef]
- Guo, J.; Gao, Q.; Yang, S.; Zheng, F.; Du, B.; Wen, S.; Wang, D. Degradation of pyrene in contaminated water and soil by fe2+-activated persulfate oxidation: Performance, kinetics, and background electrolytes (cl-, hco3- and humic acid) effects. Process Saf. Environ. Prot. 2021, 146, 686–693. [Google Scholar] [CrossRef]
- Yu, Y.; Li, S.; Peng, X.; Yang, S.; Zhu, Y.; Chen, L.; Wu, F.; Mailhot, G. Efficient oxidation of bisphenol a with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral ph under uv irradiation. Environ. Chem. Lett. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. Is sulfate radical really generated from peroxydisulfate activated by iron(ii) for environmental decontamination? Environ. Sci. Technol. 2018, 52, 11276–11284. [Google Scholar] [CrossRef]
- Zong, Y.; Guan, X.; Xu, J.; Feng, Y.; Mao, Y.; Xu, L.; Chu, H.; Wu, D. Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(ii)-activated peroxymonosulfate process. Environ. Sci. Technol. 2020, 54, 16231–16239. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Yin, C.; Zhang, M.; Zhu, J.; Ai, X.; Shi, W.; Peng, G. Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts 2022, 12, 1435. https://doi.org/10.3390/catal12111435
Yang F, Yin C, Zhang M, Zhu J, Ai X, Shi W, Peng G. Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts. 2022; 12(11):1435. https://doi.org/10.3390/catal12111435
Chicago/Turabian StyleYang, Fujian, Cheng Yin, Mengqiao Zhang, Jiangwei Zhu, Xiuyuan Ai, Wenchao Shi, and Guilong Peng. 2022. "Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species" Catalysts 12, no. 11: 1435. https://doi.org/10.3390/catal12111435
APA StyleYang, F., Yin, C., Zhang, M., Zhu, J., Ai, X., Shi, W., & Peng, G. (2022). Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts, 12(11), 1435. https://doi.org/10.3390/catal12111435