Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of Heteroepitaxial p-GaP
2.2. PEC Performance of WP/TiO2/p-GaP Photocathodes for Water Splitting
2.3. PEC Performance of TiO2/p-GaP Photocathodes for CO2 Reduction
3. Materials and Methods
3.1. Epitaxy and Material Characterisation
3.2. Fabrication of p-GaP Photocathodes
3.3. Photoelectrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tyagi, H.; Agarwal, A.K.; Chakraborty, P.R.; Powar, S. Current Trends and Future Roadmap for Solar Fuels. In Advances in Solar Energy Research; Springer Nature: Singapore, 2019. [Google Scholar]
- Song, H.; Li, C.; Lou, Z.; Ye, Z.; Zhu, L. Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient Solar-Driven Water Splitting. ACS Sustain. Chem. Eng. 2017, 5, 8982. [Google Scholar] [CrossRef]
- Zhang, R.; Ning, F.; Xu, S.; Zhou, L.; Shao, M.; Wei, M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim. Acta 2018, 274, 217–223. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Fan, X.; Li, Y.; Zhou, D.; Cai, B.; Wang, L.; Fan, K.; Zhang, K. Boosting Charge Transport in BiVO4 Photoanode for Solar Water Oxidation. Adv. Mater. 2022, 34, 2108178. [Google Scholar] [CrossRef]
- Gurudayal; John, R.A.; Boix, P.P.; Yi, C.; Shi, C.; Scott, M.C.; Veldhuis, S.A.; Minor, A.M.; Zakeeruddin, S.M.; Wong, L.H.; et al. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. ChemSusChem 2017, 10, 2449. [Google Scholar] [CrossRef] [PubMed]
- Gurudayal; Jeong, D.; Jin, K.; Ahn, H.Y.; Boix, P.P.; Abdi, F.F.; Mathews, N.; Nam, K.T.; Wong, L.H. Highly Active MnO Catalysts Integrated onto Fe2O3 Nanorods for Efficient Water Splitting. Adv. Mater. Interfaces 2016, 3, 1600176. [Google Scholar] [CrossRef]
- Jiang, C.M.; Segev, G.; Hess, L.H.; Liu, G.; Zaborski, G.; Toma, F.M.; Cooper, J.K.; Sharp, I.D. Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Appl. Mater. Interfaces 2018, 10, 10627. [Google Scholar] [CrossRef]
- Krol, R.V.D. Photoelectrochemical Hydrogen Production; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Varadhan, P.; Fu, H.C.; Kao, Y.C.; Horng, R.H.; He, J.H. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 2019, 10, 5282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, Y.H.; Zhang, B.; Hu, S. Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction. Front. Phys. 2019, 14, 53402. [Google Scholar] [CrossRef]
- Deguchi, M.; Yotsuhashi, S.; Yamada, Y.; Ohkawa, K. Photoelectrochemical CO2 Conversion to Hydrocarbons Using an AlGaN/GaN-Si Tandem Photoelectrode. Adv. Condens. Matter Phys. 2015, 2015, 537860. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, R.; Sun, K.; Chen, Y.; Verlage, E.; Francis, S.A.; Lewis, N.S.; Xiang, C. Solar-Driven Reduction of 1 atm of CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III–V Tandem Photoanode in Conjunction with a Bipolar Membrane and a Pd/C Cathode. ACS Energy Lett. 2016, 1, 764. [Google Scholar] [CrossRef]
- Canfield, D.; Frese, K.W., Jr. Reduction of Carbon Dioxide to Methanol on n - and p - GaAs and p - InP. Effect of Crystal Face, Electrolyte and Current Density. J. Electrochem. Soc. 1983, 130, 1772. [Google Scholar] [CrossRef]
- McCann, J.F.; Handley, L. The photoelectrochemical effect at a p-GaP electrode. Nature 1980, 283, 843. [Google Scholar] [CrossRef]
- Carlsson, P.; Uosaki, K.; Holmström, B.; Kita, H. Photoelectrochemical Properties of a GaP Electrode with an n/p Junction. J. Electrochem. Soc. 1989, 136, 524. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, B.; Fertig, D.; Ziegler, J.; Klett, J.; Hoch, S.; Jaegermann, W. Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: GaP(100) Photoelectrodes and Surface Modification. ChemPhysChem 2012, 13, 3053. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Qiu, J.; Li, Z.; Pavaskar, P.; Cronin, S.B. CO2 Reduction to Methanol on TiO2-Passivated GaP Photocatalysts. ACS Catal. 2014, 4, 3512. [Google Scholar] [CrossRef]
- Barton, E.E.; Rampulla, D.M.; Bocarsly, A.B. Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell. J. Am. Chem. Soc. 2008, 130, 6342. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446. [Google Scholar] [CrossRef]
- Beyer, A.; Ohlmann, J.; Liebich, S.; Heim, H.; Witte, G.; Stolz, W.; Volz, K. GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure. J. Appl. Phys. 2012, 111, 083534. [Google Scholar] [CrossRef]
- Grassman, T.J.; Carlin, J.A.; Galiana, B.; Yang, L.-M.; Yang, F.; Mills, M.J.; Ringel, S.A. Nucleation-related defect-free GaP/Si(100) heteroepitaxy via metal-organic chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 142102. [Google Scholar] [CrossRef] [Green Version]
- Romanyuk, O.; Supplie, O.; Susi, T.; May, M.M.; Hannappel, T. Ab initio density functional theory study on the atomic and electronic structure of GaP/Si(001) heterointerfaces. Phys. Rev. B 2016, 94, 155309. [Google Scholar] [CrossRef]
- Feifel, M.; Ohlmann, J.; Benick, J.; Rachow, T.; Janz, S.; Hermle, M.; Dimroth, F.; Belz, J.; Beyer, A.; Volz, K. MOVPE Grown Gallium Phosphide–Silicon Heterojunction Solar Cells. IEEE J. Photolt. 2017, 7, 502. [Google Scholar] [CrossRef]
- Emmer, H.; Chen, C.T.; Saive, R.; Friedrich, D.; Horie, Y.; Arbabi, A.; Faraon, A.; Atwater, H.A. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass. Sci. Rep. 2017, 7, 4643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqahtani, M.; Sathasivam, S.; Cui, F.; Steier, L.; Xia, X.; Blackman, C.; Kim, E.; Shin, H.; Benamara, M.; Mazur, Y.I.; et al. Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. Mater. Chem. A 2019, 7, 8550–8558. [Google Scholar] [CrossRef]
- Lucci, I.; Charbonnier, S.; Vallet, M.; Turban, P.; Leger, Y.; Rohel, T.; Bertru, N.; Létoublon, A.; Rodriguez, J.B.; Cerutti, L.; et al. A Stress-Free and Textured GaP Template on Silicon for Solar Water Splitting. Adv. Fun. Mater. 2018, 28, 1801585. [Google Scholar] [CrossRef]
- Horowitz, K.A.W.; Remo, T.; Smith, B.; Ptak, A. A Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells; National Renewable Energy Laboratory: Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy19osti/72103.pdf (accessed on 10 November 2022).
- Simon, J.; Schulte, K.L.; Horowitz, K.A.W.; Remo, T.; Young, D.L.; Ptak, A. III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy. Crystals 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Tassev, V.L. Heteroepitaxy, an Amazing Contribution of Crystal Growth to the World of Optics and Electronics. Crystals 2017, 7, 178. [Google Scholar] [CrossRef] [Green Version]
- Tassev, V.; Bliss, D.; Lynch, C.; Yapp, C.; Goodhue, W.; Termoka, K. Low pressure—Temperature—Gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices. J. Cryst. Growth 2010, 312, 1146. [Google Scholar] [CrossRef]
- Tassev, V.; Bliss, D.; Snure, M.; Bryant, G.; Peterson, R.; Bedford, R.; Yapp, C.; Goodhue, W.; Termoka, K. HVPE growth and characterization of gap on different substrates and patterned templates for frequency conversion devices. J. Eur. Opt. Soc. Rap. Public 2011, 6, 11017. [Google Scholar] [CrossRef] [Green Version]
- Vangala, S.; Kimani, M.; Peterson, R.; Stites, R.; Snure, M.; Tassev, V. Thick orientation-patterned growth of GaP on wafer-fused GaAs templates by hydride vapor phase epitaxy for frequency conversion. Opt. Mater. 2016, 60, 62. [Google Scholar] [CrossRef]
- Tassev, V.L.; Vangala, S.R. Thick Hydride Vapor Phase Heteroepitaxy: A Novel Approach to Growth of Nonlinear Optical Materials. Crystals 2019, 9, 393. [Google Scholar] [CrossRef]
- Schunemann, P.G.; Johnson, K.; Farrell, C.; Maidment, L.; Shi, Y.; Rutkauskas, M.; Reid, D.T. Continuous wavelength tuning from 3.9–12 µm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs. Opt. Mater. Exp. 2021, 11, 654. [Google Scholar] [CrossRef]
- Mori, H.; Ogasawara, M.; Yamamoto, M.; Tachikawa, M. New hydride vapor phase epitaxy for GaP growth on Si. Appl. Phys. Lett. 1987, 51, 1245. [Google Scholar] [CrossRef]
- Mori, H.; Tachikawa, M.; Sugo, M.; Itoh, Y. GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl. Phys. Lett. 1993, 63, 1963. [Google Scholar] [CrossRef]
- Li, F.; Wang, C.; Han, X.; Feng, X.; Qu, Y.; Liu, J.; Chen, W.; Zhao, L.; Song, X.; Zhu, H.; et al. Confinement Effect of Mesopores: In Situ Synthesis of Cationic Tungsten-Vacancies for a Highly Ordered Mesoporous Tungsten Phosphide Electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 22741–22750. [Google Scholar] [CrossRef]
- Ayers, J.E. The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst. Growth 1994, 135, 71. [Google Scholar] [CrossRef]
- Tassev, V.L.; Vangala, S.R.; Peterson, R.D.; Snure, M.J. Heteroepitaxy of orientation-patterned nonlinear optical materials. J. Cryst. Growth 2018, 486, 155. [Google Scholar] [CrossRef]
- Strömberg, A.; Omanakuttan, G.; Liu, Y.; Mu, T.; Xu, Z.; Lourdudoss, S.; Sun, Y. Heteroepitaxy of GaAsP and GaP on GaAs and Si by low pressure hydride vapor phase epitaxy. J. Cryst. Growth 2020, 540, 125623. [Google Scholar] [CrossRef]
- Lafon, E.G.; Napierala, J.; Castelluci, D.; Pimpinelli, A.; Cadoret, R.; Gérard, B. Selective growth of GaAs by HVPE: Keys for accurate control of the growth morphologies. J. Cryst. Growth 2001, 222, 482. [Google Scholar] [CrossRef]
- Strömberg, A.; Bhargava, P.; Xu, Z.; Lourdudoss, S.; Sun, Y. Direct Heteroepitaxy and Selective Area Growth of GaP and GaAs on Si by Hydride Vapor Phase Epitaxy. Phys. Status Solidi A 2021, 218, 2000447. [Google Scholar] [CrossRef]
- Northrup, J.E. Structure of Si(100)H: Dependence on the H chemical potential. Phys. Rev. B 1991, 44, 1419. [Google Scholar] [CrossRef]
- Widjaja, Y.; Musgrave, C.B. Atomistic mechanism of the initial oxidation of the clean Si(100)-(2 × 1) surface by O2 and SiO2 decomposition. J. Chem. Phys. 2002, 116, 5774. [Google Scholar] [CrossRef]
- Lucci, I.; Charbonnier, S.; Pedesseau, L.; Vallet, M.; Cerutti, L.; Rodriguez, J.-B.; Tournié, E.; Bernard, R.; Létoublon, A.; Bertru, N.; et al. Universal description of III-V/Si epitaxial growth processes. Phys. Rev. Mater. 2018, 2, 060401. [Google Scholar] [CrossRef] [Green Version]
- Kohama, Y.; Uchida, K.; Soga, T.; Jimbo, T.; Umeno, M. Quality improvement of metalorganic chemical vapor deposition grown GaP on Si by AsH3 preflow. Appl. Phys. Lett. 1988, 53, 862. [Google Scholar] [CrossRef]
- Asai, K.; Fujita, K.F.K.; Shiba, Y.S.Y. The Effects of AsH3 Preflow Conditions at Low Temperature on the Morphology of GaAs Buffer Layers for GaAs/Si Grown by Metalorganic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 1991, 30, L1967. [Google Scholar] [CrossRef]
- Bolkhovityanov, Y.B.; Pchelyakov, O.P. GaAs epitaxy on Si substrates: Modern status of research and engineering. Phys. Usp. 2008, 51, 437. [Google Scholar] [CrossRef]
- Xu, H.Y.; Guo, Y.N.; Wang, Y.; Zou, J.; Kang, J.H.; Gao, Q.; Tan, H.H.; Jagadish, C. Effects of annealing and substrate orientation on epitaxial growth of GaAs on Si. J. Appl. Phys. 2009, 106, 083514. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Jana, S.U.; Dong, Z.; Dai, Y.; Boddula, R.; Wei, Y.; Zhao, C.; Xin, Q.; Wang, J.-N.; Du, Y.; et al. GaP/GaPN core/shell nanowire array on silicon for enhanced photoelectrochemical hydrogen production. Chin. J. Catal. 2020, 41, 2. [Google Scholar] [CrossRef]
- Abbas, Y.; Zuhra, Z.; Akhtar, N.; Ali, S.; Gong, J.R. Single-Step Fabrication of Visible-Light-Active ZnO-GaN:ZnO Branched Nanowire Array Photoanodes for Efficient Water Splitting. ACS Appl. Energy Mater. 2018, 1, 3529. [Google Scholar] [CrossRef]
- Krost, A.; Schnabel, R.F.; Heinrichsdorff, F.; Rossow, U.; Bimberg, D.; Cerva, H. Defect reduction in GaAs and InP grown on planar Si(111) and on patterned Si(001) substrates. J. Cryst. Growth 1994, 145, 314–320. [Google Scholar] [CrossRef]
- Seshadri, G.; Lin, C.; Bocarsly, A.B. A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J. Electroanal. Chem. 1994, 372, 145. [Google Scholar] [CrossRef]
- Morgan, B.J.; Watson, G.W. Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations. J. Phys. Chem. C 2010, 114, 2321. [Google Scholar] [CrossRef]
- Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J.V.; Winans, R.E.; et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- Wu, J.; Yadav, R.M.; Liu, M.; Sharma, P.P.; Tiwary, C.S.; Ma, L.; Zou, X.; Zhou, X.-D.; Yakobson, B.I.; Lou, J.; et al. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano 2015, 9, 5364–5371. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Seo, D.; Abbas, S.A.; Jung, H.; Ma, A.; Lee, K.; Lee, G.; Lee, H.; Nam, K.M. Unraveling the Simultaneous Enhancement of Selectivity and Durability on Single-Crystalline Gold Particles for Electrochemical CO2 Reduction. Adv. Sci. 2022, 9, 2201491. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Jee, M.S.; Won, D.H.; Jung, H.; Oh, H.-S.; Min, B.K.; Hwang, Y.J. Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustain. Chem. Eng. 2017, 5, 11377–11386. [Google Scholar] [CrossRef]
- Qi, K.; Zhang, Y.; Li, J.; Charmette, C.; Ramonda, M.; Cui, X.; Wang, Y.; Zhang, Y.; Wu, H.; Wang, W.; et al. Enhancing the CO2-to-CO Conversion from 2D Silver Nanoprisms via Superstructure Assembly. ACS Nano 2021, 15, 7682–7693. [Google Scholar] [CrossRef]
- Kohama, Y.; Kadota, Y.; Ohmachi, Y. Initial Stages of Epitaxial Growth of GaP on Si with AsH3 Preflow. Jpn. J. Appl. Phys. 1990, 29, L229. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.; Liu, J.; Zhao, L.; Janackovic, D.; Qiu, Y.; Song, X.; Zhang, P.; Gao, L. Enhancing the Long-Term Photoelectrochemical Performance of TiO2/Si Photocathodes by Coating of Ti-Doped Mesoporous Hematite. ACS Appl. Energy Mater. 2021, 4, 7882–7890. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Feng, X.; Liu, J.; Chen, S.; Lin, Y.; Sun, Y.; Chen, H.; Zhao, L.; Song, X.; et al. Coating of Phosphide Catalysts on p-Silicon by a Necking Strategy for Improved Photoelectrochemical Characteristics in Alkaline Media. ACS Appl. Mater. Interfaces 2021, 13, 20185–20193. [Google Scholar] [CrossRef]
- Döscher, H.; Young, J.L.; Geisz, J.F.; Turner, J.A.; Deutsch, T.G. Solar-to-hydrogen efficiency: Shining light on photoelectrochemical device performance. Energy Environ. Sci. 2016, 9, 74. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhou, Z.; Ru, P.; Chen, H.; Yang, X.; Han, L. Reliable Measurement of Perovskite Solar Cells. Adv. Mater. 2019, 31, 1803231. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Q.; Chen, Y.; Zhang, R.; Li, C.; Zhang, K.; Li, M.; Lin, Y.; Wang, D.; Zou, X.; et al. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 290, 120058. [Google Scholar] [CrossRef]
- Ning, X.; Wu, Q.; Fan, Y.; Zhang, Q.; Du, P.; Zhang, D.; Chen, J.; Lu, X. Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2021, 11, 2100405. [Google Scholar] [CrossRef]
Sample | Substrate | DEZn Flow [sccm] | GaCl Flow [sccm] | PH3 [sccm] |
---|---|---|---|---|
A | GaP | 10 | 5 | 100 |
B | GaAs | 10 | 5 | 100 |
C | GaP | 25 | 5 | 100 |
D | GaAs | 25 | 5 | 100 |
E | Si (100) | 10 | 5 | 100 |
F | Si (111) | 10 | 5 | 100 |
G | Si (100) | 10 | 25 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strömberg, A.; Yuan, Y.; Li, F.; Manavaimaran, B.; Lourdudoss, S.; Zhang, P.; Sun, Y. Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction. Catalysts 2022, 12, 1482. https://doi.org/10.3390/catal12111482
Strömberg A, Yuan Y, Li F, Manavaimaran B, Lourdudoss S, Zhang P, Sun Y. Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction. Catalysts. 2022; 12(11):1482. https://doi.org/10.3390/catal12111482
Chicago/Turabian StyleStrömberg, Axel, Yanqi Yuan, Feng Li, Balaji Manavaimaran, Sebastian Lourdudoss, Peng Zhang, and Yanting Sun. 2022. "Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction" Catalysts 12, no. 11: 1482. https://doi.org/10.3390/catal12111482
APA StyleStrömberg, A., Yuan, Y., Li, F., Manavaimaran, B., Lourdudoss, S., Zhang, P., & Sun, Y. (2022). Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction. Catalysts, 12(11), 1482. https://doi.org/10.3390/catal12111482